Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Neurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system. This review paper explores the evolution of neuroprosthetics, categorizing devices into sensory and motor neuroprosthetics and emphasizing their significance in addressing specific challenges. The discussion section delves into long-term challenges in clinical practice, encompassing device durability, ethical considerations, and issues of accessibility and affordability. Furthermore, the paper proposes potential solutions with a specific focus on enhancing sensory experiences and the importance of user-friendly interfaces. In conclusion, this paper offers a comprehensive overview of the current state of neuroprosthetics, outlining future research and development directions to guide advancements in the field.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273335487250102093150
2025-01-28
2025-10-07
Loading full text...

Full text loading...

References

  1. PapaS. MauriE. RossiF. PeraleG. VeglianeseP. Introduction to spinal cord injury as clinical pathologyIn: Spinal Cord Injury (SCI) Repair StrategiesElsevier2020112
    [Google Scholar]
  2. GoyalN. Understanding neurotrauma: Causes, effects and treatment options.J. Clin. Neurol. Neurosurg.202361
    [Google Scholar]
  3. SezerN. AkkuşS. UğurluF.G. Chronic complications of spinal cord injury.World J. Orthop.201561243310.5312/wjo.v6.i1.2425621208
    [Google Scholar]
  4. JacobsP.L. NashM.S. Exercise recommendations for individuals with spinal cord injury.Sports Med.2004341172775110.2165/00007256‑200434110‑0000315456347
    [Google Scholar]
  5. KarlssonA.K. Overview: Autonomic dysfunction in spinal cord injury: Clinical presentation of symptoms and signs.Prog. Brain Res.20061521810.1016/S0079‑6123(05)52034‑X16198689
    [Google Scholar]
  6. TamD.C.F. MurrayM.P. Total isolated monocular vision loss in a patient who suffered closed head injury.J. Emerg. Med.2022623e65e6810.1016/j.jemermed.2021.11.01435065866
    [Google Scholar]
  7. MeladamK. ShankarP. DeepV.C. Rehabilitation of residual neurological deficits caused by traumatic brain injury through ayurvedic treatment protocol–a retrospective case report.Annals of Ayurvedic Medicine201981-24250
    [Google Scholar]
  8. ChenW. LinS. ShiY. GuoQ. XuY. NiuY. Therapy of spinal cord injury by zinc pyrogallol modified nanozyme via anti-inflammatory strategies.Chem. Eng. J.202347114459510.1016/j.cej.2023.144595
    [Google Scholar]
  9. GaoG. GerezL. LiarokapisM. Adaptive, tendon-driven, affordable prostheses for partial hand amputations: On body-powered and motor driven implementations.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.201920196656666010.1109/EMBC.2019.8857187 31947368
    [Google Scholar]
  10. SeminaraL. DosenS. MastrogiovanniF. BianchiM. WattS. BeckerleP. NanayakkaraT. DrewingK. MoscatelliA. KlatzkyR.L. LoebG.E. A hierarchical sensorimotor control framework for human-in-the-loop robotic hands.Sci. Robot.2023878eadd543410.1126/scirobotics.add543437196072
    [Google Scholar]
  11. FincoM.G. KimS. NgoW. MenegazR.A. A review of musculoskeletal adaptations in individuals following major lower-limb amputation.J. Musculoskelet. Neuronal Interact.202222226928335642706
    [Google Scholar]
  12. GüçlüB. Introduction to somatosensory neuroprostheses. Somatosensory feedback for neuroprosthetics.Academic Press202134010.1016/B978‑0‑12‑822828‑9.00022‑8
    [Google Scholar]
  13. KansakuK. Neuroprosthetics in systems neuroscience and medicine.Sci. Rep.2021111540410.1038/s41598‑021‑85134‑433686138
    [Google Scholar]
  14. Gutiérrez-MartínezJosefina Toledo-PeralCinthya Mercado-GutiérrezJorge Vera-HernándezArturo Leija-SalasLorenzo Neuroprosthesis devices based on micro- and nanosensors: a systematic review.J. Sensors.202011910.1155/2020/8865889
    [Google Scholar]
  15. EisenM.D. Djourno, eyries, and the first implanted electrical neural stimulator to restore hearing.Otol. Neurotol.200324350050610.1097/00129492‑200305000‑0002512806307
    [Google Scholar]
  16. RadovicT. Neuroprosthetics: The Restoration of Brain DamageAvaialble from: https://escholarship.org/uc/item/7553d0qc 2022
    [Google Scholar]
  17. GribiS. Microchannel-Based Technologies for Nerve Interfacing,” EPFLEPFL201910.5075/epfl‑thesis‑9425
    [Google Scholar]
  18. BruschiA. DonatiD.M. ChoongP. LucarelliE. WallaceG. Dielectric elastomer actuators, neuromuscular interfaces, and foreign body response in artificial neuromuscular prostheses: A review of the literature for an in vivo application.Adv. Healthc. Mater.20211013210004110.1002/adhm.20210004134085772
    [Google Scholar]
  19. HoffmannK.P. MiceraS. KrammeR. HoffmannK.P. PozosR.S. Introduction to neuroprosthetics.Springer handbook of medical technology2011Springer HandbooksSpringer, Berlin78580010.1007/978‑3‑540‑74658‑4_39
    [Google Scholar]
  20. HaslacherD. NasrK. SoekadarS.R. Advancing sensory neuroprosthetics using artificial brain networks.Patterns (N. Y.)20212710030410.1016/j.patter.2021.10030434286308
    [Google Scholar]
  21. Bar-NoamA. GefenI. ShohamS. 25 holographic optical neural interfacing with retinal neurons.In: Optogenetics: From Neuronal Function to Mapping and Disease Biology2017Cambridge University Press37138110.1017/9781107281875.027
    [Google Scholar]
  22. KhaniJ.M. Cortical and thalamic representations of artificial sensation projected onto primary somatosensory cortex2020Duke University
    [Google Scholar]
  23. BordaL. GozziN. PreatoniG. ValleG. RaspopovicS. Automated calibration of somatosensory stimulation using reinforcement learning.J. Neuroeng. Rehabil.202320113110.1186/s12984‑023‑01246‑037752607
    [Google Scholar]
  24. HuangS. Controllability analysis and design for underactuated stochastic neurocontrol.2019Doctoral dissertation, Boston University
    [Google Scholar]
  25. Prez FornosA. Van de BergR. SommerhalderJ. GuinandN. Designing artificial senses: Steps from physiology to clinical implementation.Swiss Med. Wkly.20191492122w2006110.4414/smw.2019.2006131154660
    [Google Scholar]
  26. WhiteB.E. The role of auditory experience in the neurocognitive systems for everyday and effortful listening.2019Gallaudet University, United States -- District of Columbia10.13140/RG.2.2.30046.66885/1
    [Google Scholar]
  27. MaarefvandM. The assessment of electrode-neuron interface (ENI) in cochlear implant users.In: Latest Advances in Cochlear Implant Technologies and Related Clinical Applications.2023IntechOpen10.5772/intechopen.112455
    [Google Scholar]
  28. SodiqovnaR.K. Preparation of preschool children with cochlear implants for independent learning.Eur. J. Res. Reflection Educ. Sci.202088159161
    [Google Scholar]
  29. StupakN. ToddA.E. LandsbergerD.M. Place-pitch interval perception with a cochlear implant.Ear Hear.202142230131210.1097/AUD.000000000000092233606415
    [Google Scholar]
  30. FletcherM.D. HadeediA. GoehringT. MillsS.R. Electro-haptic enhancement of speech-in-noise performance in cochlear implant users.Sci. Rep.2019911142810.1038/s41598‑019‑47718‑z31388053
    [Google Scholar]
  31. FletcherM.D. ThiniN. PerryS.W. Enhanced pitch discrimination for cochlear implant users with a new haptic neuroprosthetic.Sci. Rep.20201011035410.1038/s41598‑020‑67140‑032587354
    [Google Scholar]
  32. AytonL.N. BarnesN. DagnelieG. FujikadoT. GoetzG. HornigR. JonesB.W. MuqitM.M.K. RathbunD.L. StinglK. WeilandJ.D. PetoeM.A. An update on retinal prostheses.Clin. Neurophysiol.202013161383139810.1016/j.clinph.2019.11.02931866339
    [Google Scholar]
  33. Ostad-AhmadiZ. DaemiA. ModabberiM.R. MostafaieA. Safety, effectiveness, and cost-effectiveness of Argus II in patients with retinitis pigmentosa: A systematic reviewInt. J. Ophthalmol.202114231031610.18240/ijo.2021.02.2033614463
    [Google Scholar]
  34. BlochE. LuoY. da CruzL. Advances in retinal prosthesis systems.Ther. Adv. Ophthalmol.201911251584141881750110.1177/251584141881750130729233
    [Google Scholar]
  35. ÖzmertE. ArslanU. Retinal prostheses and artificial vision.Turk. J. Ophthalmol.201949421321910.4274/tjo.galenos.2019.4427031486609
    [Google Scholar]
  36. WangV. KuriyanA.E. Optoelectronic devices for vision restoration.Curr. Ophthalmol. Rep.202082697710.1007/s40135‑020‑00232‑232699657
    [Google Scholar]
  37. GreenbergR. GrunfeldA.A. HuddersA. Van DemarkC. Second Sight Medical Products, Inc.Sylmar, California,Sight Medical Products2002
    [Google Scholar]
  38. CodeM. Bionic eyes: Treatments for blindness target the retina and the brain.Neuroscience20228519
    [Google Scholar]
  39. ChoiD.H. JeeD.W. A 1984-pixels, 1.26 nw/pixel retinal prosthesis chip with time-domain in-pixel image processing and bipolar stimulating electrode sharing.IEEE J. Solid-State Circuits202358102757276610.1109/JSSC.2023.3284460
    [Google Scholar]
  40. MontezumaS.R. SunS.Y. RoyA. CaspiA. DornJ.D. HeY. Improved localisation and discrimination of heat emitting household objects with the artificial vision therapy system by integration with thermal sensor.Br. J. Ophthalmol.2020104121730173410.1136/bjophthalmol‑2019‑31551332152141
    [Google Scholar]
  41. BajajR. SadeghiR. BarryM.P. GibsonP. CaspiA. RoyA. DagnelieG. Seeing heat: Efficacy of a thermal camera in the Argus II retinal prosthesis systemInvest. Ophthalmol. Vis. Sci.20196094017
    [Google Scholar]
  42. SunS. HeY. RoyA. CaspiA. MontezumaS.R. Improved localization and recognition of heat emitting objects and people using a thermal sensor camera integrated with the argus ii retinal prosthesis system.Invest. Ophthalmol. Vis. Sci.20196094978
    [Google Scholar]
  43. HeY. HuangN.T. CaspiA. RoyA. MontezumaS.R. Trade-off between field-of-view and resolution in the thermal-integrated Argus II systemTransl. Vision Sci. Technol.2019842910.1167/tvst.8.4.29
    [Google Scholar]
  44. LestakJ. ChodJ. RosinaJ. HanaK. Visual neuroprosthesis: present and future perspectives.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2022166325125710.5507/bp.2022.02735713333
    [Google Scholar]
  45. WeissJ.N. Cortical visual prosthesis studies.In: Visual prosthesis: A concise guideChamSpringer2022235210.1007/978‑3‑031‑06620‑7_5
    [Google Scholar]
  46. GandhiP. ChauhanA. Sensory vision substitution using tactile stimulation2021 6th International Conference for Convergence in Technology (I2CT)2021Maharashtra, India1710.1109/I2CT51068.2021.9418067
    [Google Scholar]
  47. FarnumA. PelledG. New vision for visual prostheses.Front. Neurosci.2020143610.3389/fnins.2020.0003632132890
    [Google Scholar]
  48. PatersonM. Hearing gloves and seeing tongues? Disability, sensory substitution and the origins of the neuroplastic subject.Body Soc.2022281-218020810.1177/1357034X211008235
    [Google Scholar]
  49. KaticN. ValleG. RaspopovicS. Modeling of the peripheral nerve to investigate advanced neural stimulation (sensory neural prosthesis).In: Handbook of neuroengineering.SingaporeSpringer Singapore202213010.1007/978‑981‑15‑2848‑4_100‑1
    [Google Scholar]
  50. Müller-PutzG. WriessneggerS.C. Electroencephalography and brain–computer interfaces.In: Neuroprosthetics and Brain-Computer Interfaces in Spinal Cord Injury: A Guide for Clinicians and End Users.ChamSpringer International Publishing20217110310.1007/978‑3‑030‑68545‑4_3
    [Google Scholar]
  51. JiangL. WoodingtonB. Carnicer-LombarteA. MalliarasG. BaroneD.G. Spinal cord bioelectronic interfaces: Opportunities in neural recording and clinical challenges.J. Neural Eng.202219202100310.1088/1741‑2552/ac605f35320780
    [Google Scholar]
  52. ManjulaK. BCI controlled neuroprosthesis.Int. Res. J. Modern. Enginee. Techno. Sci.20224614
    [Google Scholar]
  53. OuyangZ. BarreraN. SperryZ.J. BottorffE.C. BittnerK.C. ZirpelL. BrunsT.M. Closed-loop sacral neuromodulation for bladder function using dorsal root ganglia sensory feedback in an anesthetized feline model.Med. Biol. Eng. Comput.20226051527154010.1007/s11517‑022‑02554‑835349032
    [Google Scholar]
  54. YousefpourA. ErfanianA. A general framework for automatic closed-loop control of bladder voiding induced by intraspinal microstimulation in rats.Sci. Rep.2021111342410.1038/s41598‑021‑82933‑733564019
    [Google Scholar]
  55. SysoevY. BazhenovaE. LyakhovetskiiV. KovalevG. ShkorbatovaP. IslamovaR. PavlovaN. GorskiiO. MerkulyevaN. ShkarupaD. MusienkoP. Site-specific neuromodulation of detrusor and external urethral sphincter by epidural spinal cord stimulation.Front. Syst. Neurosci.2020144710.3389/fnsys.2020.0004732774243
    [Google Scholar]
  56. KumarR. Soft silicone-based neural interface to improve bladder function.2023Doctoral dissertation, University of Pittsburgh
    [Google Scholar]
  57. WalterJ. HutuI. TomancokB. CumpanasA.A. BardanR. LatcuS. RusmirA. NovacescuD. GeorgescuO. PenteaM. CumpanasA.D. MadersbacherH. A new electrode design for direct bladder wall stimulation: A pilot minipig study with chronic testing.Appl. Sci. (Basel)2022123114910.3390/app12031149
    [Google Scholar]
  58. EckU. RuppR. History of neuroprosthetics.Neuroprosthetics and brain-computer interfaces in spinal cord injury: A guide for clinicians and end users.ChamSpringer International Publishing202110712410.1007/978‑3‑030‑68545‑4_4
    [Google Scholar]
  59. WooA. TchoeH. ShinH. ShinC. LimC.M. Assisted breathing with a diaphragm pacing system: A systematic review.Yonsei Med. J.202061121024103310.3349/ymj.2020.61.12.102433251776
    [Google Scholar]
  60. GibersonC.E. CheshierS.H. PoreeL.R. SaulinoM.F. Diaphragm pacing: A safety, appropriateness, financial neutrality, and efficacy analysis of treating chronic respiratory insufficiency.Neuromodulation202326349049710.1016/j.neurom.2022.10.05936609087
    [Google Scholar]
  61. OndersR.P. KhansariniaS. IngvarssonP.E. RoadJ. YeeJ. DunkinB. IgnagniA.R. Diaphragm pacing in spinal cord injury can significantly decrease mechanical ventilation in multicenter prospective evaluation.Artif. Organs202246101980198710.1111/aor.1422135226374
    [Google Scholar]
  62. YokotaK. MasudaM. KogaR. UemuraM. KogaT. NakashimaY. KawanoO. MaedaT. Diaphragm pacing implantation in Japan for a patient with cervical spinal cord injury: A case report.Medicine (Baltimore)202210126e2971910.1097/MD.000000000002971935776996
    [Google Scholar]
  63. RaspopovicS. ValleG. PetriniF.M. Sensory feedback for limb prostheses in amputees.Nat. Mater.202120792593910.1038/s41563‑021‑00966‑933859381
    [Google Scholar]
  64. GuG. ZhangN. XuH. LinS. YuY. ChaiG. GeL. YangH. ShaoQ. ShengX. ZhuX. ZhaoX. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback.Nat. Biomed. Eng.20217458959810.1038/s41551‑021‑00767‑034400808
    [Google Scholar]
  65. AhmedS.Y.H. Bionic Hand.Int. J. Eng. Res. Technol. [IJERT]20208411510.17577/IJERTCONV8IS04004
    [Google Scholar]
  66. ZelechowskiM. ValleG. RaspopovicS. A computational model to design neural interfaces for lower-limb sensory neuroprostheses.J. Neuroeng. Rehabil.20201712410.1186/s12984‑020‑00657‑732075654
    [Google Scholar]
  67. BarberiF. AnselminoE. MazzoniA. GoldfarbM. MiceraS. Toward the development of user-centered neurointegrated lower limb prostheses.IEEE Rev. Biomed. Eng.20241721222810.1109/RBME.2023.330932837639425
    [Google Scholar]
  68. ManzS. ValetteR. DamonteF. Avanci GaudioL. Gonzalez-VargasJ. SartoriM. DosenS. RietmanJ. A review of user needs to drive the development of lower limb prostheses.J. Neuroeng. Rehabil.202219111910.1186/s12984‑022‑01097‑136335345
    [Google Scholar]
  69. SchmittM.S. WrightJ.D. TrioloR.J. CharkhkarH. GraczykE.L. The experience of sensorimotor integration of a lower limb sensory neuroprosthesis: A qualitative case study.Front. Hum. Neurosci.202316107403310.3389/fnhum.2022.107403336712150
    [Google Scholar]
  70. PriceM.A. BeckerleP. SupF.C. Design optimization in lower limb prostheses: A review.IEEE Trans. Neural Syst. Rehabil. Eng.20192781574158810.1109/TNSRE.2019.292709431283485
    [Google Scholar]
  71. OosterhoffM. GeertzenJ.H.B. DijkstraP.U. More than half of persons with lower limb amputation suffer from chronic back pain or residual limb pain: A systematic review with meta-analysis.Disabil. Rehabil.202244683485410.1080/09638288.2020.178337732603198
    [Google Scholar]
  72. LyuX. DingP. LiS. DongY. SuL. ZhaoL. GongA. FuY. Human factors engineering of BCI: An evaluation for satisfaction of BCI based on motor imagery.Cogn. Neurodynamics202317110511810.1007/s11571‑022‑09808‑z36704636
    [Google Scholar]
  73. LeeM.B. KramerD.R. PengT. BarbaroM.F. LiuC.Y. KellisS. LeeB. Clinical neuroprosthetics: Today and tomorrow.J. Clin. Neurosci.201968131910.1016/j.jocn.2019.07.05631375306
    [Google Scholar]
  74. AggarwalS. ChughN. Review of machine learning techniques for EEG based brain computer interface.Arch. Comput. Methods Eng.20222953001302010.1007/s11831‑021‑09684‑6
    [Google Scholar]
  75. MaY. GongA. NanW. DingP. WangF. FuY. Personalized brain–computer interface and its applications.J. Pers. Med.20221314610.3390/jpm1301004636675707
    [Google Scholar]
  76. TortoraS. BeraldoG. BettellaF. FormaggioE. RubegaM. Del FeliceA. MasieroS. CarliR. PetroneN. MenegattiE. ToninL. Neural correlates of user learning during long-term BCI training for the cybathlon competition.J. Neuroeng. Rehabil.20221916910.1186/s12984‑022‑01047‑x35790978
    [Google Scholar]
  77. KuzovkinI. TretyakovK. UusbergA. VicenteR. Mental state space visualization for interactive modeling of personalized BCI control strategies.J. Neural Eng.202017101605910.1088/1741‑2552/ab6d0b31952067
    [Google Scholar]
  78. RashmiC. ShantalaC. EEG artifacts detection and removal techniques for brain computer interface applications: A systematic review.Int. J. Adv. Technol. Eng. Explor202295435438310.19101/IJATEE.2021.874883
    [Google Scholar]
  79. WangJ.G. ShaoH.M. YaoY. LiuJ.L. MaS.W. A personalized feature extraction and classification method for motor imagery recognition.Mob. Netw. Appl.20212631359137110.1007/s11036‑021‑01754‑0
    [Google Scholar]
  80. Lopes-DiasC. SburleaA.I. Müller-PutzG.R. A generic error-related potential classifier offers a comparable performance to a personalized classifierAnnu Int Conf IEEE Eng Med Biol Soc20202020299529983301863510.1109/EMBC44109.2020.9176640
    [Google Scholar]
  81. KalaganisF.P. LaskarisN.A. ChatzilariE. NikolopoulosS. KompatsiarisI. A data augmentation scheme for geometric deep learning in personalized brain–computer interfaces.IEEE Access2020816221816222910.1109/ACCESS.2020.3021580
    [Google Scholar]
  82. MadmadT. DelinteN. De VleeschouwerC. CNN-based morphological decomposition of X-ray images for details and defects contrast enhancement.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition2021Nashville, TN, USA2170218010.1109/CVPRW53098.2021.00246
    [Google Scholar]
  83. ZaiA.T. Cavé-LopezS. RollandM. GiretN. HahnloserR.H.R. Sensory substitution reveals a manipulation bias.Nat. Commun.2020111594010.1038/s41467‑020‑19686‑w33230182
    [Google Scholar]
  84. ZhangY. ShaoX. WangZ. ChenX. Design of virtual interactive platform based on MI-BCI for rehabilitation.Proceedings of the 2023 3rd International Conference on Bioinformatics and Intelligent Computing269273202310.1145/3592686.3592735
    [Google Scholar]
  85. SunY. HuntC.L. LamounierE.A. SoaresA.B. Neurorehabilitation with virtual and augmented reality tools.In: Handbook of Neuroengineering.2023SingaporeSpringer Nature Singapore18591899
    [Google Scholar]
  86. YuK.E. PerryB.N. MoranC.W. ArmigerR.S. JohannesM.S. HawkinsA. StentzL. VanderseaJ. TsaoJ.W. PasquinaP.F. Clinical evaluation of the revolutionizing prosthetics modular prosthetic limb system for upper extremity amputees.Sci. Rep.202111195410.1038/s41598‑020‑79581‑833441604
    [Google Scholar]
  87. KlugerD.T. JoynerJ.S. WendelkenS.M. DavisT.S. GeorgeJ.A. PageD.M. HutchinsonD.T. BenzH.L. ClarkG.A. Virtual reality provides an effective platform for functional evaluations of closed-loop neuromyoelectric control.IEEE Trans. Neural Syst. Rehabil. Eng.201927587688610.1109/TNSRE.2019.290881730951470
    [Google Scholar]
  88. WangY. ZimmernP. Romero-OrtegaM.I. Direct bladder contraction by single and multi-electrode stimulation.2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)2023Baltimore, MD, USA1410.1109/NER52421.2023.10123752
    [Google Scholar]
  89. HannanL.M. De LosaR. RomeoN. MuruganandanS. Diaphragm dysfunction: A comprehensive review from diagnosis to management.Intern. Med. J.202252122034204510.1111/imj.1549134402156
    [Google Scholar]
  90. McClintonW. GarciaS. AndujarM. An immersive brain painting: The effects of brain painting in a virtual reality environmentLecture Notes in Computer Science20192143644510.1007/978‑3‑030‑22419‑6_31
    [Google Scholar]
  91. SeoH. HanS.I. SongK.I. SeongD. LeeK. KimS.H. ParkT. KooJ.H. ShinM. BaacH.W. ParkO.K. OhS.J. HanH.S. JeonH. KimY.C. KimD.H. HyeonT. SonD. Durable and fatigue‐resistant soft peripheral neuroprosthetics for in vivo bidirectional signaling.Adv. Mater.20213320200734610.1002/adma.20200734633739558
    [Google Scholar]
  92. Leach JennieB. AchyutaA.K.H. MurthyS.K. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology.Front. Neuroeng.20102182016181010.3389/neuro.16.018.2009
    [Google Scholar]
  93. ŞengülA. Gamma-ray attenuation properties of polymer biomaterials: Experiment, XCOM and GAMOS results.J. Radiation Res. Appl. Sci.202316410070210.1016/j.jrras.2023.100702
    [Google Scholar]
  94. YueC. Privacy and ethical concerns of brain-computer interfaces.2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom)2023Kyoto, Japan13413810.1109/MetaCom57706.2023.00036
    [Google Scholar]
  95. AzizA.Y. Neurotechnology and the law: legal considerations for privacy, autonomy, and liability.Russian Law J2023115288199
    [Google Scholar]
  96. HossainS.Q. AhmedS.I. AraiK. KapoorS. BhatiaR. Ethical analysis on the application of neurotechnology for human augmentation in physicians and surgeons.Proceedings of the Future Technologies Conference (FTC)2020Vol. 3Springer, Cham789910.1007/978‑3‑030‑63092‑8_6
    [Google Scholar]
  97. SongY. Perspective of ethical issues associated with cognitive BMI.Highlights in Science, Engineering and Technology20233646847710.54097/hset.v36i.5718
    [Google Scholar]
  98. JaynesT.L. The legal ambiguity of advanced assistive bionic prosthetics: Where to define the limits of ‘enhanced persons’ in medical treatment.Clin. Ethics202116317118210.1177/1477750921994277
    [Google Scholar]
  99. RackerbyR. LukoschS. MunroD. On understanding and measuring the cognitive load of amputees for rehabilitation and prosthetic development.Arch. Rehabil. Res. Clin. Transl.20224310021610.1016/j.arrct.2022.10021636123983
    [Google Scholar]
  100. EreifejE.S. ShellC.E. SchofieldJ.S. CharkhkarH. CuberovicI. DorvalA.D. GraczykE.L. KozaiT.D.Y. OttoK.J. TylerD.J. WelleC.G. WidgeA.S. ZariffaJ. MoritzC.T. BourbeauD.J. MarascoP.D. Neural engineering: the process, applications, and its role in the future of medicine.J. Neural Eng.201916606300210.1088/1741‑2552/ab486931557730
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273335487250102093150
Loading
/content/journals/cnsnddt/10.2174/0118715273335487250102093150
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test