Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM. TFAM's non-specific DNA binding activity demonstrates its involvement in the control of mitochondrial DNA (mtDNA) transcription. The role of TFAM in controlling packing, stability, and replication when assessing the quantity of the mitochondrial genome is well recognised. Despite mounting evidence linking lower mtDNA copy numbers to various age-related diseases, the correlation between TFAM abundance and neurodegenerative disease remains insufficient. This review delves into the link between neurodegeneration and mitochondrial dysfunction caused by oxidative stress. Additionally, the article will go into detail about how TFAM controls mitochondrial transcription, which is responsible for encoding key components of the oxidative phosphorylation (OXPHOS) system.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273334342250108043032
2025-01-24
2025-12-11
Loading full text...

Full text loading...

References

  1. ShahH. AlbaneseE. DugganC. RudanI. LangaK.M. CarrilloM.C. ChanK.Y. JoanetteY. PrinceM. RossorM. SaxenaS. SnyderH.M. SperlingR. VargheseM. WangH. WortmannM. DuaT. Research priorities to reduce the global burden of dementia by 2025.Lancet Neurol.201615121285129410.1016/S1474‑4422(16)30235‑627751558
    [Google Scholar]
  2. World Health Organization. Global status report on the public health response to dementia.2024https://www.who.int/publications/i/item/9789240033245
  3. WarehamL.K. LiddelowS.A. TempleS. BenowitzL.I. Di PoloA. WellingtonC. GoldbergJ.L. HeZ. DuanX. BuG. DavisA.A. ShekharK. TorreA.L. ChanD.C. Canto-SolerM.V. FlanaganJ.G. SubramanianP. RossiS. BrunnerT. BovenkampD.E. CalkinsD.J. Solving neurodegeneration: Common mechanisms and strategies for new treatments.Mol. Neurodegener.20221712310.1186/s13024‑022‑00524‑035313950
    [Google Scholar]
  4. LpK. EjW. Mitochondrial Dysfunction and Mitophagy in Neurodegenerative Diseases.Cell Dev. Biol.20176218410.4172/2168‑9296.1000184
    [Google Scholar]
  5. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  6. Belhadj SlimenI. NajarT. GhramA. DabbebiH. Ben MradM. AbdrabbahM. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damag: A review.Int. J. Hyperthermia201430751352310.3109/02656736.2014.97144625354680
    [Google Scholar]
  7. GenovaM.L. LenazG. The interplay between respiratory supercomplexes and ROS in aging.Antioxid. Redox Signal.201523320823810.1089/ars.2014.621425711676
    [Google Scholar]
  8. YangD. WangX. ZhangL. FangY. ZhengQ. LiuX. YuW. ChenS. YingJ. HuaF. Lipid metabolism and storage in neuroglia: Role in brain development and neurodegenerative diseases.Cell Biosci.202212110610.1186/s13578‑022‑00828‑035831869
    [Google Scholar]
  9. RalhanI. ChangC.L. Lippincott-SchwartzJ. IoannouM.S. Lipid droplets in the nervous system.J. Cell Biol.20212207e20210213610.1083/jcb.20210213634152362
    [Google Scholar]
  10. MoyaG.E. RiveraP.D. Dittenhafer-ReedK.E. Evidence for the role of mitochondrial dna release in the inflammatory response in neurological disorders.Int. J. Mol. Sci.20212213703010.3390/ijms2213703034209978
    [Google Scholar]
  11. MalpartidaA.B. WilliamsonM. NarendraD.P. Wade-MartinsR. RyanB.J. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: From mechanism to therapy.Trends Biochem. Sci.202146432934310.1016/j.tibs.2020.11.00733323315
    [Google Scholar]
  12. VizzielloM. BorelliniL. FrancoG. ArdolinoG. Disruption of mitochondrial homeostasis: The role of PINK1 in Parkinson’s disease.Cells20211011302210.3390/cells1011302234831247
    [Google Scholar]
  13. GoiranT. EldeebM.A. ZorcaC.E. FonE.A. Hallmarks and molecular tools for the study of mitophagy in Parkinson’s disease.Cells20221113209710.3390/cells1113209735805181
    [Google Scholar]
  14. LiuJ. LiuW. LiR. YangH. Mitophagy in Parkinson’s disease: From pathogenesis to treatment.Cells20198771210.3390/cells807071231336937
    [Google Scholar]
  15. PrasuhnJ. BrüggemannN. Gene therapeutic approaches for the treatment of mitochondrial dysfunction in Parkinson’s disease.Genes (Basel)20211211184010.3390/genes1211184034828446
    [Google Scholar]
  16. LarsenS.B. HanssZ. KrügerR. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease.Cell Tissue Res.20183731213710.1007/s00441‑017‑2768‑829372317
    [Google Scholar]
  17. BuneevaO. FedchenkoV. KopylovA. MedvedevA. Mitochondrial dysfunction in Parkinson’s disease: Focus on mitochondrial DNA.Biomedicines202081259110.3390/biomedicines812059133321831
    [Google Scholar]
  18. BealM.F. Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease.Parkinsonism Relat. Disord.200915Suppl. 3S189S19410.1016/S1353‑8020(09)70812‑020082988
    [Google Scholar]
  19. FengST WangZZ YuanYH SunHM ChenNH ZhangY . Update on the association between alpha‐synuclein and tau with mitochondrial dysfunction: Implications for Parkinson's disease. Eur J Neurosci.20215362946295910.1111/ejn.14699
    [Google Scholar]
  20. Abou-SleimanP.M. MuqitM.M.K. WoodN.W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease.Nat. Rev. Neurosci.20067320721910.1038/nrn186816495942
    [Google Scholar]
  21. KamT.I. HinkleJ.T. DawsonT.M. DawsonV.L. Microglia and astrocyte dysfunction in parkinson’s disease.Neurobiol. Dis.202014410502810.1016/j.nbd.2020.10502832736085
    [Google Scholar]
  22. Di MaioR. BarrettP.J. HoffmanE.K. BarrettC.W. ZharikovA. BorahA. HuX. McCoyJ. ChuC.T. BurtonE.A. HastingsT.G. GreenamyreJ.T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease.Sci. Transl. Med.20168342342ra7810.1126/scitranslmed.aaf363427280685
    [Google Scholar]
  23. SwerdlowR.H. The mitochondrial hypothesis: Dysfunction, bioenergetic defects, and the metabolic link to Alzheimer’s disease.Int. Rev. Neurobiol.202015420723310.1016/bs.irn.2020.01.00832739005
    [Google Scholar]
  24. SalminenA. HaapasaloA. KauppinenA. KaarnirantaK. SoininenH. HiltunenM. Impaired mitochondrial energy metabolism in Alzheimer’s disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape.Prog. Neurobiol.201513112010.1016/j.pneurobio.2015.05.00126001589
    [Google Scholar]
  25. GolpichM. AminiE. MohamedZ. Azman AliR. Mohamed IbrahimN. AhmadianiA. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment.CNS Neurosci. Ther.201723152210.1111/cns.1265527873462
    [Google Scholar]
  26. WangQ. TianJ. ChenH. DuH. GuoL. Amyloid beta-mediated KIF5A deficiency disrupts anterograde axonal mitochondrial movement.Neurobiol. Dis.201912741041810.1016/j.nbd.2019.03.02130923004
    [Google Scholar]
  27. CaiQ. TammineniP. Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease.J. Alzheimers Dis.20175741087110310.3233/JAD‑16072627767992
    [Google Scholar]
  28. MagranéJ. CortezC. GanW.B. ManfrediG. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models.Hum. Mol. Genet.20142361413142410.1093/hmg/ddt52824154542
    [Google Scholar]
  29. TribbleJ.R. VasalauskaiteA. RedmondT. YoungR.D. HassanS. FautschM.P. SengpielF. WilliamsP.A. MorganJ.E. Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma.Brain Commun.201911fcz03510.1093/braincomms/fcz03531894207
    [Google Scholar]
  30. TakiharaY. InataniM. EtoK. InoueT. KreymermanA. MiyakeS. UenoS. NagayaM. NakanishiA. IwaoK. TakamuraY. SakamotoH. SatohK. KondoM. SakamotoT. GoldbergJ.L. NabekuraJ. TaniharaH. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS.Proc. Natl. Acad. Sci. USA201511233105151052010.1073/pnas.150987911226240337
    [Google Scholar]
  31. Hvozda AranaA.G. Lasagni VitarR.M. ReidesC.G. CalabróV. MarchiniT. LernerS.F. EvelsonP.A. FerreiraS.M. Mitochondrial function is impaired in the primary visual cortex in an experimental glaucoma model.Arch. Biochem. Biophys.202170110881510.1016/j.abb.2021.10881533609537
    [Google Scholar]
  32. LeeS. Van BergenN.J. KongG.Y. ChrysostomouV. WaughH.S. O’NeillE.C. CrowstonJ.G. TrounceI.A. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies.Exp. Eye Res.201193220421210.1016/j.exer.2010.07.01520691180
    [Google Scholar]
  33. FairleyL.H. GrimmA. EckertA. Mitochondria transfer in brain injury and disease.Cells20221122360310.3390/cells1122360336429030
    [Google Scholar]
  34. WallaceDC LottMT Leber hereditary optic neuropathy: Exemplar of an mtDNA disease.Handb Exp Pharmacol.201724033937610.1007/164_2017_2
    [Google Scholar]
  35. MeyersonC. Van StavernG. McClellandC. Leber hereditary optic neuropathy: Current perspectives.Clin. Ophthalmol.201591165117626170609
    [Google Scholar]
  36. Yu-Wai-ManP. VotrubaM. BurtéF. La MorgiaC. BarboniP. CarelliV. A neurodegenerative perspective on mitochondrial optic neuropathies.Acta Neuropathol.2016132678980610.1007/s00401‑016‑1625‑227696015
    [Google Scholar]
  37. BordoniL. GabbianelliR. Mitochondrial DNA and neurodegeneration: Any role for dietary antioxidants?Antioxidants20209876410.3390/antiox908076432824558
    [Google Scholar]
  38. CoppedèF. MiglioreL. DNA damage in neurodegenerative diseases.Mutat. Res.2015776849710.1016/j.mrfmmm.2014.11.01026255941
    [Google Scholar]
  39. BouchezC. DevinA. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): A complex relationship regulated by the cAMP/PKA signaling pathway.Cells20198428710.3390/cells804028730934711
    [Google Scholar]
  40. MirandaM. BonekampN.A. KühlI. Starting the engine of the powerhouse: Mitochondrial transcription and beyond.Biol. Chem.20224038-977980510.1515/hsz‑2021‑041635355496
    [Google Scholar]
  41. TangJ.X. ThompsonK. TaylorR.W. OláhováM. Mitochondrial OXPHOS biogenesis: Co-regulation of protein synthesis, import, and assembly pathways.Int. J. Mol. Sci.20202111382010.3390/ijms2111382032481479
    [Google Scholar]
  42. AgaronyanK. MorozovY.I. AnikinM. TemiakovD. Replication-transcription switch in human mitochondria.Science2015347622154855110.1126/science.aaa098625635099
    [Google Scholar]
  43. HillenH.S. TemiakovD. CramerP. Structural basis of mitochondrial transcription.Nat. Struct. Mol. Biol.201825975476510.1038/s41594‑018‑0122‑930190598
    [Google Scholar]
  44. RamachandranA. BasuU. SultanaS. NandakumarD. PatelS.S. Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation.Nucleic Acids Res.201745286187410.1093/nar/gkw115727903899
    [Google Scholar]
  45. MorozovY.I. ParshinA.V. AgaronyanK. CheungA.C.M. AnikinM. CramerP. TemiakovD. A model for transcription initiation in human mitochondria.Nucleic Acids Res.20154373726373510.1093/nar/gkv23525800739
    [Google Scholar]
  46. MoustafaI.M. UchidaA. WangY. YennawarN. CameronC.E. Structural models of mammalian mitochondrial transcription factor B2.Biochim. Biophys. Acta. Gene Regul. Mech.201518498987100210.1016/j.bbagrm.2015.05.01026066983
    [Google Scholar]
  47. FontanesiF TiganoM FuY SfeirA BarrientosA Human mitochondrial transcription and translation.Essays Biochem.2020623309320Academic Press.10.1016/B978‑0‑12‑819656‑4.00002‑4
    [Google Scholar]
  48. VarassasS.P. KouvelisV.N. Mitochondrial transcription of entomopathogenic fungi reveals evolutionary aspects of mitogenomes.Front. Microbiol.20221382163810.3389/fmicb.2022.82163835387072
    [Google Scholar]
  49. HillenH.S. MorozovY.I. SarfallahA. TemiakovD. CramerP. Structural basis of mitochondrial transcription initiation.Cell2017171510721081.e1010.1016/j.cell.2017.10.03629149603
    [Google Scholar]
  50. KotrysA.V. SzczesnyR.J. Mitochondrial gene expression and beyond—novel aspects of cellular physiology.Cells2019911710.3390/cells901001731861673
    [Google Scholar]
  51. WanrooijP. The interface of mitochondrial DNA transcription and replication.SwedenKarolinska Institutet2012
    [Google Scholar]
  52. KummerE. BanN. Mechanisms and regulation of protein synthesis in mitochondria.Nat. Rev. Mol. Cell Biol.202122530732510.1038/s41580‑021‑00332‑233594280
    [Google Scholar]
  53. SarfallahA. Zamudio-OchoaA. AnikinM. TemiakovD. Mechanism of transcription initiation and primer generation at the mitochondrial replication origin OriL.EMBO J.20214019e10798810.15252/embj.202110798834423452
    [Google Scholar]
  54. RobertiM. PolosaP.L. BruniF. ManzariC. DeceglieS. GadaletaM.N. CantatoreP. The MTERF family proteins: Mitochondrial transcription regulators and beyond.Biochim. Biophys. Acta Bioenerg.20091787530331110.1016/j.bbabio.2009.01.01319366610
    [Google Scholar]
  55. PellegriniM. Asin-CayuelaJ. Erdjument-BromageH. TempstP. LarssonN.G. GustafssonC.M. MTERF2 is a nucleoid component in mammalian mitochondria.Biochim. Biophys. Acta Bioenerg.20091787529630210.1016/j.bbabio.2009.01.018
    [Google Scholar]
  56. BoudaE. StaponA. Garcia-DiazM. Mechanisms of mammalian mitochondrial transcription.Protein Sci.20192891594160510.1002/pro.368831309618
    [Google Scholar]
  57. ScarpullaR.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function.Physiol. Rev.200888261163810.1152/physrev.00025.200718391175
    [Google Scholar]
  58. LezzaA.M.S. Mitochondrial transcription factor A (TFAM): One actor for different roles.Front. Biol. (Beijing)201271303910.1007/s11515‑011‑1175‑x
    [Google Scholar]
  59. CavalcanteG.C. MagalhãesL. Ribeiro-dos-SantosÂ. VidalA.F. Mitochondrial epigenetics: Non-coding RNAs as a novel layer of complexity.Int. J. Mol. Sci.2020215183810.3390/ijms2105183832155913
    [Google Scholar]
  60. SharmaN. PasalaM.S. PrakashA. Mitochondrial DNA: Epigenetics and environment.Environ. Mol. Mutagen.201960866868210.1002/em.2231931335990
    [Google Scholar]
  61. WangL. FengZ.J. MaX. LiK. LiX.Y. TangY. PengC. Mitochondrial quality control in hepatic ischemia-reperfusion injury.Heliyon202397e1770210.1016/j.heliyon.2023.e1770237539120
    [Google Scholar]
  62. CampbellC.T. KolesarJ.E. KaufmanB.A. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number.Biochim. Biophys. Acta. Gene Regul. Mech.201218199-1092192910.1016/j.bbagrm.2012.03.00222465614
    [Google Scholar]
  63. LiP.A. HouX. HaoS. Mitochondrial biogenesis in neurodegeneration.J. Neurosci. Res.201795102025202910.1002/jnr.2404228301064
    [Google Scholar]
  64. KangI. ChuC.T. KaufmanB.A. The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence and mechanisms.FEBS Lett.2018592579381110.1002/1873‑3468.1298929364506
    [Google Scholar]
  65. BarshadG. MaromS. CohenT. MishmarD. Mitochondrial DNA transcription and its regulation: An evolutionary perspective.Trends Genet.201834968269210.1016/j.tig.2018.05.00929945721
    [Google Scholar]
  66. MabangloM.F. WongK.S. BarghashM.M. LeungE. ChuangS.H.W. ArdalanA. MajaesicE.M. WongC.J. ZhangS. LangH. KaranewskyD.S. IwanowiczA.A. GravesL.M. IwanowiczE.J. GingrasA.C. HouryW.A. Potent ClpP agonists with anticancer properties bind with improved structural complementarity and alter the mitochondrial N-terminome.Structure2023312185200.e1010.1016/j.str.2022.12.00236586405
    [Google Scholar]
  67. GustafssonC.M. FalkenbergM. LarssonN.G. Maintenance and expression of mammalian mitochondrial DNA.Annu. Rev. Biochem.201685113316010.1146/annurev‑biochem‑060815‑01440227023847
    [Google Scholar]
  68. SchrottS. OsmanC. Two mitochondrial HMG-box proteins, Cim1 and Abf2, antagonistically regulate mtDNA copy number in Saccharomyces cerevisiae.Nucleic Acids Res.20235121118131183510.1093/nar/gkad84937850632
    [Google Scholar]
  69. YoonY.G. KoobM.D. YooY.H. Mitochondrial genome-maintaining activity of mouse mitochondrial transcription factor A and its transcript isoform in Saccharomyces cerevisiae.Gene20114841-2526010.1016/j.gene.2011.05.03221683127
    [Google Scholar]
  70. KangD. HamasakiN. Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: Overview of its multiple roles.Ann. N. Y. Acad. Sci.20051042110110810.1196/annals.1338.01015965051
    [Google Scholar]
  71. KaufmanB.A. DurisicN. MativetskyJ.M. CostantinoS. HancockM.A. GrutterP. ShoubridgeE.A. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures.Mol. Biol. Cell20071893225323610.1091/mbc.e07‑05‑040417581862
    [Google Scholar]
  72. GrütterP. The Mitochondrial Transcription Factor TFAM Coordinates the Assembly of Multiple DNA Molecules into Nucleoid-like StructuresFormula.Mol Biol Cell. 18632253610.1091/mbc.e07‑05‑0404
    [Google Scholar]
  73. ChakrabortyA. LyonnaisS. BattistiniF. HospitalA. MediciG. ProhensR. OrozcoM. VilardellJ. SolàM. DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p.Nucleic Acids Res.201745295196710.1093/nar/gkw114727899643
    [Google Scholar]
  74. EkstrandM.I. FalkenbergM. RantanenA. ParkC.B. GaspariM. HultenbyK. RustinP. GustafssonC.M. LarssonN.G. Mitochondrial transcription factor A regulates mtDNA copy number in mammals.Hum. Mol. Genet.200413993594410.1093/hmg/ddh10915016765
    [Google Scholar]
  75. TanB.G. GustafssonC.M. FalkenbergM. Mechanisms and regulation of human mitochondrial transcription.Nat. Rev. Mol. Cell Biol.202425211913210.1038/s41580‑023‑00661‑437783784
    [Google Scholar]
  76. PiccaA. LezzaA.M.S. Regulation of mitochondrial biogenesis through TFAM–mitochondrial DNA interactions.Mitochondrion201525677510.1016/j.mito.2015.10.00126437364
    [Google Scholar]
  77. ShadelG.S. Expression and maintenance of mitochondrial DNA: New insights into human disease pathology.Am. J. Pathol.200817261445145610.2353/ajpath.2008.07116318458094
    [Google Scholar]
  78. MalarkeyC.S. BestwickM. KuhlwilmJ.E. ShadelG.S. ChurchillM.E.A. Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA.Nucleic Acids Res.201240261462410.1093/nar/gkr78721948790
    [Google Scholar]
  79. CuppariA. Fernández-MillánP. BattistiniF. Tarrés-SoléA. LyonnaisS. IruelaG. Ruiz-LópezE. EncisoY. Rubio-CosialsA. ProhensR. PonsM. AlfonsoC. TóthK. RivasG. OrozcoM. SolàM. DNA specificities modulate the binding of human transcription factor A to mitochondrial DNA control region.Nucleic Acids Res.201947126519653710.1093/nar/gkz40631114891
    [Google Scholar]
  80. BestwickM.L. ShadelG.S. Accessorizing the human mitochondrial transcription machinery.Trends Biochem. Sci.201338628329110.1016/j.tibs.2013.03.00623632312
    [Google Scholar]
  81. LitoninD. SologubM. ShiY. SavkinaM. AnikinM. FalkenbergM. GustafssonC.M. TemiakovD. Human mitochondrial transcription revisited: Only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro.J. Biol. Chem.201028524181291813310.1074/jbc.C110.12891820410300
    [Google Scholar]
  82. ShuttT.E. LodeiroM.F. CotneyJ. CameronC.E. ShadelG.S. Core human mitochondrial transcription apparatus is a regulated two-component system in vitro.Proc. Natl. Acad. Sci. USA201010727121331213810.1073/pnas.091058110720562347
    [Google Scholar]
  83. PohjoismäkiJ.L.O. WanrooijS. HyvärinenA.K. GoffartS. HoltI.J. SpelbrinkJ.N. JacobsH.T. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells.Nucleic Acids Res.200634205815582810.1093/nar/gkl70317062618
    [Google Scholar]
  84. BonekampN.A. JiangM. MotoriE. Garcia VillegasR. KoolmeisterC. AtanassovI. MesarosA. ParkC.B. LarssonN.G. High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo.Life Sci. Alliance2021411e20210103410.26508/lsa.20210103434462320
    [Google Scholar]
  85. KangD. KimS.H. HamasakiN. Mitochondrial transcription factor A (TFAM): Roles in maintenance of mtDNA and cellular functions.Mitochondrion200771-2394410.1016/j.mito.2006.11.01717280879
    [Google Scholar]
  86. PejznochovaM. TesarovaM. HansikovaH. MagnerM. HonzikT. VinsovaK. HajkovaZ. HavlickovaV. ZemanJ. Mitochondrial DNA content and expression of genes involved in mtDNA transcription, regulation and maintenance during human fetal development.Mitochondrion201010432132910.1016/j.mito.2010.01.00620096380
    [Google Scholar]
  87. JohriA. BealM.F. Mitochondrial dysfunction in neurodegenerative diseases.J. Pharmacol. Exp. Ther.2012342361963010.1124/jpet.112.19213822700435
    [Google Scholar]
  88. LarssonN.G. WangJ. WilhelmssonH. OldforsA. RustinP. LewandoskiM. BarshG.S. ClaytonD.A. Mitochondrial transcription factor A is necessary for mtDNA maintance and embryogenesis in mice.Nat. Genet.199818323123610.1038/ng0398‑2319500544
    [Google Scholar]
  89. LangleyM.R. GhaisasS. AyM. LuoJ. PalanisamyB.N. JinH. AnantharamV. KanthasamyA. KanthasamyA.G. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson’s disease: Relevance to gene and environment interactions in metal neurotoxicity.Neurotoxicology20186424025510.1016/j.neuro.2017.06.00228595911
    [Google Scholar]
  90. LangleyM. GhoshA. CharliA. SarkarS. AyM. LuoJ. ZielonkaJ. BrenzaT. BennettB. JinH. GhaisasS. SchlichtmannB. KimD. AnantharamV. KanthasamyA. NarasimhanB. KalyanaramanB. KanthasamyA.G. Mito-apocynin prevents mitochondrial dysfunction, microglial activation, oxidative damage, and progressive neurodegeneration in MitoPark transgenic mice.Antioxid. Redox Signal.201727141048106610.1089/ars.2016.690528375739
    [Google Scholar]
  91. GüntherC. HadelnK. Müller-ThomsenT. AlbericiA. BinettiG. HockC. NitschR.M. StoppeG. ReissJ. GalA. FinckhU. Possible association of mitochondrial transcription factor A (TFAM) genotype with sporadic Alzheimer disease.Neurosci. Lett.2004369321922310.1016/j.neulet.2004.07.07015464268
    [Google Scholar]
  92. GianottiT.F. CastañoG. GemmaC. BurgueñoA.L. RosselliM.S. PirolaC.J. SookoianS. Mitochondrial DNA copy number is modulated by genetic variation in the signal transducer and activator of transcription 3 (STAT3).Metabolism20116081142114910.1016/j.metabol.2010.12.00821310444
    [Google Scholar]
  93. SongY. WangW. WangB. ShiQ. The Protective Mechanism of TFAM on Mitochondrial DNA and its Role in Neurodegenerative Diseases.Mol. Neurobiol.20246174381439010.1007/s12035‑023‑03841‑738087167
    [Google Scholar]
  94. ZhongY. HuY.J. ChenB. PengW. SunY. YangY. ZhaoX.Y. FanG. HuangX. KongW.J. Mitochondrial transcription factor A overexpression and base excision repair deficiency in the inner ear of rats with d ‐galactose‐induced aging.FEBS J.2011278142500251010.1111/j.1742‑4658.2011.08176.x21575134
    [Google Scholar]
  95. HayashiY. YoshidaM. YamatoM. IdeT. WuZ. Ochi-ShindouM. KankiT. KangD. SunagawaK. TsutsuiH. NakanishiH. Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice.J. Neurosci.200828348624863410.1523/JNEUROSCI.1957‑08.200818716221
    [Google Scholar]
  96. MorimotoN. MiyazakiK. KurataT. IkedaY. MatsuuraT. KangD. IdeT. AbeK. Effect of mitochondrial transcription factor a overexpression on motor neurons in amyotrophic lateral sclerosis model mice.J. Neurosci. Res.20129061200120810.1002/jnr.2300022354563
    [Google Scholar]
  97. OkaS. LeonJ. SakumiK. IdeT. KangD. LaFerlaF.M. NakabeppuY. Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer’s disease.Sci. Rep.2016613788910.1038/srep3788927897204
    [Google Scholar]
  98. ChinneryPF LaxNZ JarosE TaylorRW TurnbullDM DiMauroS Mitochondrial disorders. In: Greenfield's Neuropathology-Two Volume Set.CRC Press 2015
    [Google Scholar]
  99. SicilianoG. MancusoM. PasqualiL. MancaM.L. TessaA. IudiceA. Abnormal levels of human mitochondrial transcription factor A in skeletal muscle in mitochondrial encephalomyopathies.Neurol. Sci.200021Suppl.S985S98710.1007/s10072007001711382203
    [Google Scholar]
  100. ChoiY.S. KimS. PakY.K. Mitochondrial transcription factor A (mtTFA) and diabetes.Diabetes Res. Clin. Pract.200154Suppl. 2S3S910.1016/S0168‑8227(01)00330‑811733104
    [Google Scholar]
  101. BelinA.C. BjörkB.F. WesterlundM. GalterD. SydowO. LindC. PernoldK. RosvallL. HåkanssonA. WinbladB. NissbrandtH. GraffC. OlsonL. Association study of two genetic variants in mitochondrial transcription factor A (TFAM) in Alzheimer’s and Parkinson’s disease.Neurosci. Lett.2007420325726210.1016/j.neulet.2007.05.01017537576
    [Google Scholar]
  102. SinhaJ.K. JorwalK. SinghK.K. HanS.S. BhaskarR. GhoshS. The potential of mitochondrial therapeutics in the treatment of oxidative stress and inflammation in aging.Mol. Neurobiol.2024241610.1007/s12035‑024‑04474‑039230868
    [Google Scholar]
  103. IkedaM. IdeT. FujinoT. AraiS. SakuK. KakinoT. TyynismaaH. YamasakiT. YamadaK. KangD. SuomalainenA. SunagawaK. Overexpression of TFAM or twinkle increases mtDNA copy number and facilitates cardioprotection associated with limited mitochondrial oxidative stress.PLoS One2015103e011968710.1371/journal.pone.011968725822152
    [Google Scholar]
  104. ChimientiG. PiccaA. SiragoG. FracassoF. CalvaniR. BernabeiR. RussoF. CarterC.S. LeeuwenburghC. PesceV. MarzettiE. LezzaA.M.S. Increased TFAM binding to mtDNA damage hot spots is associated with mtDNA loss in aged rat heart.Free Radic. Biol. Med.201812444745310.1016/j.freeradbiomed.2018.06.04129969715
    [Google Scholar]
  105. ReyesA. MezzinaM. GadaletaG. Human mitochondrial transcription factor A (mtTFA): Gene structure and characterization of related pseudogenes.Gene20022911-222323210.1016/S0378‑1119(02)00600‑512095695
    [Google Scholar]
  106. GattA.P. JonesE.L. FrancisP.T. BallardC. BatemanJ.M. Association of a polymorphism in mitochondrial transcription factor A (TFAM) with Parkinson’s disease dementia but not dementia with Lewy bodies.Neurosci. Lett.2013557Pt B17718010.1016/j.neulet.2013.10.04524184878
    [Google Scholar]
  107. Gaweda-WalerychK. ZekanowskiC. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s disease.Curr. Genomics201414854355910.2174/138920291466613121021103324532986
    [Google Scholar]
  108. ZhangQ. YuJ.T. WangP. ChenW. WuZ.C. JiangH. TanL. Mitochondrial transcription factor A (TFAM) polymorphisms and risk of late-onset Alzheimer’s disease in Han Chinese.Brain Res.2011136835536010.1016/j.brainres.2010.10.07420977898
    [Google Scholar]
  109. Gaweda-WalerychK. SafranowK. MaruszakA. BialeckaM. Klodowska-DudaG. CzyzewskiK. SlawekJ. RudzinskaM. StyczynskaM. OpalaG. DrozdzikM. KurzawskiM. SzczudlikA. CanterJ.A. BarcikowskaM. ZekanowskiC. Mitochondrial transcription factor A variants and the risk of Parkinson’s disease.Neurosci. Lett.20104691242910.1016/j.neulet.2009.11.03719925850
    [Google Scholar]
  110. MaruszakA. SafranowK. BranickiW. Gawęda-WalerychK. PośpiechE. GabryelewiczT. CanterJ.A. BarcikowskaM. ŻekanowskiC. The impact of mitochondrial and nuclear DNA variants on late-onset Alzheimer’s disease risk.J. Alzheimers Dis.201127119721010.3233/JAD‑2011‑11071021799244
    [Google Scholar]
  111. LillenesM.S. StøenM. GüntherC.C. SelnesP. StensetV.T.V. EspesethT. ReinvangI. FladbyT. TønjumT. Mitochondrial transcription factor A (TFAM) rs1937 and AP endonuclease 1 (APE1) rs1130409 alleles are associated with reduced cognitive performance.Neurosci. Lett.2017645465210.1016/j.neulet.2017.02.06228242328
    [Google Scholar]
  112. Taherzadeh-FardE. SaftC. AkkadD.A. WieczorekS. HaghikiaA. ChanA. EpplenJ.T. ArningL. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease.Mol. Neurodegener.2011613210.1186/1750‑1326‑6‑3221595933
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273334342250108043032
Loading
/content/journals/cnsnddt/10.2174/0118715273334342250108043032
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test