Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Objective

The goal of this to demonstrate the impact of heavy and chronic cannabis use on brain potential functional control, reorganization, and plasticity in the cortical area.

Methods

23 cannabis users were convened in 3 groups of users. The first group included 11 volunteers with an average of 15 joins/day; the second group included 6 volunteers with an average of 1.5 joins/day; the third group included 6 volunteers with an average of 2.8 joins/week. Besides, 6 healthy volunteers in the control group, All healthy and cannabis users underwent identical brain BOLD-fMRI assessments of their motor function. Besides, neuropsychological and full biological assessments were achieved.

Results

BOLD-fMRI maps of motor areas were obtained, including quantitative evaluation of the activations in the motor area. A statistical analysis of various groups was achieved.

Conclusion

Groups of chronic cannabis addiction of varying level of use were setup. Namely heavy, moderate and low users groups; doses have been shown to have systematically equivalent effects on the control of brain motor function. Indeed, the BOLD-fMRI shows a remarkable sensitivity to brain plasticity and reorganization of the functional motor control of the studied cortical area, and such variation was not shown. Specific elucidation of the effect of cannabis effect in this unique function should clarify further protective pharmacological effects. This might illuminate the use of neuronal resources to prepare processes for pharmacological use and pharmaceutical forms. This suggests exploring any potential cannabis pharmaceutical form in diseases involving motor impairments.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/1574886317666220516103501
2025-01-01
2025-10-07
Loading full text...

Full text loading...

References

  1. World Health Organisation The health and social effects of nonmedical cannabis use.2016 Available from: http://www.who.int/substance_abuse/publications/cannabis_report/en/index5.html
  2. AlexanderS.P.H. Therapeutic potential of cannabis-related drugs.Prog. Neuro-Psychopharmacol. Biol. Psychiatry20166415716610.1016/j.pnpbp.2015.07.001
    [Google Scholar]
  3. AllendorferJ.B. SzaflarskiJ.P. Neuroimaging studies towards understanding the central effects of pharmacological cannabis products on patients with epilepsy.Epilepsy Behav201770Pt B34935410.1016/j.yebeh.2016.11.020
    [Google Scholar]
  4. AmesS.L. StacyA.W. Cannabis, associative memory, fMRI, and the implicit association test. In: Handbook of Cannabis and Related PathologiesBiology, Pharmacology, Diagnosis, and Treatment; Elsevier:201710.1016/B978‑0‑12‑800756‑3.00032‑6
    [Google Scholar]
  5. BeaulieuP. BoulangerA. DesrochesJ. ClarkA.J. Medical cannabis: Considerations for the anesthesiologist and pain physician.Can J Anesthesia201663560862410.1007/s12630‑016‑0598‑x
    [Google Scholar]
  6. BlázquezC. Ruiz-CalvoA. Bajo-GrañerasR. BaufretonJ.M. ReselE. VarilhM. Pagano ZottolaA.C. MarianiY. CannichA. Rodríguez-NavarroJ.A. MarsicanoG. Galve-RoperhI. BellocchioL. GuzmánM. Cannabinoid-induced motor dysfunction via autophagy inhibition.Autophagy202016122289229110.1080/15548627.2020.182756032981464
    [Google Scholar]
  7. Blest-HopleyG. GiampietroV. BhattacharyyaS. A systematic review of human neuroimaging evidence of memory-related functional alterations associated with cannabis use complemented with preclinical and human evidence of memory performance alterations.Brain Sci202010210210.3390/brainsci10020102
    [Google Scholar]
  8. BloomfieldM.A.P. HindochaC. GreenS.F. WallM.B. LeesR. PetrilliK. CostelloH. OgunbiyiM.O. BossongM.G. FreemanT.P. The neuropsychopharmacology of cannabis: A review of human imaging studies.Pharmacology and Therapeutics201919513216110.1016/j.pharmthera.2018.10.006
    [Google Scholar]
  9. CampbellG. HallW.D. PeacockA. LintzerisN. BrunoR. LaranceB. NielsenS. CohenM. ChanG. MattickR.P. BlythF. ShanahanM. DobbinsT. FarrellM. DegenhardtL. Effect of cannabis use in people with chronic non-cancer pain prescribed opioids: Findings from a 4-year prospective cohort study.Lancet Public Health201837e341e35010.1016/S2468‑2667(18)30110‑529976328
    [Google Scholar]
  10. ColizziM. Cannabis and cognition: Connecting the dots towards the understanding of the relationship.Brain Sci202010313310.3390/brainsci10030133
    [Google Scholar]
  11. DebenhamJ. NewtonN. BirrellL. YücelM. LeesB. ChampionK. Cannabis and illicit drug use during neurodevelopment and the associated structural, functional and cognitive Outcomes: Protocol for a systematic review.JMIR Res Protoc202097e1834910.2196/18349
    [Google Scholar]
  12. HaneyM. EvinsA.E. Does cannabis cause, exacerbate or ameliorate psychiatric disorders an oversimplified debate discussed.Neuropsychopharmacology201641239340110.1038/npp.2015.25126286840
    [Google Scholar]
  13. HannaR.C. PerezJ.M. GhoseS. Cannabis and development of dual diagnoses: A literature review.Am J Drug Alcohol Abuse201743444245510.1080/00952990.2016.1213273
    [Google Scholar]
  14. RammouzI. BoujrafS. Letter to the Editor: Medical and Industrial Cannabis Legalization in Morocco and the Addictions Care Outlook of Youth: First Prospective Study from African Arabic Experience.Cannabis Cannabinoid Res.20212021210.1089/can.2021.005134860538
    [Google Scholar]
  15. JakabekD. YücelM. LorenzettiV. SolowijN. An MRI study of white matter tract integrity in regular cannabis users: Effects of cannabis use and age.Psychopharmacology (Berl.)201623319-203627363710.1007/s00213‑016‑4398‑327503373
    [Google Scholar]
  16. KoendersL. CousijnJ. VingerhoetsW.A.M. van den BrinkW. WiersR.W. MeijerC.J. MachielsenM.W.J. VeltmanD.J. GoudriaanA.E. de HaanL. Grey matter changes associated with heavy cannabis use: A longitudinal sMRI study.PLoS One2016115e015248210.1371/journal.pone.015248227224247
    [Google Scholar]
  17. LeadbeaterB.J. AmesM.E. Linden-CarmichaelA.N. Age-varying effects of cannabis use frequency and disorder on symptoms of psychosis, depression and anxiety in adolescents and adults.Addiction2019114227829310.1111/add.1445930276906
    [Google Scholar]
  18. LupicaC.R. HoffmanA.F. Cannabinoid disruption of learning mechanisms involved in reward processing.Learn. Mem.201825943544510.1101/lm.046748.11730115765
    [Google Scholar]
  19. MachielsenM.W.J. VeltmanD.J. van den BrinkW. de HaanL. The effect of clozapine and risperidone on attentional bias in patients with schizophrenia and a cannabis use disorder: An fMRI study.J. Psychopharmacol.201428763364210.1177/026988111452735724646809
    [Google Scholar]
  20. MinerbiA. HäuserW. FitzcharlesM.A. Medical cannabis for older patients.Drugs and Aging2019361395110.1007/s40266‑018‑0616‑5
    [Google Scholar]
  21. Clinicaltrials.gov. A study of tolerability and efficacy of cannabidiol on motor symptoms in Parkinson’s disease. NCT03582137.2018 Available from: Https://Clinicaltrials.Gov/Show/NCT03582137
  22. PavisianB. MacIntoshB.J. SzilagyiG. StainesR.W. O’ConnorP. FeinsteinA. Effects of cannabis on cognition in patients with MS: A psychometric and MRI study.Neurology201482211879188710.1212/WNL.000000000000044624789863
    [Google Scholar]
  23. PeresF.F. LimaA.C. HallakJ.E.C. CrippaJ.A. SilvaR.H. AbílioV.C. Cannabidiol as a promising strategy to treat and prevent movement disorders?Front Pharmacol2018201848210.3389/fphar.2018.00482
    [Google Scholar]
  24. PetersB.D. de HaanL. VliegerE.J. MajoieC.B. den HeetenG.J. LinszenD.H. Recent-onset schizophrenia and adolescent cannabis use: MRI evidence for structural hyperconnectivity?Psychopharmacol. Bull.2009422758819629024
    [Google Scholar]
  25. RomeroK. PavisianB. StainesW.R. FeinsteinA. Multiple sclerosis, cannabis, and cognition: A structural MRI study.Neuroimage Clin.2015814014710.1016/j.nicl.2015.04.00626106538
    [Google Scholar]
  26. SpechlerP.A. OrrC.A. ChaaraniB. KanK.J. MackeyS. MortonA. SnoweM.P. HudsonK.E. AlthoffR.R. HigginsS.T. CattrellA. FlorH. NeesF. BanaschewskiT. BokdeA.L.W. WhelanR. BüchelC. BrombergU. ConrodP. FrouinV. PapadopoulosD. GallinatJ. HeinzA. WalterH. IttermannB. GowlandP. PausT. PoustkaL. MartinotJ.L. ArtigesE. SmolkaM.N. SchumannG. GaravanH. IMAGEN Consortium Cannabis use in early adolescence: Evidence of amygdala hypersensitivity to signals of threat.Dev. Cogn. Neurosci.201516637010.1016/j.dcn.2015.08.00726347227
    [Google Scholar]
  27. TaubS. FeingoldD. RehmJ. Lev-RanS. Patterns of cannabis use and clinical correlates among individuals with major depressive disorder and bipolar disorder.Compr. Psychiatry201880899610.1016/j.comppsych.2017.09.00429069624
    [Google Scholar]
  28. WelchK.A. MoorheadT.W. McIntoshA.M. OwensD.G.C. JohnstoneE.C. LawrieS.M. Tensor-based morphometry of cannabis use on brain structure in individuals at elevated genetic risk of schizophrenia.Psychol. Med.201343102087209610.1017/S003329171200266823190458
    [Google Scholar]
  29. AgarwalR. BurkeS.L. MadduxM. Current state of evidence of cannabis utilization for treatment of autism spectrum disorders.BMC Psychiatry201932860563210.1186/s12888‑019‑2259‑4
    [Google Scholar]
  30. KingG.R. ErnstT. DengW. StengerA. GonzalesR.M.K. NakamaH. ChangL. Altered brain activation during visuomotor integration in chronic active cannabis users: Relationship to cortisol levels.J Neurosci20113149179231793110.1523/JNEUROSCI.4148‑11.2011
    [Google Scholar]
  31. ArendtM. RosenbergR. FoldagerL. PertoG. Munk-JørgensenP. Cannabis-induced psychosis and subsequent schizophrenia-spectrum disorders: Follow-up study of 535 incident cases.Br. J. Psychiatry200518751051510.1192/bjp.187.6.51016319402
    [Google Scholar]
  32. BabsonK.A. SottileJ. MorabitoD. Cannabis, Cannabinoids, and sleep: A review of the literature.Current Psychiatry Reports20171942310.1007/s11920‑017‑0775‑9
    [Google Scholar]
  33. BhattacharyyaS. AtakanZ. Martin-SantosR. CrippaJ.A. KambeitzJ. MalhiS. GiampietroV. WilliamsS. BrammerM. RubiaK. CollierD.A. McGuireP.K. Impairment of inhibitory control processing related to acute psychotomimetic effects of cannabis.Eur. Neuropsychopharmacol.2015251263710.1016/j.euroneuro.2014.11.01825532865
    [Google Scholar]
  34. Blest-HopleyG. GiampietroV. BhattacharyyaS. Residual effects of cannabis use in adolescent and adult brains — A meta-analysis of fMRI studies.Neurosci Biobehav Rev201888264110.1016/j.neubiorev.2018.03.008
    [Google Scholar]
  35. BoehnkeK.F. LitinasE. ClauwD.J. Medical cannabis use is associated with decreased opiate medication use in a retrospective cross-sectional survey of patients with chronic pain.J. Pain201617673974410.1016/j.jpain.2016.03.00227001005
    [Google Scholar]
  36. BossongM.G. JagerG. van HellH.H. ZuurmanL. JansmaJ.M. MehtaM.A. van GervenJ.M.A. KahnR.S. RamseyN.F. Effects of Δ9-tetrahydrocannabinol administration on human encoding and recall memory function: A pharmacological FMRI study.J. Cogn. Neurosci.201224358859910.1162/jocn_a_0015622066583
    [Google Scholar]
  37. ChyeY. SuoC. LorenzettiV. BatallaA. CousijnJ. GoudriaanA.E. Martin-SantosR. WhittleS. SolowijN. YücelM. Cortical surface morphology in long-term cannabis users: A multi-site MRI study.Eur. Neuropsychopharmacol.201929225726510.1016/j.euroneuro.2018.11.111030558823
    [Google Scholar]
  38. ColizziM McGuireP. GiampietroV. WilliamsS. BrammerM. BhattacharyyaS. Do cannabis users develop tolerance for the psychoactive effects of delta-9-tetrahydrocannabinol? An fMRI study.Eur Psychiatry2018 Available from: http://dx.doi.org/10.26226/morressier.5a7070e4d462b80290b570c6
    [Google Scholar]
  39. ComptonW.M. HanB. JonesC.M. BlancoC. Cannabis use disorders among adults in the United States during a time of increasing use of cannabis.Drug Alcohol Depend.201920410746810.1016/j.drugalcdep.2019.05.00831586809
    [Google Scholar]
  40. CooperZ.D. CraftR.M. Sex-dependent effects of cannabis and cannabinoids: A translational perspective.Neuropsychopharmacology2018431345110.1038/npp.2017.140
    [Google Scholar]
  41. CousijnJ. GoudriaanA.E. RidderinkhofK.R. van den BrinkW. VeltmanD.J. WiersR.W. Neural responses associated with cue-reactivity in frequent cannabis users.Addict. Biol.201318357058010.1111/j.1369‑1600.2011.00417.x22264344
    [Google Scholar]
  42. CousijnJ. WiersR.W. RidderinkhofK.R. van den BrinkW. VeltmanD.J. GoudriaanA.E. Effect of baseline cannabis use and working-memory network function on changes in cannabis use in heavy cannabis users: A prospective fMRI study.Hum. Brain Mapp.20143552470248210.1002/hbm.2234224038570
    [Google Scholar]
  43. CopelandJ. HowardJ. Cannabis use disorders.In: Clinical Handbook of Adolescent AddictionWiley201220221210.1002/9781118340851.ch20
    [Google Scholar]
  44. CrippaJ.A. ZuardiA.W. Martín-SantosR. BhattacharyyaS. AtakanZ. McGuireP. Fusar-PoliP. Cannabis and anxiety: A critical review of the evidence.Human Psychopharmacol200924751552310.1002/hup.1048
    [Google Scholar]
  45. DegenhardtL. CoffeyC. RomaniukH. SwiftW. CarlinJ.B. HallW.D. PattonG.C. The persistence of the association between adolescent cannabis use and common mental disorders into young adulthood.Addiction2013108112413310.1111/j.1360‑0443.2012.04015.x22775447
    [Google Scholar]
  46. DegenhardtL. HallW. Extent of illicit drug use and dependence, and their contribution to the global burden of disease.The Lancet20123799810557010.1016/S0140‑6736(11)61138‑0
    [Google Scholar]
  47. Díaz-SotoC.M. Castaño-PérezG.A. Pineda-SalazarD.A. Cannabis, schizophrenia and cognition: The contribution of brain connectivity.Adicciones20202020130732100035
    [Google Scholar]
  48. NygårdM EicheleT LøbergEM JørgensenHA JohnsenE KrokenRA BerleJØ HugdahlK Patients with schizophrenia fail to up-regulate task-positive and down-regulate task-negative brain networks: An fMRI study using an ICA analysis approach.Front Hum Neurosci.201231149
    [Google Scholar]
  49. RammouzI BouriS MerzoukiM BerrahoMA AalouaneR BoujrafS Reliability of self-report of cannabis use among patients with schizophrenia.Psychiatry Res.202231111449110.1016/j.psychres.2022.114491
    [Google Scholar]
  50. FarraY.M. EdenM.J. ColemanJ.R. KulkarniP. FerrisC.F. OakesJ.M. BelliniC. Acute neuroradiological, behavioral, and physiological effects of nose-only exposure to vaporized cannabis in C57BL/6 mice.Inhal. Toxicol.202032520021710.1080/08958378.2020.176723732475185
    [Google Scholar]
  51. FatimaH. HowlettA.C. WhitlowC.T. Reward, control & decision-making in cannabis use disorder: Insights from functional MRI.Brit J Radiol20199211012019016510.1259/bjr.20190165
    [Google Scholar]
  52. FeingoldD. WeiserM. RehmJ. Lev-RanS. The association between cannabis use and mood disorders: A longitudinal study.J. Affect. Disord.201517221121810.1016/j.jad.2014.10.00625451420
    [Google Scholar]
  53. FilbeyF.M. DunlopJ. KetchersideA. BaineJ. RhinehardtT. KuhnB. DeWittS. AlviT. fMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users.Hum. Brain Mapp.201637103431344310.1002/hbm.2325027168331
    [Google Scholar]
  54. FitzcharlesM.A. NiakiO.Z. HauserW. HazlewoodG. Canadian Rheumatology Association Position statement: A pragmatic approach for medical cannabis and patients with rheumatic diseases.J. Rheumatol.201946553253810.3899/jrheum.18112030647183
    [Google Scholar]
  55. GibbsM. WinsperC. MarwahaS. GilbertE. BroomeM. SinghS.P. Cannabis use and mania symptoms: A systematic review and meta-analysis.J Affective Disord2015171394710.1016/j.jad.2014.09.016
    [Google Scholar]
  56. HallerS. CurtisL. BadanM. BesseroS. AlbomM. ChantraineF. AlimentiA. LovbladK.O. GiannakopoulosP. MerloM. Combined grey matter VBM and white matter TBSS analysis in young first episode psychosis patients with and without cannabis consumption.Brain Topogr.201326464164710.1007/s10548‑013‑0288‑823604786
    [Google Scholar]
  57. HäuserW. FitzcharlesM.A. RadbruchL. PetzkeF. Cannabinoids in pain management and palliative medicine.Deutsches Arzteblatt Intl2017201762710.3238/arztebl.2017.0627
    [Google Scholar]
  58. HermannD. Cannabioids and the brain: Review of MRI studies.Sucht2011201110810.1024/0939‑5911.a000108
    [Google Scholar]
  59. HermannD. Effect of cannabinoids on the brain: An overview of MRI studies.Sucht201120112
    [Google Scholar]
  60. HillK.P. BlancoC. HasinD.S. Cannabis use and risk of psychiatric disorders: Prospective evidence from a US national longitudinal study.JAMA2017317101070107110.1001/jamapsychiatry.2015.3229
    [Google Scholar]
  61. HillK.P. PalastroM.D. JohnsonB. DitreJ.W. Cannabis and pain: A clinical review.Cannabis Cannabinoid Res.2017219610410.1089/can.2017.0017
    [Google Scholar]
  62. HindochaC. FreemanT.P. SchaferG. GardnerC. BloomfieldM.A.P. BramonE. MorganC.J.A. CurranH.V. Acute effects of cannabinoids on addiction endophenotypes are moderated by genes encoding the CB1 receptor and FAAH enzyme.Addict. Biol.20202531276210.1111/adb.12762
    [Google Scholar]
  63. HoganJ.B Distress intolerance and cannabis use: An initial empirical investigation. DissertationUniversity of VermontBurlington (VT), USA2016
    [Google Scholar]
  64. HooperS.R. WoolleyD. De BellisM.D. Intellectual, neurocognitive, and academic achievement in abstinent adolescents with cannabis use disorder.Psychopharmacology201423181467147710.1007/s00213‑014‑3463‑z
    [Google Scholar]
  65. JacobsenL.K. MenclW.E. WesterveldM. PughK.R. Impact of cannabis use on brain function in adolescents.Ann. N. Y. Acad. Sci.20041021138439010.1196/annals.1308.05315251914
    [Google Scholar]
  66. JagerG. BlockR.I. LuijtenM. RamseyN.F. Cannabis use and memory brain function in adolescent boys: A cross-sectional multicenter functional magnetic resonance imaging study.J. Am. Acad. Child Adolesc. Psychiatry2010496561572, 572.e1-572.e310.1097/00004583‑201006000‑0000520494266
    [Google Scholar]
  67. KarolyH.C. SchachtJ.P. MeredithL.R. JacobusJ. TapertS.F. GrayK.M. SquegliaL.M. Investigating a novel fMRI cannabis cue reactivity task in youth.Addict. Behav.201989202810.1016/j.addbeh.2018.09.01530243035
    [Google Scholar]
  68. KoppelB.S. Cannabis in the treatment of dystonia, dyskinesias, and tics.Neurotherapeutics201512478879210.1007/s13311‑015‑0376‑4
    [Google Scholar]
  69. KramerA. SinclairJ. SharpeL. SarrisJ. Chronic cannabis consumption and physical exercise performance in healthy adults: A systematic review.J Cannabis Res2020213410.1186/s42238‑020‑00037‑x
    [Google Scholar]
  70. LeungJ. ChanG.C.K. HidesL. HallW.D. What is the prevalence and risk of cannabis use disorders among people who use cannabis? A systematic review and meta-analysis.Addict Behav2020202010647910.1016/j.addbeh.2020.106479
    [Google Scholar]
  71. LisdahlK.M. TammL. EpsteinJ.N. JerniganT. MolinaB.S.G. HinshawS.P. SwansonJ.M. NewmanE. KellyC. BjorkJ.M. MTA Neuroimaging Group The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.Drug Alcohol Depend.201616113514610.1016/j.drugalcdep.2016.01.03226897585
    [Google Scholar]
  72. LobergE.M.M. JorgensenH.A. NygardM. BerleJ.O. HugdahlK. Cannabis use and brain functioning in schizophrenia: An fMRI study.Front Psychiatry2012394
    [Google Scholar]
  73. LøbergE.M. NygårdM. BerleJ.O. JohnsenE. KrokenR.A. JørgensenH.A. HugdahlK. An fMRI study of neuronal activation in schizophrenia patients with and without previous cannabis use.Front. Psychiatry201239410.3389/fpsyt.2012.0009423115554
    [Google Scholar]
  74. MalletJ. RamozN. Le StratY. GorwoodP. DubertretC. Heavy cannabis use prior psychosis in schizophrenia: Clinical, cognitive and neurological evidences for a new endophenotype?Eur. Arch. Psychiatry Clin. Neurosci.2017267762963810.1007/s00406‑017‑0767‑028190094
    [Google Scholar]
  75. Martín-SantosR. FagundoA.B. CrippaJ.A. AtakanZ. BhattacharyyaS. AllenP. Fusar-PoliP. BorgwardtS. SealM. BusattoG.F. McGuireP. Neuroimaging in cannabis use: A systematic review of the literature.Psychol Med201040338339810.1017/S0033291709990729
    [Google Scholar]
  76. MelisM. FrauR. KalivasP.W. SpencerS. ChiomaV. ZamberlettiE. RubinoT. ParolaroD. New vistas on cannabis use disorder.Neuropharmacology201720173310.1016/j.neuropharm.2017.03.033
    [Google Scholar]
  77. MooreT.H. ZammitS. Lingford-HughesA. BarnesT.R. JonesP.B. BurkeM. LewisG. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review.Lancet2007370958431932810.1016/S0140‑6736(07)61162‑317662880
    [Google Scholar]
  78. MückeM. PhillipsT. RadbruchL. PetzkeF. HäuserW. Cannabis-based medicines for chronic neuropathic pain in adults.Cochrane Database Sys Rev20182018CD01218210.1002/14651858.CD012182.pub2
    [Google Scholar]
  79. PangR.D. GuillotC.R. ZvolenskyM.J. Bonn-MillerM.O. LeventhalA.M. Associations of anxiety sensitivity and emotional symptoms with the subjective effects of alcohol, cigarettes, and cannabis in adolescents.Addict. Behav.20177319219810.1016/j.addbeh.2017.05.01628544955
    [Google Scholar]
  80. HampsonA.J. GrimaldiM. AxelrodJ. WinkD. Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants.PNAS199895148268827310.1073/pnas.95.14.8268
    [Google Scholar]
  81. PillayS.S. RogowskaJ. KanayamaG. GruberS. SimpsonN. PopeH.G. Yurgelun-ToddD.A. Cannabis and motor function: FMRI changes following 28 days of discontinuation.Exp. Clin. Psychopharmacol.2008161223210.1037/1064‑1297.16.1.2218266549
    [Google Scholar]
  82. PillayS.S. RogowskaJ. KanayamaG. JonD.I. GruberS. SimpsonN. CherayilM. PopeH.G. Yurgelun-ToddD.A. Neurophysiology of motor function following cannabis discontinuation in chronic cannabis smokers: An fMRI study.Drug Alcohol Depend.200476326127110.1016/j.drugalcdep.2004.05.00915561477
    [Google Scholar]
  83. RabinR.A. ZakzanisK.K. GeorgeT.P. The effects of cannabis use on neurocognition in schizophrenia: A meta-analysis.Schizophrenia Research20111281-311111610.1016/j.schres.2011.02.017
    [Google Scholar]
  84. RappC. WalterA. StuderusE. BugraH. TamagniC. RöthlisbergerM. BorgwardtS. AstonJ. Riecher-RösslerA. Cannabis use and brain structural alterations of the cingulate cortex in early psychosis.Psychiatry Res. Neuroimaging2013214210210810.1016/j.pscychresns.2013.06.00624054726
    [Google Scholar]
  85. RubinoT. ZamberlettiE. ParolaroD. Adolescent exposure to cannabis as a risk factor for psychiatric disorders. J Psychopharmacol201226117718810.1177/0269881111405362
    [Google Scholar]
  86. SamiM.B. BhattacharyyaS. Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders.J Psychopharmacol201832882584910.1177/0269881118760662
    [Google Scholar]
  87. SarrisJ. SinclairJ. KaramacoskaD. DavidsonM. FirthJ. Medicinal cannabis for psychiatric disorders: A clinically-focused systematic review.BMC Psychiatry20202012410.1186/s12888‑019‑2409‑831948424
    [Google Scholar]
  88. SneiderJ.T. PopeH.G.Jr SilveriM.M. SimpsonN.S. GruberS.A. Yurgelun-ToddD.A. Altered regional blood volume in chronic cannabis smokers.Exp. Clin. Psychopharmacol.200614442242810.1037/1064‑1297.14.4.42217115869
    [Google Scholar]
  89. StrohbeckP. SkoppG. MatternR. Cannabis improves symptoms of ADHD.Cannabinoids20083113
    [Google Scholar]
  90. TammL. EpsteinJ.N. LisdahlK.M. MolinaB. TapertS. HinshawS.P. ArnoldL.E. VelanovaK. AbikoffH. SwansonJ.M. MTA Neuroimaging Group Impact of ADHD and cannabis use on executive functioning in young adults.Drug Alcohol Depend.2013133260761410.1016/j.drugalcdep.2013.08.00123992650
    [Google Scholar]
  91. TapertS.F. SchweinsburgA.D. DrummondS.P.A. PaulusM.P. BrownS.A. YangT.T. FrankL.R. Functional MRI of inhibitory processing in abstinent adolescent marijuana users.Psychopharmacology (Berl.)2007194217318310.1007/s00213‑007‑0823‑y17558500
    [Google Scholar]
  92. ThamesA.D. ArbidN. SayeghP. Cannabis use and neurocognitive functioning in a non-clinical sample of users.Addict. Behav.201439599499910.1016/j.addbeh.2014.01.01924556155
    [Google Scholar]
  93. ThomaP. DaumI. Comorbid substance use disorder in schizophrenia: A selective overview of neurobiological and cognitive underpinnings.Psychiatry and Clin Neurosci201367636738310.1111/pcn.12072
    [Google Scholar]
  94. Waldo ZuardiA. AlexandreS. CrippaJ. A critical review of the antipsychotic effects of Cannabidiol: 30 years of a translational investigation.Curr Pharm Des201218325131514010.2174/138161212802884681
    [Google Scholar]
  95. WalshZ. GonzalezR. CrosbyK.S. ThiessenM. CarrollC. Bonn-MillerM.O. Medical cannabis and mental health: A guided systematic review.Clin Psychol Rev201751152910.1016/j.cpr.2016.10.002
    [Google Scholar]
  96. ZammitS. MooreT.H.M. Lingford-HughesA. BarnesT.R.E. JonesP.B. BurkeM. LewisG. Effects of cannabis use on outcomes of psychotic disorders: Systematic review.Brit J Psychiatry2008193535736310.1192/bjp.bp.107.046375
    [Google Scholar]
  97. ZhaoW. ZimmermannK. ZhouX. ZhouF. FuM. DernbachC. ScheeleD. WeberB. EcksteinM. HurlemannR. KendrickK.M. BeckerB. Impaired cognitive performance under psychosocial stress in cannabis-dependent men is associated with attenuated precuneus activity.J. Psychiatry Neurosci.2020452889710.1503/jpn.19003931509368
    [Google Scholar]
  98. ZehraA. BurnsJ. LiuC.K. Cannabis addiction and the brain: A review.J Neuroimmune Pharmacol20181343845210.1007/s11481‑018‑9782‑9
    [Google Scholar]
  99. AlamiB. BoujrafS. MaaroufiM. Alaoui-LamraniM.Y. Spontaneous resolution of ruptured dissecting superior cerebellar artery aneurysm.Neurol Sci20214241593159510.1007/s10072‑020‑04835‑233089475
    [Google Scholar]
  100. BelaïchR. BoujrafS. BenzagmoutM. Impact of oxidative stress and inflammation in hemodialysis patients.Med Thera201521210310.1684/met.2015.0479
    [Google Scholar]
  101. BelaïchR. BoujrafS. BenzagmoutM. MaaroufiM. HousniA. BattaF. TiznitiS. MagoulR. SqalliT. Indices of adrenal deficiency involved in brain plasticity and functional control reorganization in hemodialysis patients with polysulfone membrane: BOLD-fMRI study.J. Integr. Neurosci.201615219120310.1142/S021963521650012627301905
    [Google Scholar]
  102. BelaïchR. BoujrafS. BenzagmoutM. MagoulR. MaaroufiM. TiznitiS. Implications of oxidative stress in the brain plasticity originated by fasting: A BOLD-fMRI study.Nutr. Neurosci.201720950551210.1080/1028415X.2016.119116527276372
    [Google Scholar]
  103. BelaïchR. BoujrafS. HousniA. MaaroufiM. BattaF. MagoulR. SqalliT. ErrasfaM. TiznitiS. Assessment of hemodialysis impact by Polysulfone membrane on brain plasticity using BOLD-fMRI.Neuroscience20152889410410.1016/j.neuroscience.2014.11.06425522721
    [Google Scholar]
  104. BenzagmoutM. BoujrafS. AlamiB. AmadouH.A. El HamdaouiH. BennaniA. JaafariM. RammouzI. MaaroufiM. MagoulR. BoussaoudD. Emotion processing in Parkinson’s disease: A blood oxygenation level-dependent functional magnetic resonance imaging study.Neural Regen. Res.201914466667210.4103/1673‑5374.24747030632507
    [Google Scholar]
  105. BoujrafS. LuypaertR. EisendrathH. OsteauxM. Effect of accurately calculated b matrix on the evaluation of the diffusion tensor using echoplanar diffusion tensor imaging.ITBM-RBM200223634034410.1016/S1297‑9562(02)90003‑3
    [Google Scholar]
  106. BoujrafS. LuypaertR. ShabanaW. De MeirleirL. SourbronS. OsteauxM. Study of pediatric brain development using magnetic resonance imaging of anisotropic diffusion.Magn. Reson. Imaging200220432733610.1016/S0730‑725X(02)00501‑512165351
    [Google Scholar]
  107. BoujrafS. SummersP. BelahsenF. PrüssmannK. KolliasS. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging.J. Med. Phys.2009341374210.4103/0971‑6203.4871920126564
    [Google Scholar]
  108. BracherA-K. HofmannC. BornstedtA. BoujrafS. HellE. UlriciJ. SpahrA. HallerB. RascheV. Feasibility of ultra-short echo time (UTE) magnetic resonance imaging for identification of carious lesions.Magn. Reson. Med.201166253854510.1002/mrm.2282821360742
    [Google Scholar]
  109. BoujrafS. LuypaertR. OsteauxM. b matrix errors in echo planar diffusion tensor imaging.J Appl Clin Med Phys200123261210.1120/jacmp.v2i3.2612
    [Google Scholar]
  110. BucherK. DietrichT. MarcarV.L. BremS. HalderP. BoujrafS. SummersP. BrandeisD. MartinE. LoennekerT. Maturation of luminance- and motion-defined form perception beyond adolescence: A combined ERP and fMRI study.Neuroimage20063141625163610.1016/j.neuroimage.2006.02.03216624584
    [Google Scholar]
  111. HalderP. BremS. BucherK. BoujrafS. SummersP. DietrichT. KolliasS. MartinE. BrandeisD. Electrophysiological and hemodynamic evidence for late maturation of hand power grip and force control under visual feedback.Hum. Brain Mapp.2007281698410.1002/hbm.2026216761271
    [Google Scholar]
  112. HousniA. BoujrafS. Multimodal magnetic resonance imaging in the diagnosis and therapeutical follow-up of brain tumors.Neurosciences (Riyadh)201318131023291791
    [Google Scholar]
  113. HousniA. BoujrafS. MaaroufiM. BenzagmoutM. EzzaherK. TiznitiS. Diagnosis and monitoring of the intraparenchymal brain tumors by magnetic resonance imaging.Méd. Nucl.2014384697710.1016/j.mednuc.2014.05.002
    [Google Scholar]
  114. LuypaertR. BoujrafS. SourbronS. OsteauxM. Diffusion and perfusion MRI: Basic physics.Eur. J. Radiol.2001381192710.1016/S0720‑048X(01)00286‑811287161
    [Google Scholar]
  115. BoujrafS. BenajibaN. BelahsenF. TiznitiS. GareyL.J. The impact of restricted diet on brain function using BOLD-fMRI.Exp. Brain Res.2006173231832110.1007/s00221‑006‑0500‑016710683
    [Google Scholar]
  116. BoujrafS. BelaïchR. HousniA. MaaroufiM. TiznitiS. SqalliT. BenzagmoutM. Blood oxygenation level-dependent functional MRI of early evidences of brain plasticity after hemodialysis session by helixone membrane of patients with indices of adrenal deficiency.Ann. Neurosci.2017242828910.1159/00047589728588363
    [Google Scholar]
  117. BoujrafS. BelaïchR. HousniA. AlamiB. SkalliT. MaaroufiM. TiznitiS. Evidences of brain plasticity and motor control modulation after hemodialysis session by helixone membrane: BOLD-fMRI study.CNS Neurol. Disord. Drug Targets202019646647710.2174/187152731966620090213334332881675
    [Google Scholar]
  118. LundqvistT. Cognitive consequences of cannabis use: Comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions.Pharmacol. Biochem. Behav.200581231933010.1016/j.pbb.2005.02.01715925403
    [Google Scholar]
  119. HallW. TeessonM. LynskeyM. DegenhardtL. The 12-month prevalence of substance use and ICD-10 substance use disorders in Australian adults: Findings from the National Survey of Mental Health and Well-Being.Addiction199994101541155010.1046/j.1360‑0443.1999.9410154110.x10790906
    [Google Scholar]
  120. Leslie Iversen. Cannabis and the brain.Brain2003126Pt 612527010.1093/brain/awg14312764049
    [Google Scholar]
  121. SolowijN. PesaN. Cannabis and cognition: Short-and long-term effects. In book: Marijuana and Madness.2nd edition.CambridgeCambridge University Press201110.1016/S0924‑977X(14)70333‑5
    [Google Scholar]
  122. SolowijN. PesaN. Cannabis and cognition: Short-and long-term effects. In: Marijuana and Madness.2nd edCambridgeCambridge University Press201110.1017/CBO9780511706080.009
    [Google Scholar]
  123. Nadia Solowij, Murat Yucel, Valentina Lorenzetti, Dan I Lubman. Does cannabis cause lasting brain damage? In book: Marijuana and Madness Edition: 2nd Chapter: Does Cannabis Cause Lasting Brain Damage? Publisher: Cambridge University Press Editors: David Castle, Robin M Murray, Deepak Cyril D'Souza. October201110.1017/CBO9780511706080.010
    [Google Scholar]
  124. di GiacomoV. ChiavaroliA. RecinellaL. Antioxidant and neuroprotective effects induced by cannabidiol and cannabigerol in rat CTX-TNA2 astrocytes and isolated cortexes.Int. J. Mol. Sci.20202110E357510.3390/ijms21103575 32443623
    [Google Scholar]
  125. Lastres-BeckerI. Molina-HolgadoF. RamosJ.A. MechoulamR. Fernández-RuizJ. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: Relevance to Parkinson’s disease.Neurobiol. Dis.2005191-29610710.1016/j.nbd.2004.11.009 15837565
    [Google Scholar]
  126. SagredoO. RamosJ.A. DecioA. MechoulamR. Fernández-RuizJ. Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors.Eur. J. Neurosci.200726484385110.1111/j.1460‑9568.2007.05717.x 17672854
    [Google Scholar]
  127. EspositoG. De FilippisD. CarnuccioR. IzzoA.A. IuvoneT. The marijuana component cannabidiol inhibits β-amyloid-induced tau protein hyperphosphorylation through Wnt/β-catenin pathway rescue in PC12 cells.J. Mol. Med. (Berl.)200684325325810.1007/s00109‑005‑0025‑1 16389547
    [Google Scholar]
  128. EspositoG. De FilippisD. MaiuriM.C. De StefanoD. CarnuccioR. IuvoneT. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in β-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement.Neurosci. Lett.20063991-2919510.1016/j.neulet.2006.01.047 16490313
    [Google Scholar]
  129. KozelaE. LevN. KaushanskyN. Cannabidiol inhibits pathogenic T cells, decreases spinal microglial activation and ameliorates multiple sclerosis-like disease in C57BL/6 mice.Br. J. Pharmacol.201116371507151910.1111/j.1476‑5381.2011.01379.x 21449980
    [Google Scholar]
  130. KozelaE. PietrM. JuknatA. RimmermanN. LevyR. VogelZ. Cannabinoids Δ(9)-tetrahydrocannabinol and cannabidiol differentially inhibit the lipopolysaccharide-activated NF-kappaB and interferon-β/STAT proinflammatory pathways in BV-2 microglial cells.J. Biol. Chem.201028531616162610.1074/jbc.M109.069294 19910459
    [Google Scholar]
  131. LeeW.S. ErdelyiK. MatyasC. Cannabidiol limits T cell-mediated chronic autoimmune myocarditis: Implications to autoimmune disorders and organ transplantation.Mol. Med.201622113614610.2119/molmed.2016.00007 26772776
    [Google Scholar]
  132. Dos-Santos-PereiraM. GuimarãesF.S. Del-BelE. Raisman-VozariR. MichelP.P. Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-κB-dependent signaling and glucose consumption.Glia202068356157310.1002/glia.23738 31647138
    [Google Scholar]
  133. SerdarN BarisM SuhedaE Thalamic and cerebellar gray matter density reduction in synthetic cannabis users.Bull Clin Psychopharmacol.201525Suppl. 1S18S20
    [Google Scholar]
  134. BloomfieldM.A.P. HindochaC. GreenS.F. Freeman. The neuropsychopharmacology of cannabis: A review of human imaging studies.Pharmacol. Ther.201919513216110.1016/j.pharmthera.18.10.006
    [Google Scholar]
  135. IuvoneT. EspositoG. EspositoR. SantamariaR. Di RosaM. IzzoA.A. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on β-amyloid-induced toxicity in PC12 cells.J. Neurochem.200489113414110.1111/j.1471‑4159.2003.02327.x
    [Google Scholar]
/content/journals/cnsnddt/10.2174/1574886317666220516103501
Loading
/content/journals/cnsnddt/10.2174/1574886317666220516103501
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): BOLD-fMRI; cannabis addiction; chronic; Heavy; motor function; motor impairments
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test