Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Parkinson's disease (PD) is a progressive neurological condition characterized by both dopaminergic and non-dopaminergic brain cell loss. Patients with Parkinson's disease have tremors as a result of both motor and non-motor symptoms developing. Idiopathic Parkinson's disease (idiopathic PD) prevalence is increasing in people over 60. The medication L-dopa, which is now on the market, merely relieves symptoms and has several negative effects. In this article, we highlight the therapeutic potential of glucagon-like peptide-1, adenosine A2A, and cannabinoid receptors as attractive targets for enhancing neuroprotection and reducing a variety of motor and non-motor symptoms. Recent research has widened knowledge of new therapeutic targets and detailed cellular mechanisms, providing invaluable insights into the essential roles of cannabinoid receptors, adenosine A2A receptors, and glucagon-like peptide-1 receptors in PD pathogenesis and unique opportunities for drug development for mankind globally.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273325667241212041540
2025-01-23
2025-12-11
Loading full text...

Full text loading...

References

  1. AmanullahA. Post-transcriptional regulation: A less explored territory in the world of neurodegenerative diseases.In: Post-Transcriptional Gene Regulation in Human Disease.Elsevier20228910410.1016/B978‑0‑323‑91305‑8.00001‑6
    [Google Scholar]
  2. MoolchandaniJ. MoolchandaniG. TurabS.M. IqbalN. RehmanA. MemonS. Frequency of Non-Motor Clinical Features of Parkinson Disease and the Associated Factors in Pakistan.Pak. J. Zool.2022202215
    [Google Scholar]
  3. GuatteoE. BerrettaN. MondaV. LedonneA. MercuriN.B. Pathophysiological features of nigral dopaminergic neurons in animal models of Parkinson’s disease.Int. J. Mol. Sci.2022239450810.3390/ijms23094508
    [Google Scholar]
  4. OladeleJ.O. OladijiA.T. OladeleO.T. OyelekeO.M. Reactive oxygen species in neurodegenerative diseases: Implications in pathogenesis and treatment strategies.In: Reactive Oxygen SpeciesIntech2021149166
    [Google Scholar]
  5. MartinP.K. Wyman-ChickK.A. BarrettM.J. SchroederR.W. Parkinson’s Disease and Dementia with Lewy Bodies.In: A Handbook of Geriatric Neuropsychology.Routledge2022649110.4324/9781003100058‑6
    [Google Scholar]
  6. ShkodinaA.D. TanS.C. HasanM.M. AbdelgawadM. ChopraH. BilalM. BoikoD.I. TarianykK.A. AlexiouA. Roles of clock genes in the pathogenesis of Parkinson’s disease.Ageing Res. Rev.20227410155410.1016/j.arr.2021.101554
    [Google Scholar]
  7. SainiN. SinghN. KaurN. GargS. KaurM. KumarA. VermaM. SinghK. SohalH.S. Motor and non-motor symptoms, drugs, and their mode of action in Parkinson’s disease (PD): A review.Med. Chem. Res.202433458059910.1007/s00044‑024‑03203‑5
    [Google Scholar]
  8. BandopadhyayR. MishraN. RanaR. KaurG. GhoneimM.M. AlshehriS. MustafaG. AhmadJ. AlhakamyN.A. MishraA. Molecular mechanisms and therapeutic strategies for levodopa-induced dyskinesia in Parkinson’s disease: A perspective through preclinical and clinical evidence.Front. Pharmacol.20221380538810.3389/fphar.2022.805388
    [Google Scholar]
  9. MoreS. KumarH. ChoD.Y. YunY.S. ChoiD.K. Toxin-induced experimental models of learning and memory impairment.Int. J. Mol. Sci.2016179144710.3390/ijms17091447
    [Google Scholar]
  10. Maya-LópezM. ZazuetaC. Retana-MárquezS. AliS.F. KarasuC. OnaiviE.S. AschnerM. SantamaríaA. The endocannabinoid system in the central nervous system: emphasis on the role of the mitochondrial cannabinoid receptor 1 (mtCB1R).In: NeuroPsychopharmacotherapySpringer: Cham2020123
    [Google Scholar]
  11. HoffmanS. AdeliK. Glucagon-like peptide (GLP)-1 regulation of lipid and lipoprotein metabolism.Medical Review2024
    [Google Scholar]
  12. KalinderiK. PapaliagkasV. FidaniL. GLP-1 Receptor Agonists: A New Treatment in Parkinson’s Disease.Int. J. Mol. Sci.2024257381210.3390/ijms25073812
    [Google Scholar]
  13. MehanS. BhallaS. SiddiquiE.M. SharmaN. ShandilyaA. KhanA. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration.Degener. Neurol. Neuromuscul. Dis.202212315910.2147/DNND.S247153
    [Google Scholar]
  14. SainiA. PatelR. GabaS. SinghG. GuptaG.D. MongaV. Adenosine receptor antagonists: Recent advances and therapeutic perspective.Eur. J. Med. Chem.202222711390710.1016/j.ejmech.2021.113907
    [Google Scholar]
  15. BaulH.S. ManikandanC. SenD. Cannabinoid receptor as a potential therapeutic target for Parkinson’s Disease.Brain Res. Bull.201914624425210.1016/j.brainresbull.2019.01.016
    [Google Scholar]
  16. OdiekaA.E. ObuzorG.U. OyedejiO.O. GondweM. HosuY.S. OyedejiA.O. The medicinal natural products of Cannabis sativa Linn.: A review.Molecules2022275168910.3390/molecules27051689
    [Google Scholar]
  17. Reyes-ResinaI. Rivas-SantistebanR. RaïchI. del TorrentC.L. LilloJ. FrancoR. NavarroG. Naturally occurring delta-9-tetrahydrocannabinol derivatives and binding to CB1 and CB2 receptors: Linking in the endocannabinoid system.In: Neurobiology and Physiology of the Endocannabinoid System.Elsevier202337939410.1016/B978‑0‑323‑90877‑1.00030‑9
    [Google Scholar]
  18. YangY. VyawahareR. Lewis-BakkerM. ClarkeH.A. WongA.H.C. KotraL.P. Bioactive chemical composition of Cannabis extracts and cannabinoid receptors.Molecules20202515346610.3390/molecules25153466
    [Google Scholar]
  19. MateiD. TrofinD. IordanD.A. OnuI. ConduracheI. IoniteC. BuculeiI. The endocannabinoid system and physical exercise.Int. J. Mol. Sci.2023243198910.3390/ijms24031989
    [Google Scholar]
  20. ContriC. Pharmacological characterization of new modulators of the endocannabinoid system: From single target to multi-target compounds. Doctor of Philosophy, University of Ferrara2024
    [Google Scholar]
  21. GuptaG. HouraniW. DebP. K. DekaS. BorahP. TiwariJ. PathakS. KumarP. Pharmacology of endocannabinoids and their receptors.In: Frontiers in Pharmacology of NeurotransmittersSpringer:Singapore2020415445
    [Google Scholar]
  22. GangarossaG. PerezS. DembitskayaY. ProkinI. BerryH. VenanceL. BDNF controls bidirectional endocannabinoid plasticity at corticostriatal synapses.Cereb. Cortex202030119721410.1093/cercor/bhz081
    [Google Scholar]
  23. LindnerT. SchmidlD. PeschornL. PaiV. Popa-CherecheanuA. ChuaJ. SchmettererL. GarhöferG. Therapeutic potential of cannabinoids in glaucoma.Pharmaceuticals2023168114910.3390/ph16081149
    [Google Scholar]
  24. CopasG. AmazonasE. BrandonS. The pharmacology of cannabinoids.In: Cannabis Therapy in Veterinary Medicine: A Complete Guide20211759
    [Google Scholar]
  25. MorrisG. WalderK. KloiberS. AmmingerP. BerkM. BortolasciC.C. MaesM. PuriB.K. CarvalhoA.F. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks.Pharmacol. Res.202117010572910.1016/j.phrs.2021.105729
    [Google Scholar]
  26. AretxabalaX. García del CañoG. BarrondoS. López de JesúsM. González-BurgueraI. Saumell-EsnaolaM. GoicoleaM.A. SallésJ. Endocannabinoid 2-Arachidonoylglycerol Synthesis and Metabolism at Neuronal Nuclear Matrix Fractions Derived from Adult Rat Brain Cortex.Int. J. Mol. Sci.2023244316510.3390/ijms24043165
    [Google Scholar]
  27. KokonaD. SpyridakosD. TzatzarakisM. PapadogkonakiS. FilidouE. ArvanitidisK.I. KoliosG. LamaniM. MakriyannisA. MalamasM.S. ThermosK. The endocannabinoid 2-arachidonoylglycerol and dual ABHD6/MAGL enzyme inhibitors display neuroprotective and anti-inflammatory actions in the in vivo retinal model of AMPA excitotoxicity.Neuropharmacology202118510845010.1016/j.neuropharm.2021.108450
    [Google Scholar]
  28. MendisL. Distribution of Lipids in the Human Brain and their Differential Expression in Alzheimer's Disease: A Matrix-Assisted Laser Desorption/Ionisation-Imaging Mass Spectrometry (MALDI-IMS) Study.PhD Thesis, The University of Auckland2016
    [Google Scholar]
  29. Bekki BK, Magid A, Hajer A, Jean K, Marrakchi M, Fakhfakh H. Presence of ‘Candidatus Phytoplasma prunorum’ in apricot orchards in Tunisia.Biologia Tunisie2012715
    [Google Scholar]
  30. GonzalesK.K. SmithY. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions.Ann. N. Y. Acad. Sci.20151349114510.1111/nyas.12762
    [Google Scholar]
  31. FreundT.F. KatonaI. PiomelliD. Role of endogenous cannabinoids in synaptic signaling.Physiol. Rev.20038331017106610.1152/physrev.00004.2003
    [Google Scholar]
  32. TakakusakiK. Forebrain control of locomotor behaviors.Brain Res. Brain Res. Rev.200857119219810.1016/j.brainresrev.2007.06.024
    [Google Scholar]
  33. EkanayakeH. Cognitive emotional user correction for multimedia interactions using visual attention and psychophysiological signals.2009 https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/1641
    [Google Scholar]
  34. PorcuA. Characterization of Rimonabant effects on G protein activity.2016
    [Google Scholar]
  35. MaoL.M. YoungL. ChuX.P. WangJ.Q. Regulation of Src family kinases by muscarinic acetylcholine receptors in heterologous cells and neurons.Front. Mol. Neurosci.202416134072510.3389/fnmol.2023.1340725
    [Google Scholar]
  36. Pędzińska-BetiukA. SchlickerE. WeresaJ. MalinowskaB. Re-evaluation of the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria.Front. Pharmacol.202415138299510.3389/fphar.2024.1382995
    [Google Scholar]
  37. KhanH. GhoriF.K. GhaniU. JavedA. ZahidS. Cannabinoid and endocannabinoid system: A promising therapeutic intervention for multiple sclerosis.Mol. Biol. Rep.20224965117513110.1007/s11033‑022‑07223‑5
    [Google Scholar]
  38. RichmondA.M. LyonsK.E. PahwaR. Safety review of current pharmacotherapies for levodopa-treated patients with Parkinson’s disease.Expert Opin. Drug Saf.202322756357910.1080/14740338.2023.2227096
    [Google Scholar]
  39. Al KhatibJ. Clinical and pharmacological aspects of the use of antiparkinsonian drugs.Qualification Work, National University of Pharmacy, Ukraine2023
    [Google Scholar]
  40. JanjuaT.I. RewatkarP. Ahmed-CoxA. SaeedI. MansfeldF.M. KulshreshthaR. KumeriaT. ZieglerD.S. KavallarisM. MazzieriR. PopatA. Frontiers in the treatment of glioblastoma: Past, present and emerging.Adv. Drug Deliv. Rev.202117110813810.1016/j.addr.2021.01.012
    [Google Scholar]
  41. BehlT. KaurG. BungauS. JhanjiR. KumarA. MehtaV. ZenginG. BrataR. HassanS.S. FratilaO. Distinctive evidence involved in the role of endocannabinoid signalling in Parkinson’s disease: A perspective on associated therapeutic interventions.Int. J. Mol. Sci.20202117623510.3390/ijms21176235
    [Google Scholar]
  42. TheissP. PucciF.G. SlavinK.V. Invasive Neuromodulation Techniques for Treatment-Resistant Depression.Springer202310.1007/7854_2023_460
    [Google Scholar]
  43. RibeiroF.M. PiresR.G.W. AlarcónT.A. Presti-SilvaS.M. SimõesA.P.T. Molecular mechanisms underlying the neuroprotection of environmental enrichment in Parkinson’s disease.Neural Regen. Res.20231871450145610.4103/1673‑5374.360264
    [Google Scholar]
  44. KibretB.G. Canseco-AlbaA. OnaiviE.S. EngidaworkE. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation.Front. Behav. Neurosci.202317113795710.3389/fnbeh.2023.1137957
    [Google Scholar]
  45. EverettT.J. GomezD.M. HamiltonL.R. OlesonE.B. Endocannabinoid modulation of dopamine release during reward seeking, interval timing, and avoidance.Prog. Neuropsychopharmacol. Biol. Psychiatry202110411003110.1016/j.pnpbp.2020.110031
    [Google Scholar]
  46. RübC. The Parkinson’s disease-related kinase Pink1 mediates mitochondrial quality control.Dissertation, Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn2016
    [Google Scholar]
  47. ShadfarS. ParakhS. JamaliM.S. AtkinJ.D. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases.Transl. Neurodegener.20231211810.1186/s40035‑023‑00350‑4
    [Google Scholar]
  48. TrezziI. Investigating glutamate toxicity associated to Park2 mutations in pre-clinical models of Parkinson’s disease.Mov Disord202238Suppl 1
    [Google Scholar]
  49. KaurS. SehrawatA. MastanaS.S. KandimallaR. SharmaP.K. BhattiG.K. BhattiJ.S. Targeting calcium homeostasis and impaired inter-organelle crosstalk as a potential therapeutic approach in Parkinson’s disease.Life Sci.202333012199510.1016/j.lfs.2023.121995
    [Google Scholar]
  50. JiangW. LiQ. ZhangR. LiJ. LinQ. LiJ. ZhouX. YanX. FanK. Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson’s disease.Nat. Commun.2023141813710.1038/s41467‑023‑43870‑3
    [Google Scholar]
  51. RissardoJ. P. CapraraA.L.F. A literature review of movement disorder associated with medications and systemic diseases.Preprint2024
    [Google Scholar]
  52. IshiguroH. KibretB.G. HoriuchiY. OnaiviE.S. Potential role of cannabinoid type 2 receptors in neuropsychiatric and neurodegenerative disorders.Front. Psychiatry20221382889510.3389/fpsyt.2022.828895
    [Google Scholar]
  53. Abdel-SalamO.M.E. MózsikG. Capsaicin, the vanilloid receptor TRPV1 agonist in neuroprotection: Mechanisms involved and significance.Neurochem. Res.202348113296331510.1007/s11064‑023‑03983‑z
    [Google Scholar]
  54. RahmanM.M. IslamM.R. YaminM. IslamM.M. SarkerM.T. MeemA.F.K. AkterA. EmranT.B. CavaluS. SharmaR. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance.Oxid Med Cell Longev.20222022320164410.1155/2022/3201644
    [Google Scholar]
  55. Abd-NikfarjamB. Dolati-SomarinA. Baradaran RahimiV. AskariV.R. Cannabinoids in neuroinflammatory disorders: Focusing on multiple sclerosis, Parkinsons, and Alzheimers diseases.Biofactors202349356058310.1002/biof.1936
    [Google Scholar]
  56. FerroE.S. ArbiserJ. FernandesE.S. CostaS.K. Current challenges in inflammation and pain biology: The role of natural and synthetic compounds.In: Frontiers Media SA202310.3389/978‑2‑8325‑2816‑7
    [Google Scholar]
  57. RenJ. SuD. LiL. CaiH. ZhangM. ZhaiJ. LiM. WuX. HuK. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via suppressing NF-κB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways.Toxicol. Appl. Pharmacol.202038711484610.1016/j.taap.2019.114846
    [Google Scholar]
  58. PrzewodowskaD. MarzecW. MadetkoN. Novel Therapies for Parkinsonian Syndromes–Recent Progress and Future Perspectives.Front. Mol. Neurosci.20211472022010.3389/fnmol.2021.720220
    [Google Scholar]
  59. HungS.W. ZhangR. TanZ. ChungJ.P.W. ZhangT. WangC.C. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review.Med. Res. Rev.20214142489256410.1002/med.21802
    [Google Scholar]
  60. WangM. LiuH. MaZ. Roles of the cannabinoid system in the basal ganglia in parkinson’s disease.Front. Cell. Neurosci.20221683285410.3389/fncel.2022.832854
    [Google Scholar]
  61. GaidinS.G. TurovskayaM.V. GavrishM.S. BabaevA.A. Mal’tsevaV.N. BlinovaE.V. TurovskyE.A. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity.Int. J. Neurosci.2020130436338310.1080/00207454.2019.1691205
    [Google Scholar]
  62. RossI.A. Cannabis and Parkinson’s Disease.In: Plant-Based Therapeutics, Volume 1: Cannabis sativaSpringer2023513567
    [Google Scholar]
  63. HanQ.W. YuanY.H. ChenN.H. The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson’s disease.Prog. Neuropsychopharmacol. Biol. Psychiatry20209610974510.1016/j.pnpbp.2019.109745
    [Google Scholar]
  64. DionísioP.A. AmaralJ.D. RodriguesC.M.P. Oxidative stress and regulated cell death in Parkinson’s disease.Ageing Res. Rev.20216710126310.1016/j.arr.2021.101263
    [Google Scholar]
  65. CásedasG. MolinerC. MaggiF. MazzaraE. LópezV. Evaluation of two different Cannabis sativa L. extracts as antioxidant and neuroprotective agents.Front. Pharmacol.202213100986810.3389/fphar.2022.1009868
    [Google Scholar]
  66. VasincuA. RusuR.N. AbabeiD.C. LarionM. BildW. StanciuG.D. SolcanC. BildV. Endocannabinoid modulation in neurodegenerative diseases: In pursuit of certainty.Biology (Basel)202211344010.3390/biology11030440
    [Google Scholar]
  67. LeeK.H. ChaM. LeeB.H. Neuroprotective effect of antioxidants in the brain.Int. J. Mol. Sci.20202119715210.3390/ijms21197152
    [Google Scholar]
  68. WangL. ZhaoJ. YanH.Y. PengQ. DaiY. ZhangY. The Cannabinoid 2 Receptor (CB2R) Alleviates Inflammatory and Oxidative Stress in Lipopolysaccharide-Induced BV-2 Cells and Regulates M1/M2 Polarization.J. Biomater. Tissue Eng.202010220321110.1166/jbt.2019.2218
    [Google Scholar]
  69. Vargas-MendozaN. Morales-GonzálezÁ. Morales-MartínezM. Soriano-UrsúaM.A. Delgado-OlivaresL. Sandoval-GallegosE.M. Madrigal-BujaidarE. Álvarez-GonzálezI. Madrigal-SantillánE. Morales-GonzalezJ.A. Flavolignans from silymarin as Nrf2 bioactivators and their therapeutic applications.Biomedicines20208512210.3390/biomedicines8050122
    [Google Scholar]
  70. RahmanM.M. IslamM.R. SuptiF.A. DharP.S. ShohagS. FerdousJ. shuvoS. AkterA. HossainM.S. SharmaR. Exploring the therapeutic effect of neurotrophins and neuropeptides in neurodegenerative diseases: at a glance.Mol. Neurobiol.20236084206423110.1007/s12035‑023‑03328‑5
    [Google Scholar]
  71. RodriguesR.S. LourençoD.M. PauloS.L. MateusJ.M. FerreiraM.F. MouroF.M. MoreiraJ.B. RibeiroF.F. SebastiãoA.M. XapelliS. Cannabinoid actions on neural stem cells: Implications for pathophysiology.Molecules2019247135010.3390/molecules24071350
    [Google Scholar]
  72. LiuH. LiuY. JinS.G. JohnsonJ. XuanH. LuD. LiJ. ZhaiL. LiX. ZhaoY. LiuM. CraigS.E.L. FloramoJ.S. MolchanovV. LiJ. LiJ-D. KrawczykC. ShiX. PfeiferG.P. YangT. TRIM28 secures skeletal stem cell fate during skeletogenesis by silencing neural gene expression and repressing GREM1/AKT/mTOR signaling axis.Cell Rep.202342111201210.1016/j.celrep.2023.112012
    [Google Scholar]
  73. TapiaarancibiaL. RageF. GivaloisL. ArancibiaS. Physiology of BDNF: focus on hypothalamic function.Front. Neuroendocrinol.20042527710710.1016/j.yfrne.2004.04.001
    [Google Scholar]
  74. BriscioneM.A. Abnormal dopamine signaling in a mouse model of dystonia.Emory University2019
    [Google Scholar]
  75. SerraM. Evaluation of pre-and post-synaptic events involved in the development of L-DOPA-induced dyskinesia in Parkinson’s Disease.2020Available from: https://hdl.handle.net/11584/284802
    [Google Scholar]
  76. MorpurgoE. NECAB2/MitoNEET represents an alternative activity-triggered mitochondrial quality control system.Dissertation, Mainz, Johannes Gutenberg-Universität Mainz2021
    [Google Scholar]
  77. BoisonD. Regulation of extracellular adenosine. The adenosine receptors.2018
    [Google Scholar]
  78. CunhaR.A. How does adenosine control neuronal dysfunction and neurodegeneration?J. Neurochem.201613961019105510.1111/jnc.13724
    [Google Scholar]
  79. Alarcón de la LastraC. VillegasI. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications.Mol. Nutr. Food Res.200549540543010.1002/mnfr.200500022
    [Google Scholar]
  80. HirozaneY. Development and Application of Biochemical Characterization Methods for Protein Structure Analysis.2021
    [Google Scholar]
  81. MinJ. TuJ. XuC. LukasH. ShinS. YangY. SolomonS.A. MukasaD. GaoW. Skin-interfaced wearable sweat sensors for precision medicine.Chem. Rev.202312385049513810.1021/acs.chemrev.2c00823
    [Google Scholar]
  82. BurnstockG. Plenary Presentations The struggle to establish purinergic signalling.Purinergic Signal.200841S1S210
    [Google Scholar]
  83. ReisH. GuatimosimC. PaquetM. SantosM. RibeiroF. KummerA. SchenattoG. SalgadoJ. VieiraL. TeixeiraA. PalotasA. Neuro-transmitters in the central nervous system & their implication in learning and memory processes.Curr. Med. Chem.200916779684010.2174/092986709787549271
    [Google Scholar]
  84. PoddarS. Entrapment of ligands in high-performance affinity columns for chromatographic studies of solute-ligand interaction and use of sandwich immunoassay for antibody detection.Doctor of Philosophy, The University of Nebraska2022
    [Google Scholar]
  85. GuptaR. SahuM. TripathiR. AmbastaR.K. KumarP. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations.Ageing Res. Rev.20227610157910.1016/j.arr.2022.101579
    [Google Scholar]
  86. OakhillJ.S. SteelR. ChenZ.P. ScottJ.W. LingN. TamS. KempB.E. AMPK is a direct adenylate charge-regulated protein kinase.Science201133260361433143510.1126/science.1200094
    [Google Scholar]
  87. SmithV. Determinants of sensitivity to BH3 mimetics in diffuse large B-cell lymphoma.University of Leicester2020
    [Google Scholar]
  88. SchmidtA.P. SchmidtS.R.G. The role of the purinergic system in the acupuncture-induced analgesia.Br. J. Pain20214217217910.5935/2595‑0118.20210034
    [Google Scholar]
  89. UddinR. Characterisation of Styrene-maleic acid-solubilised G protein-coupled receptors.Aston University2020
    [Google Scholar]
  90. ChangC.P. WuK.C. LinC.Y. ChernY. Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases.J. Biomed. Sci.20212817010.1186/s12929‑021‑00766‑y
    [Google Scholar]
  91. Reyes-CorralM. Sola-IdígoraN. de la PuertaR. MontanerJ. Ybot-GonzálezP. Nutraceuticals in the prevention of neonatal hypoxia–ischemia: A comprehensive review of their neuroprotective properties, mechanisms of action and future directions.Int. J. Mol. Sci.2021225252410.3390/ijms22052524
    [Google Scholar]
  92. RameshS. ArachchigeA.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature.AIMS Neurosci.202310320023110.3934/Neuroscience.2023017
    [Google Scholar]
  93. DongJ. HawesS. WuJ. LeW. CaiH. Connectivity and functionality of the globus pallidus externa under normal conditions and Parkinson’s disease.Front. Neural Circuits20211564528710.3389/fncir.2021.645287
    [Google Scholar]
  94. FasanoA. MazzoniA. FaloticoE. Reaching and grasping movements in Parkinson’s disease: A review.J. Parkinsons Dis.20221241083111310.3233/JPD‑213082
    [Google Scholar]
  95. BanjareP. Wamanrao MatoreB. MurmuA. KumarV. SinghJ. RoyP.P. In silico Strategy: A Promising Implement in the Development of Multitarget Drugs against Neurodegenerative Diseases.Curr. Top. Med. Chem.202323292765279110.2174/1568026623666230811113231
    [Google Scholar]
  96. CampanelliF. NataleG. MarinoG. GhiglieriV. CalabresiP. Striatal glutamatergic hyperactivity in Parkinson’s disease.Neurobiol. Dis.202216810569710.1016/j.nbd.2022.105697
    [Google Scholar]
  97. SudhakarP. PushkalaiS. P. SabarinathC. PriyadharshiniS. HaripriyaS. Molecular docking and synthesis of 1, 2, 4-triazin analogue of diclofenac as potential ligand for parkinson's.RJPPD2018101812
    [Google Scholar]
  98. Perez de la MoraM. Hernandez-MondragonC. Crespo-RamirezM. Rejon-OrantesJ. Borroto-EscuelaD.O. FuxeK. Conventional and novel pharmacological approaches to treat dopamine-related disorders: Focus on Parkinson’s disease and schizophrenia.Neuroscience202043930131810.1016/j.neuroscience.2019.07.026
    [Google Scholar]
  99. FieblingerT. LiC. EspaE. CenciM.A. Non-apoptotic caspase-3 activation mediates early synaptic dysfunction of indirect pathway neurons in the parkinsonian striatum.Int. J. Mol. Sci.20222310547010.3390/ijms23105470
    [Google Scholar]
  100. ReichertC.F. DeboerT. LandoltH.P. Adenosine, caffeine, and sleep–wake regulation: state of the science and perspectives.J. Sleep Res.2022314e1359710.1111/jsr.13597
    [Google Scholar]
  101. LancelM. Role of GABAA receptors in the regulation of sleep: Initial sleep responses to peripherally administered modulators and agonists.Sleep1999221334210.1093/sleep/22.1.33
    [Google Scholar]
  102. PirkerW. KatzenschlagerR. Gait disorders in adults and the elderly.Wien. Klin. Wochenschr.20171293-4819510.1007/s00508‑016‑1096‑4
    [Google Scholar]
  103. LeiJ. TangL.L. YouH.J. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment.Neurosci. Biobehav. Rev.202416110564610.1016/j.neubiorev.2024.105646
    [Google Scholar]
  104. D’MelloR. DickensonA.H. Spinal cord mechanisms of pain.Br. J. Anaesth.2008101181610.1093/bja/aen088
    [Google Scholar]
  105. IredaleJ.A. Using Chemical and Light Activation of Neurons to Study Pain Mechanisms and Screen Analgesic Compounds.University of Newcastle2023
    [Google Scholar]
  106. NagalA. SinglaR.K. Parkinson’s Disease: Diagnosis, Therapeutics & Management.Webmed Central Pharmaceutical Sciences2012
    [Google Scholar]
  107. KurkinD. BakulinD. MorkovinE. PetrovV. StryginA. KoryanovaK. GorbunovaY. V. KolosovY. A. IvanovaO. PavlovaE. Physiology and pharmacology of glucagon-like peptide-1 receptor.Pharm Pharmacol202411434738010.19163/2307‑9266‑2023‑11‑4‑347‑380
    [Google Scholar]
  108. DimitriadisG.D. MaratouE. KountouriA. BoardM. LambadiariV. Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: an integrative approach.Nutrients202113115910.3390/nu13010159
    [Google Scholar]
  109. HoltM.K. The ins and outs of the caudal nucleus of the solitary tract: An overview of cellular populations and anatomical connections.J. Neuroendocrinol.2022346e1313210.1111/jne.13132
    [Google Scholar]
  110. KoppK.O. GlotfeltyE.J. LiY. GreigN.H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment.Pharmacol. Res.202218610655010.1016/j.phrs.2022.106550
    [Google Scholar]
  111. RichardsP. ThornberryN.A. PintoS. The gut–brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders.Mol. Metab.20214610117510.1016/j.molmet.2021.101175
    [Google Scholar]
  112. PengW. ZhouR. SunZ.F. LongJ.W. GongY.Q. Novel insights into the roles and mechanisms of GLP-1 receptor agonists against aging-related diseases.Aging Dis.202213246810.14336/AD.2021.0928
    [Google Scholar]
  113. KumarM. BansalN. Implications of phosphoinositide 3-kinase-Akt (PI3K-Akt) pathway in the pathogenesis of Alzheimer’s disease.Mol. Neurobiol.202259135438510.1007/s12035‑021‑02611‑7
    [Google Scholar]
  114. Moradi VasteganiS. NasrolahiA. GhaderiS. BelaliR. RashnoM. FarzanehM. KhoshnamS.E. Mitochondrial dysfunction and Parkinson’s disease: Pathogenesis and therapeutic strategies.Neurochem. Res.20234882285230810.1007/s11064‑023‑03904‑0
    [Google Scholar]
  115. DegirmenciU. WangM. HuJ. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy.Cells20209119810.3390/cells9010198
    [Google Scholar]
  116. BowersD.T. SongW. WangL.H. MaM. Engineering the vasculature for islet transplantation.Acta Biomater.20199513115110.1016/j.actbio.2019.05.051
    [Google Scholar]
  117. VoshartD.C. WiedemannJ. van LuijkP. BarazzuolL. Regional responses in radiation-induced normal tissue damage.Cancers (Basel)202113336710.3390/cancers13030367
    [Google Scholar]
  118. Diz-ChavesY. MastoorZ. SpuchC. González-MatíasL.C. MalloF. Anti-inflammatory effects of GLP-1 receptor activation in the brain in neurodegenerative diseases.Int. J. Mol. Sci.20222317958310.3390/ijms23179583
    [Google Scholar]
  119. MontiG. Gomes MoreiraD. RichnerM. MutsaersH.A.M. FerreiraN. JanA. GLP-1 receptor agonists in neurodegeneration: Neurovascular unit in the spotlight.Cells20221113202310.3390/cells11132023
    [Google Scholar]
  120. PluijmertN.J. BartC.I. BaxW.H. QuaxP.H.A. AtsmaD.E. Effects on cardiac function, remodeling and inflammation following myocardial ischemia–reperfusion injury or unreperfused myocardial infarction in hypercholesterolemic APOE*3-Leiden mice.Sci. Rep.20201011660110.1038/s41598‑020‑73608‑w
    [Google Scholar]
  121. SainiK. SharmaS. KhanY. DPP-4 inhibitors for treating T2DM - hype or hope? an analysis based on the current literature.Front. Mol. Biosci.202310113062510.3389/fmolb.2023.1130625
    [Google Scholar]
  122. WarmanK. Abstracts of poster presentations at the 2021 virtual annual of the Canadian Society for Pharmaceutical Sciences.J. Pharm. Pharm. Sci.2021241s66s10.18433/jpps32384
    [Google Scholar]
  123. ZhaoX. WangM. WenZ. LuZ. CuiL. FuC. XueH. LiuY. ZhangY. GLP-1 receptor agonists: beyond their pancreatic effects.Front. Endocrinol. (Lausanne)20211272113510.3389/fendo.2021.721135
    [Google Scholar]
  124. LamaJ. BuhidmaY. FletcherE.J.R. DutyS. Animal models of Parkinson’s disease: A guide to selecting the optimal model for your research.Neuronal Signal.202154NS2021002610.1042/NS20210026
    [Google Scholar]
  125. BangY. MoonS.H. LeeS. ChoiH.J. Anti-Inflammatory Effects of Dipeptidyl Peptidase-4 Inhibitors and Their Therapeutic Application for Parkinson’s Disease.Drug Targets Therapeut202431839310.58502/DTT.24.0030
    [Google Scholar]
  126. ShenX. LuoL. YangM. LinY. LiJ. YangL. Exendin‑4 inhibits lipotoxicity‑induced oxidative stress in β‑cells by inhibiting the activation of TLR4/NF‑κB signaling pathway.Int. J. Mol. Med.20204541237124910.3892/ijmm.2020.4490
    [Google Scholar]
  127. FilipelloF. MoriniR. CorradiniI. ZerbiV. CanziA. MichalskiB. ErreniM. MarkicevicM. Starvaggi-CucuzzaC. OteroK. The Microglial Innate Immune Receptor TREM2 Is Required for Synapse Elimination and Normal Brain Connectivity.Immunity201848597999110.1016/j.immuni.2018.04.016
    [Google Scholar]
  128. HarryG.J. Microglia in neurodegenerative events—an initiator or a significant other?Int. J. Mol. Sci.20212211581810.3390/ijms22115818
    [Google Scholar]
  129. WendimuM.Y. HooksS.B. Microglia phenotypes in aging and neurodegenerative diseases.Cells20221113209110.3390/cells11132091
    [Google Scholar]
  130. GasbjergL.S. HelstedM.M. HartmannB. Sparre-UlrichA.H. VeedfaldS. StensenS. LanngA.R. BergmannN.C. ChristensenM.B. VilsbøllT. HolstJ.J. RosenkildeM.M. KnopF.K. GIP and GLP-1 receptor antagonism during a meal in healthy individuals.J. Clin. Endocrinol. Metab.20201053e725e73810.1210/clinem/dgz175
    [Google Scholar]
  131. WatkinsJ.D. KoumanovF. GonzalezJ.T. Protein-and calcium-mediated GLP-1 secretion: A narrative review.Adv. Nutr.20211262540255210.1093/advances/nmab078
    [Google Scholar]
  132. JonikS. MarchelM. GrabowskiM. OpolskiG. MazurekT. Gastrointestinal Incretins—Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease—State of the Art.Biology (Basel)202211228810.3390/biology11020288
    [Google Scholar]
  133. AndraosJ. MuharH. SmithS.R. Beyond glycemia: Comparing tirzepatide to GLP-1 analogues.Rev. Endocr. Metab. Disord.20232461089110110.1007/s11154‑023‑09825‑1
    [Google Scholar]
  134. CantiniG. TrabuccoM. DicembriniI. MannucciE. LuconiM. Intestinal Hormones.In: Hormonal Signaling in Biology and Medicine.Elsevier202036138110.1016/B978‑0‑12‑813814‑4.00016‑X
    [Google Scholar]
  135. CandeiasE. M. The amazing anti-type 2 diabetic drugs in neurodegeneration: The impact of exendin-4, liraglutide and linagliptin in type 2 diabetes, Alzheimer disease and Parkinson disease.Thesis, Universidade de Coimbra (Portugal)2021
    [Google Scholar]
  136. ZhaiJ. OuZ. ZhongL. WangY. CaoL.P. GuanS. Exenatide-loaded inside-porous poly(lactic-co-glycolic acid) microspheres as a long-acting drug delivery system with improved release characteristics.Drug Deliv.20202711667167510.1080/10717544.2020.1850919
    [Google Scholar]
  137. NauckM.A. QuastD.R. WefersJ. MeierJ.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art.Mol. Metab.20214610110210.1016/j.molmet.2020.101102
    [Google Scholar]
  138. MerelliA. RepettoM. LazarowskiA. AuzmendiJ. Hypoxia, oxidative stress, and inflammation: Three faces of neurodegenerative diseases.J. Alzheimers Dis.202182s1S109S12610.3233/JAD‑201074
    [Google Scholar]
  139. MishraA. BandopadhyayR. SinghP.K. MishraP.S. SharmaN. KhuranaN. Neuroinflammation in neurological disorders: Pharmacotherapeutic targets from bench to bedside.Metab. Brain Dis.20213671591162610.1007/s11011‑021‑00806‑4
    [Google Scholar]
  140. DolatshahiM. Ranjbar HameghavandiM.H. SabahiM. RostamkhaniS. Nuclear factor‐kappa B (NF‐κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration.Eur. J. Neurosci.20215414101412310.1111/ejn.15242
    [Google Scholar]
  141. ZhouW.-C. QuJ. XieS.-Y. SunY. YaoH.-W. Mitochondrial Dysfunction in Chronic Respiratory Diseases: Implications for the Pathogenesis and Potential Therapeutics.Oxid Med Cell Longev.20212021518830610.1155/2021/5188306
    [Google Scholar]
  142. ReichN. HölscherC. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease: An in-depth review.Front. Neurosci.20221697092510.3389/fnins.2022.970925
    [Google Scholar]
  143. CuiQ.N. SteinL.M. FortinS.M. HayesM.R. The role of glia in the physiology and pharmacology of glucagon‐like peptide‐1: Implications for obesity, diabetes, neurodegeneration and glaucoma.Br. J. Pharmacol.2022179471572610.1111/bph.15683
    [Google Scholar]
  144. ÇınarE. TelB.C. ŞahinG. Neuroinflammation in parkinson’s disease and its treatment opportunities.Balkan Med. J.202239531833310.4274/balkanmedj.galenos.2022.2022‑7‑100
    [Google Scholar]
  145. SalvatoreM.F. Dopamine signaling in substantia nigra and its impact on locomotor function—not a new concept, but neglected reality.Int. J. Mol. Sci.2024252113110.3390/ijms25021131
    [Google Scholar]
  146. AlharbiS.H. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications.Ther. Adv. Endocrinol. Metab.2024152042018823122236710.1177/20420188231222367
    [Google Scholar]
  147. PajaresM. RojoI. Inflammation in Parkinson’s disease: mechanisms and therapeutic implications.Cells202097168710.3390/cells9071687
    [Google Scholar]
  148. MiyazakiI. AsanumaM. Neuron-astrocyte interactions in Parkinson’s disease.Cells2020912262310.3390/cells9122623
    [Google Scholar]
  149. Gonzalez-LatapiP. BayramE. LitvanI. MarrasC. Cognitive impairment in Parkinson’s disease: Epidemiology, clinical profile, protective and risk factors.Behav. Sci. (Basel)20211157410.3390/bs11050074
    [Google Scholar]
  150. BasileM.S. BramantiP. MazzonE. Inosine in neurodegenerative diseases: From the bench to the bedside.Molecules20222714464410.3390/molecules27144644
    [Google Scholar]
  151. EspayA.J. KaliaL.V. Gan-OrZ. Williams-GrayC.H. BedardP.L. RoweS.M. MorganteF. FasanoA. StecherB. KauffmanM.A. FarrerM.J. CoffeyC.S. SchwarzschildM.A. ShererT. PostumaR.B. StrafellaA.P. SingletonA.B. BarkerR.A. KieburtzK. OlanowC.W. LozanoA. KordowerJ.H. CedarbaumJ.M. BrundinP. StandaertD.G. LangA.E. Disease modification and biomarker development in Parkinson disease.Neurology2020941148149410.1212/WNL.0000000000009107
    [Google Scholar]
  152. TangY. LengY. WangW. ZhangJ. YuanT. WangJ. Protective effect of Saxagliptin on diabetic rats with renal ischemia reperfusion injury by targeting oxidative stress and mitochondrial apoptosis pathway through activating Nrf-2/HO-1 signaling.Transpl. Immunol.20237610176210.1016/j.trim.2022.101762
    [Google Scholar]
  153. DanielA.O. Mitochondrial therapy against diabetic retinopathy.University of Tasmania2020
    [Google Scholar]
  154. KurianG.A. RajagopalR. VedanthamS. RajeshM. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: Revisited.Oxid Med Cell Longev.20162016165645010.1155/2016/1656450
    [Google Scholar]
  155. DuX. ZengQ. LuoY. HeL. ZhaoY. LiN. HanC. ZhangG. LiuW. Application research of novel peptide mitochondrial-targeted antioxidant SS-31 in mitigating mitochondrial dysfunction.Mitochondrion20247510184610.1016/j.mito.2024.101846
    [Google Scholar]
  156. CousineauJ. PlateauV. BaufretonJ. Le Bon-JégoM. Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson’s disease.Neurobiol. Dis.202216710567410.1016/j.nbd.2022.105674
    [Google Scholar]
  157. FangC. LvL. MaoS. DongH. LiuB. Cognition Deficits in Parkinson's Disease: Mechanisms and Treatment.Parkinsons Dis.2020 Mar 24;2020: 20202020207694210.1155/2020/2076942
    [Google Scholar]
  158. YassineH.N. SolomonV. ThakralA. Sheikh-BahaeiN. ChuiH.C. BraskieM.N. SchneiderL.S. TalbotK. Brain energy failure in dementia syndromes: Opportunities and challenges for glucagon‐like peptide‐1 receptor agonists.Alzheimers Dement.202218347849710.1002/alz.12474
    [Google Scholar]
  159. AthaudaD. FoltynieT. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action.Drug Discov. Today201621580281810.1016/j.drudis.2016.01.013
    [Google Scholar]
  160. DalleS. BurcelinR. GourdyP. Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes.Cell. Signal.201325257057910.1016/j.cellsig.2012.11.009
    [Google Scholar]
  161. WangR.C. WangZ. Precision medicine: Disease subtyping and tailored treatment.Cancers (Basel)20231515383710.3390/cancers15153837
    [Google Scholar]
  162. WildeE.A. WannerI.B. KenneyK. GillJ. StoneJ.R. DisnerS. SchnakersC. MeyerR. PragerE.M. HaasM. JerominA. A framework to advance biomarker development in the diagnosis, outcome prediction, and treatment of traumatic brain injury.J. Neurotrauma2022397-843645710.1089/neu.2021.0099
    [Google Scholar]
  163. ShohagS. AkhterS. IslamS. SarkerT. SifatM. K. RahmanM. M. IslamM. R. SharmaR. Perspectives on the molecular mediators of oxidative stress and antioxidant strategies in the context of neuroprotection and neurolongevity: An extensive review.Oxid Med Cell Longev.20222022774370510.1155/2022/7743705
    [Google Scholar]
  164. FanY. Winanto NgS-Y. Replacing what’s lost: A new era of stem cell therapy for Parkinson’s disease.Transl. Neurodegener.202091210.1186/s40035‑019‑0180‑x
    [Google Scholar]
  165. VatanseverS. SchlessingerA. WackerD. KaniskanH.Ü. JinJ. ZhouM.M. ZhangB. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions.Med. Res. Rev.20214131427147310.1002/med.21764
    [Google Scholar]
  166. CarapellottiA.M. StevensonR. DoumasM. The efficacy of dance for improving motor impairments, non-motor symptoms, and quality of life in Parkinson’s disease: A systematic review and meta-analysis.PLoS One2020158e023682010.1371/journal.pone.0236820
    [Google Scholar]
  167. TabernaM. Gil MoncayoF. Jané-SalasE. AntonioM. ArribasL. VilajosanaE. Peralvez TorresE. MesíaR. The multidisciplinary team (MDT) approach and quality of care.Front. Oncol.2020108510.3389/fonc.2020.00085
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273325667241212041540
Loading
/content/journals/cnsnddt/10.2174/0118715273325667241212041540
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test