Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Background

AD is a demyelinating disease. Myelin damage initiates the pathological process of AD, resulting in abnormal synaptic function and cognitive decline. The myelin sheath formed by oligodendrocytes (OL) is a crucial component of white matter. Investigating AD from the perspective of OL may offer novel diagnostic and therapeutic perspectives.

Objectives

This study aimed to analyze the association between OL-related genes and Alzheimer's disease (AD) using bioinformatics and verify this association molecular biology experiments.

Methods

The AD datasets were acquired from the Gene Expression Omnibus (GEO) database of NCBI. Consensus clustering was employed to determine the subtypes of AD, followed by evaluating the clinical characteristics of these subtypes. Subsequently, immune infiltration analysis of relevant genes and Weighted Gene Co-expression Network Analysis (WGCNA) were conducted to identify modules and hub genes associated with AD progression. The intersection of genes obtained was analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. To narrow down the scope and identify OL-related genes with diagnostic potential, three machine learning algorithms were utilized. In addition, the eXtreme Sum (XSum) algorithm was used to screen small molecule drug candidates based on the connectivity map (CMAP) database. Finally, these identified genes were validated using Real-time fluorescence quantitative PCR (RT-qPCR).

Results

Among the three subtypes of AD, Cluster A and Cluster C exhibited increased levels of Braak and neurofibrillary tangles compared to Cluster B. The proportion of females was greater than that of males among the three subclasses of AD. There were no significant differences in age among the three subclasses, but significant differences in gene expression existed. Through WGCNA analysis, 108 genes were identified. Among these, 16 genes were identified as shared genes by the least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machines (SVM) algorithms, and logistic regression further determined 11 genes. The establishment of a nomogram demonstrated the significance of these 11 genes in AD. The “XSum” algorithm revealed five drugs with therapeutic potential for AD. RT-qPCR analysis revealed the upregulation and downregulation of the highlighted genes. According to this study, 11 genes related to OL were also found to be associated with immune cell infiltration in AD patients. These genes demonstrated potential diagnostic value for AD. Additionally, we screened five small molecular drugs that exhibit potential therapeutic effects on AD.

Conclusion

This research provides a new perspective for personalized clinical management and treatment of AD.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273339310241205055554
2025-01-16
2025-12-13
Loading full text...

Full text loading...

References

  1. YaoY. LiuQ. DingS. ChenY. SongT. ShangY. Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis.Heliyon2024106e2716110.1016/j.heliyon.2024.e2716138533079
    [Google Scholar]
  2. NasrabadyS.E. RizviB. GoldmanJ.E. BrickmanA.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes.Acta Neuropathol. Commun.2018612210.1186/s40478‑018‑0515‑329499767
    [Google Scholar]
  3. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  4. BenitezA. FieremansE. JensenJ.H. FalangolaM.F. TabeshA. FerrisS.H. HelpernJ.A. White matter tract integrity metrics reflect the vulnerability of late-myelinating tracts in Alzheimer’s disease.Neuroimage Clin.20144647110.1016/j.nicl.2013.11.00124319654
    [Google Scholar]
  5. BowleyM.P. CabralH. RoseneD.L. PetersA. Age changes in myelinated nerve fibers of the cingulate bundle and corpus callosum in the rhesus monkey.J. Comp. Neurol.2010518153046306410.1002/cne.2237920533359
    [Google Scholar]
  6. YamazakiY. HozumiY. KanekoK. FujiiS. Modulatory effects of perineuronal oligodendrocytes on neuronal activity in the rat hippocampus.Neurochem. Res.2018431274010.1007/s11064‑017‑2278‑928444636
    [Google Scholar]
  7. RaffaeleS. BoccazziM. FumagalliM. Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: Mechanisms and therapeutic perspectives.Cells202110356510.3390/cells1003056533807572
    [Google Scholar]
  8. WangM. SongW. MingC. WangQ. ZhouX. XuP. KrekA. YoonY. HoL. OrrM.E. YuanG.C. ZhangB. Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer’s disease: Review, recommendation, implementation and application.Mol. Neurodegener.20221711710.1186/s13024‑022‑00517‑z35236372
    [Google Scholar]
  9. ReelP.S. ReelS. PearsonE. TruccoE. JeffersonE. Using machine learning approaches for multi-omics data analysis: A review.Biotechnol. Adv.20214910773910.1016/j.biotechadv.2021.10773933794304
    [Google Scholar]
  10. LardenoijeR. RoubroeksJ.A.Y. PishvaE. LeberM. WagnerH. IatrouA. SmithA.R. SmithR.G. EijssenL.M.T. KleineidamL. KawaliaA. HoffmannP. LuckT. Riedel-HellerS. JessenF. MaierW. WagnerM. HurlemannR. KenisG. AliM. del SolA. MastroeniD. DelvauxE. ColemanP.D. MillJ. RuttenB.P.F. LunnonK. RamirezA. van den HoveD.L.A. Alzheimer’s disease-associated (hydroxy)methylomic changes in the brain and blood.Clin. Epigenet201911116410.1186/s13148‑019‑0755‑531775875
    [Google Scholar]
  11. StopaE.G. TanisK.Q. MillerM.C. NikonovaE.V. PodtelezhnikovA.A. FinneyE.M. StoneD.J. CamargoL.M. ParkerL. VermaA. BairdA. DonahueJ.E. TorabiT. EliceiriB.P. SilverbergG.D. JohansonC.E. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: Implications for CSF homeostasis.Fluids Barriers CNS20181511810.1186/s12987‑018‑0102‑929848382
    [Google Scholar]
  12. BlalockE.M. GeddesJ.W. ChenK.C. PorterN.M. MarkesberyW.R. LandfieldP.W. Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses.Proc. Natl. Acad. Sci. USA200410172173217810.1073/pnas.030851210014769913
    [Google Scholar]
  13. NitscheA. ArnoldC. UeberhamU. ReicheK. FallmannJ. HackermüllerJ. HornF. StadlerP.F. ArendtT. Alzheimer-related genes show accelerated evolution.Mol. Psychiatry202126105790579610.1038/s41380‑020‑0680‑132203153
    [Google Scholar]
  14. WebsterJ.A. GibbsJ.R. ClarkeJ. RayM. ZhangW. HolmansP. RohrerK. ZhaoA. MarloweL. KaleemM. McCorquodaleD.S.III CuelloC. LeungD. BrydenL. NathP. ZismannV.L. JoshipuraK. HuentelmanM.J. Hu-LinceD. CoonK.D. CraigD.W. PearsonJ.V. HewardC.B. ReimanE.M. StephanD. HardyJ. MyersA.J. NACC-Neuropathology Group Genetic control of human brain transcript expression in Alzheimer disease.Am. J. Hum. Genet.200984444545810.1016/j.ajhg.2009.03.01119361613
    [Google Scholar]
  15. BlalockE.M. BuechelH.M. PopovicJ. GeddesJ.W. LandfieldP.W. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease.J. Chem. Neuroanat.201142211812610.1016/j.jchemneu.2011.06.00721756998
    [Google Scholar]
  16. MillerJ.A. WoltjerR.L. GoodenbourJ.M. HorvathS. GeschwindD.H. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease.Genome Med.2013554810.1186/gm45223705665
    [Google Scholar]
  17. NarayananM. HuynhJ.L. WangK. YangX. YooS. McElweeJ. ZhangB. ZhangC. LambJ.R. XieT. SuverC. MolonyC. MelquistS. JohnsonA.D. FanG. StoneD.J. SchadtE.E. CasacciaP. EmilssonV. ZhuJ. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases.Mol. Syst. Biol.201410774310.15252/msb.2014530425080494
    [Google Scholar]
  18. HokamaM. OkaS. LeonJ. NinomiyaT. HondaH. SasakiK. IwakiT. OharaT. SasakiT. LaFerlaF.M. KiyoharaY. NakabeppuY. Altered expression of diabetes-related genes in Alzheimer’s disease brains: The Hisayama study.Cereb. Cortex20142492476248810.1093/cercor/bht10123595620
    [Google Scholar]
  19. AntonellA LladóA AltirribaJ Botta-OrfilaT BalasaM FernándezM FerrerI Sánchez-ValleR MolinuevoJ L. A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's diseaseNeurobiol Aging201334717721778
    [Google Scholar]
  20. LiuS. WangZ. ZhuR. WangF. ChengY. LiuY. Three differential expression analysis methods for RNA sequencing: Limma, EdgeR, DESeq2.J. Vis. Exp.202117510.3791/62528‑v34605806
    [Google Scholar]
  21. SongT. ChenY. LiC. YaoY. MaS. ShangY. ChengJ. Identification of molecular correlations of GSDMD with pyroptosis in Alzheimer’s disease.Comb. Chem. High Throughput Screen.202427142125213910.2174/011386207328549724022606193639099451
    [Google Scholar]
  22. UrbaniakM.D. GutherM.L.S. FergusonM.A.J. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages.PLoS One201275e3661910.1371/journal.pone.003661922574199
    [Google Scholar]
  23. ZouD. LiR. HuangX. ChenG. LiuY. MengY. WangY. WuY. MaoY. Identification of molecular correlations of RBM8A with autophagy in Alzheimer’s disease.Aging (Albany NY)20191123116731168510.18632/aging.10257131816601
    [Google Scholar]
  24. ZhaoW. LangfelderP. FullerT. DongJ. LiA. HovarthS. Weighted gene coexpression network analysis: State of the art.J. Biopharm. Stat.201020228130010.1080/1054340090357275320309759
    [Google Scholar]
  25. JiaA. XuL. WangY. Venn diagrams in bioinformatics.Brief. Bioinform.2021225bbab10810.1093/bib/bbab10833839742
    [Google Scholar]
  26. LianP. CaiX. WangC. LiuK. YangX. WuY. ZhangZ. MaZ. CaoX. XuY. Identification of metabolism-related subtypes and feature genes in Alzheimer’s disease.J. Transl. Med.202321162810.1186/s12967‑023‑04324‑y37715200
    [Google Scholar]
  27. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation (Camb.)20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  28. HollanderM. DoT. WillT. HelmsV. Detecting rewiring events in protein-protein interaction networks based on transcriptomic data.Front. Bioinform.2021172429710.3389/fbinf.2021.72429736303788
    [Google Scholar]
  29. ManteroA. IshwaranH. Unsupervised random forests.Stat. Anal. Data Min.202114214416710.1002/sam.1149833833846
    [Google Scholar]
  30. Bravo AlvarezL. Montejo-SánchezS. Rodríguez-LópezL. Azurdia-MezaC. SaavedraG. A review of hybrid VLC/RF networks: Features, applications, and future directions.Sensors (Basel)20232317754510.3390/s2317754537688001
    [Google Scholar]
  31. LiuZ. LiH. PanS. Discovery and validation of key biomarkers based on immune infiltrates in Alzheimer’s disease.Front. Genet.20211265832310.3389/fgene.2021.65832334276768
    [Google Scholar]
  32. HeS. DouL. LiX. ZhangY. Review of bioinformatics in Azheimer’s disease research.Comput. Biol. Med.202214310526910.1016/j.compbiomed.2022.10526935158118
    [Google Scholar]
  33. ByvatovE. SchneiderG. Support vector machine applications in bioinformatics.Appl. Bioinformatics200322677715130823
    [Google Scholar]
  34. ParkS.Y. Nomogram: An analogue tool to deliver digital knowledge.J. Thorac. Cardiovasc. Surg.20181554179310.1016/j.jtcvs.2017.12.10729370910
    [Google Scholar]
  35. VickersA.J. HollandF. Decision curve analysis to evaluate the clinical benefit of prediction models.Spine J.202121101643164810.1016/j.spinee.2021.02.02433676020
    [Google Scholar]
  36. ZhuangX. ZhangG. BaoM. JiangG. WangH. LiS. WangZ. SunX. Development of a novel immune infiltration-related diagnostic model for Alzheimer’s disease using bioinformatic strategies.Front. Immunol.202314114750110.3389/fimmu.2023.114750137545529
    [Google Scholar]
  37. GuZ. Complex heatmap visualization.iMeta202213e4310.1002/imt2.4338868715
    [Google Scholar]
  38. HazraA. GogtayN. Biostatistics series module 1: Basics of biostatistics.Indian J. Dermatol.2016611102010.4103/0019‑5154.17398826955089
    [Google Scholar]
  39. XuP. WuZ. PengY. GaoJ. ZhengF. TanJ. XuJ. WangT. Neuroprotection of triptolide against Amyloid-Beta1-42-induced toxicity via the Akt/mTOR/p70S6K-mediated autophagy pathway.An Acad Bras Cienc.2022942e2021093810.1590/0001‑376520222021093835946645
    [Google Scholar]
  40. ChenY. LiC. YaoY. ShangY. Identifying the role of oligodendrocyte genes in the diagnosis of Alzheimer’s disease through machine learning and bioinformatics analysis.Curr. Alzheimer Res.20242210.2174/011567205033877724102807195539506420
    [Google Scholar]
  41. ShangY-Z. LiuQ-Q. DingS-K. ZhangH. The molecular mechanism of Scutellaria baicalensis georgi stems and leaves flavonoids in promoting neurogenesis and improving memory impairment by the PI3K-AKT-CREB signaling pathway in rats.Comb. Chem. High Throughput Screen.202225591993310.2174/138620732466621050615232033966617
    [Google Scholar]
  42. NdayisabaA. KaindlstorferC. WenningG.K. Iron in neurodegeneration – cause or consequence?Front. Neurosci.20191318010.3389/fnins.2019.0018030881284
    [Google Scholar]
  43. WangR. ReddyP.H. Role of glutamate and NMDA receptors in Alzheimer’s disease.J. Alzheimers Dis.20175741041104810.3233/JAD‑16076327662322
    [Google Scholar]
  44. YinF. SanchetiH. PatilI. CadenasE. Energy metabolism and inflammation in brain aging and Alzheimer’s disease.Free Radic. Biol. Med.201610010812210.1016/j.freeradbiomed.2016.04.20027154981
    [Google Scholar]
  45. HansenD.V. HansonJ.E. ShengM. Microglia in Alzheimer’s disease.J. Cell Biol.2018217245947210.1083/jcb.20170906929196460
    [Google Scholar]
  46. CarterS.F. HerholzK. Rosa-NetoP. PellerinL. NordbergA. ZimmerE.R. Astrocyte biomarkers in Alzheimer’s disease.Trends Mol. Med.2019252779510.1016/j.molmed.2018.11.00630611668
    [Google Scholar]
  47. GuL. WuD. TangX. QiX. LiX. BaiF. ChenX. RenQ. ZhangZ. Myelin changes at the early stage of 5XFAD mice.Brain Res. Bull.201813728529310.1016/j.brainresbull.2017.12.01329288735
    [Google Scholar]
  48. KuhnS. GrittiL. CrooksD. DombrowskiY. Oligodendrocytes in development, myelin generation and beyond.Cells2019811142410.3390/cells811142431726662
    [Google Scholar]
  49. ButtA.M. De La RochaI.C. RiveraA. Oligodendroglial cells in Alzheimer’s disease.Adv. Exp. Med. Biol.2019117532533310.1007/978‑981‑13‑9913‑8_1231583593
    [Google Scholar]
  50. TepavčevićV. LubetzkiC. Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: The more, the merrier?Brain2022145124178419210.1093/brain/awac30736093726
    [Google Scholar]
  51. AkwiiR.G. SajibM.S. ZahraF.T. MikelisC.M. Role of angiopoietin-2 in vascular physiology and pathophysiology.Cells20198547110.3390/cells805047131108880
    [Google Scholar]
  52. LeeE. O’KeefeS. LeongA. ParkH.R. VaradarajanJ. ChowdhuryS. HinerS. KimS. ShivaA. FriedmanR.A. RemottiH. FojoT. YangH.W. ThurstonG. KimM. Angiopoietin-2 blockade suppresses growth of liver metastases from pancreatic neuroendocrine tumors by promoting T cell recruitment.J. Clin. Invest.202313320e16799410.1172/JCI16799437843277
    [Google Scholar]
  53. GaoL. ZhangY. SterlingK. SongW. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential.Transl. Neurodegener.2022111410.1186/s40035‑022‑00279‑035090576
    [Google Scholar]
  54. Colucci-D’AmatoL. SperanzaL. VolpicelliF. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer.Int. J. Mol. Sci.20202120777710.3390/ijms2120777733096634
    [Google Scholar]
  55. NumakawaT. SuzukiS. KumamaruE. AdachiN. RichardsM. KunugiH. BDNF function and intracellular signaling in neurons.Histol. Histopathol.201025223725810.14670/hh‑25.23720017110
    [Google Scholar]
  56. LimãosE.A. BorgesD.R. Souza-PintoJ.C. GordonA.H. PradoJ.L. Acute turpentine inflammation and kinin release in rat-paw thermic oedema.Br. J. Exp. Pathol.19816265915946173056
    [Google Scholar]
  57. DattaD. YangS. JoyceM.K.P. WooE. McCarrollS.A. Gonzalez-BurgosG. PeroneI. UchenduS. LingE. GoldmanM. BerrettaS. MurrayJ. MorozovY. ArellanoJ. DuqueA. RakicP. O’DellR. van DyckC.H. LewisD.A. WangM. KrienenF.M. ArnstenA.F.T. Key roles of CACNA1C /Cav1.2 and CALB1/Calbindin in prefrontal neurons altered in cognitive disorders.JAMA Psychiatry202481987088110.1001/jamapsychiatry.2024.111238776078
    [Google Scholar]
  58. CastrogiovanniP. SanfilippoC. ImbesiR. MaugeriG. Lo FurnoD. TibulloD. CastorinaA. MusumeciG. Di RosaM. Brain CHID1 expression correlates with NRGN and CALB1 in healthy subjects and AD patients.Cells202110488210.3390/cells1004088233924468
    [Google Scholar]
  59. KookS-Y. JeongH. KangM.J. ParkR. ShinH.J. HanS-H. SonS.M. SongH. BaikS.H. MoonM. YiE.C. HwangD. Mook-JungI. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer’s disease mouse model.Cell Death Differ.201421101575158710.1038/cdd.2014.6724853300
    [Google Scholar]
  60. EachusH. RyuS. PlaczekM. WoodJ. Zebrafish as a model to investigate the CRH axis and interactions with DISC1.Curr. Opin. Endocr. Metab. Res.20222610038310.1016/j.coemr.2022.10038336632608
    [Google Scholar]
  61. ChrousosG.P. ZoumakisE. Milestones in CRH research.Curr. Mol. Pharmacol.201710425926310.2174/187446721066617010916521928071586
    [Google Scholar]
  62. GrammatopoulosD.K. OurailidouS. CRH receptor signalling: Potential roles in pathophysiology.Curr. Mol. Pharmacol.201710429631010.2174/187446721066617011012574728103786
    [Google Scholar]
  63. LiM. RansohoffR. Multiple roles of chemokine CXCL12 in the central nervous system: A migration from immunology to neurobiology.Prog. Neurobiol.200884211613110.1016/j.pneurobio.2007.11.00318177992
    [Google Scholar]
  64. WangR. LiH. A focus on CXCR4 in Alzheimer’s disease.Brain Circ.20173419920310.4103/bc.bc_13_1730276325
    [Google Scholar]
  65. WangQ.L. FangC.L. HuangX.Y. XueL.L. Research progress of the CXCR4 mechanism in Alzheimer’s disease.Ibrain20228131410.1002/ibra.1202637786419
    [Google Scholar]
  66. CowanR. TrokterM. OleksyA. FedorovaM. SawmynadenK. WorzfeldT. OffermannsS. MatthewsD. CarrM.D. HallG. Nanobody inhibitors of Plexin-B1 identify allostery in plexin–semaphorin interactions and signaling.J. Biol. Chem.2023299610474010.1016/j.jbc.2023.10474037088134
    [Google Scholar]
  67. ChapovalS.P. VadaszZ. ChapovalA.I. ToubiE. Semaphorins 4A and 4D in chronic inflammatory diseases.Inflamm. Res.201766211111710.1007/s00011‑016‑0983‑527554682
    [Google Scholar]
  68. HeX. TreacyM.N. SimmonsD.M. IngrahamH.A. SwansonL.W. RosenfeldM.G. Expression of a large family of POU-domain regulatory genes in mammalian brain development.Nature19893406228354210.1038/340035a02739723
    [Google Scholar]
  69. McEvillyR.J. de DiazM.O. SchonemannM.D. HooshmandF. RosenfeldM.G. Transcriptional regulation of cortical neuron migration by POU domain factors.Science200229555591528153210.1126/science.106713211859196
    [Google Scholar]
  70. HosakaM. WatanabeT. Secretogranin III: A bridge between core hormone aggregates and the secretory granule membrane.Endocr. J.201057427528610.1507/endocrj.K10E‑03820203425
    [Google Scholar]
  71. LiW. WebsterK.A. LeBlancM.E. TianH. Secretogranin III: A diabetic retinopathy-selective angiogenic factor.Cell. Mol. Life Sci.201875463564710.1007/s00018‑017‑2635‑528856381
    [Google Scholar]
  72. Cunha-ReisD. Caulino-RochaA. VIP modulation of hippocampal synaptic plasticity: A role for vip receptors as therapeutic targets in cognitive decline and mesial temporal lobe epilepsy.Front. Cell. Neurosci.20201415310.3389/fncel.2020.0015332595454
    [Google Scholar]
  73. MorellM. Souza-MoreiraL. González-ReyE. VIP in neurological diseases: More than a neuropeptide.Endocr. Metab. Immune Disord. Drug Targets201212432333210.2174/18715301280383254923094829
    [Google Scholar]
  74. PassemardS. SokolowskaP. SchwendimannL. GressensP. VIP-induced neuroprotection of the developing brain.Curr. Pharm. Des.201117101036103910.2174/13816121179558940921524251
    [Google Scholar]
  75. MoodyT.W. HillJ.M. JensenR.T. VIP as a trophic factor in the CNS and cancer cells.Peptides200324116317710.1016/S0196‑9781(02)00290‑512576099
    [Google Scholar]
  76. Sánchez-HernándezD. SierraJ. Ortigão-FariasJ.R. GuerreroI. The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog.Development2012139203849385810.1242/dev.08002822951645
    [Google Scholar]
  77. HuY.A. ZhaoC.J. Research progress of Wif1 in development of nervous system.Zhejiang Da Xue Xue Bao Yi Xue Ban2010391939610.3785/j.issn.1008‑9292.2010.01.01620175243
    [Google Scholar]
  78. KerekesK. BányaiL. TrexlerM. PatthyL. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways.Growth Factors2019371-2295210.1080/08977194.2019.162638031210071
    [Google Scholar]
  79. SainiY. ChenJ. PatialS. The tristetraprolin family of RNA-binding proteins in cancer: Progress and future prospects.Cancers (Basel)2020126153910.3390/cancers1206153932545247
    [Google Scholar]
  80. MakitaS. TakatoriH. NakajimaH. Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins.Front. Immunol.20211271163310.3389/fimmu.2021.71163334276705
    [Google Scholar]
  81. ChenH.Y. DurmazY.T. LiY. SabetA.H. VajdiA. DenizeT. WaltonE. LaimonY.N. DoenchJ.G. MahadevanN.R. LosmanJ.A. BarbieD.A. TolstorukovM.Y. RudinC.M. SenT. SignorettiS. OserM.G. Regulation of neuroendocrine plasticity by the RNA-binding protein ZFP36L1.Nat. Commun.2022131499810.1038/s41467‑022‑31998‑736008402
    [Google Scholar]
  82. DasM. PetheP. Differential expression of retinoic acid alpha and beta receptors in neuronal progenitors generated from human embryonic stem cells in response to TTNPB (a retinoic acid mimetic).Differentiation2021121132410.1016/j.diff.2021.08.00134419635
    [Google Scholar]
  83. SuttonS.S. MagagnoliJ. CummingsT. HardinJ.W. Association between thiopurine medication exposure and Alzheimer’s disease among a cohort of patients with inflammatory bowel disease.Alzheimers Dement. (N. Y.)20195180981310.1016/j.trci.2019.10.00231788536
    [Google Scholar]
  84. RenL. ZhangS. ShiJ. WangX. QinW. LiuZ. ShiS. Distinct effects of ANGPT2 on gene expression of glomerular podocytes and mesangial cells.Am. J. Transl. Res.20211311122491226334956451
    [Google Scholar]
  85. SalminenA. KaarnirantaK. KauppinenA. The potential importance of myeloid-derived suppressor cells (MDSCs) in the pathogenesis of Alzheimer’s disease.Cell. Mol. Life Sci.201875173099312010.1007/s00018‑018‑2844‑629779041
    [Google Scholar]
  86. Dionisio-SantosD.A. OlschowkaJ.A. O’BanionM.K. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease.J. Neuroinflammat20191617410.1186/s12974‑019‑1453‑030953557
    [Google Scholar]
  87. XuX. LiT. TangJ. WangD. ZhouY. GouH. LiL. XuY. CXCR4-mediated neutrophil dynamics in periodontitis.Cell. Signal.202412011121210.1016/j.cellsig.2024.11121238719020
    [Google Scholar]
  88. YaoJ. WangL. Integrin α3 mediates stemness and invasion of glioblastoma by regulating POU3F2.Curr. Protein Pept. Sci.202324324725610.2174/138920372466623022411545936843258
    [Google Scholar]
  89. WangX. TianY. LiC. ChenM. Exploring the key ferroptosis-related gene in the peripheral blood of patients with Alzheimer’s disease and its clinical significance.Front. Aging Neurosci.20221497079610.3389/fnagi.2022.97079636118694
    [Google Scholar]
  90. DongX. ZhanY. YangM. LiS. ZhengH. GaoY. miR-30c affects the pathogenesis of ulcerative colitis by regulating target gene VIP.Sci. Rep.2024141347210.1038/s41598‑024‑54092‑y38342939
    [Google Scholar]
  91. JoshiR. BrezaniV. MeyG.M. Guixé-MuntetS. Ortega-RiberaM. ZhuangY. ZivnyA. WerneburgS. Gracia-SanchoJ. SzaboG. IRF3 regulates neuroinflammatory responses and the expression of genes associated with Alzheimer’s disease.J. Neuroinflammat202421121210.1186/s12974‑024‑03203‑739215356
    [Google Scholar]
  92. QiS. ZhangY. KongL. BiD. KongH. ZhangS. ZhaoC. SPI1-mediated macrophage polarization aggravates age-related macular degeneration.Front. Immunol.202415142101210.3389/fimmu.2024.142101238979414
    [Google Scholar]
  93. JordaA. CauliO. SantonjaJ.M. AldasoroM. AldasoroC. ObradorE. VilaJ.M. MauricioM.D. IradiA. Guerra-OjedaS. MarchioP. VallesS.L. Changes in chemokines and chemokine receptors expression in a mouse model of Alzheimer’s disease.Int. J. Biol. Sci.201915245346310.7150/ijbs.2670330745834
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273339310241205055554
Loading
/content/journals/cnsnddt/10.2174/0118715273339310241205055554
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test