Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Central Nervous System Agents) - Volume 13, Issue 1, 2013
Volume 13, Issue 1, 2013
-
-
Prophylaxis with Bacopa monnieri Attenuates Acrylamide Induced Neurotoxicity and Oxidative Damage via Elevated Antioxidant Function
Acrylamide (ACR) is a water-soluble, vinyl monomer that has multiple chemical and industrial applications. Exposure to ACR causes neuropathy and associated neurological defects including gait abnormalities and skeletal muscle weakness, due to impaired neurotransmitter release and eventual neurodegeneration. Using in vivo and in vitro models, we examined whether oxidative events are involved in ACR-mediated neurotoxicity and whether these could be prevented by natural plant extracts. Administration (i.p.) of ACR in mice (40 mg/kg bw/ d for 5d) induced significant oxidative damage in the brain cortex and liver as evidenced by elevated lipid peroxidation, reactive oxygen species and protein carbonyls. This was associated with lowered antioxidant activities including antioxidant enzymes (catalase, glutathione-s-transferase) and reduced glutathione (GSH) compared to untreated controls. Similarly, exposure of N27 neuronal cells in culture to ACR (1-5 mM) caused dose-dependent neuronal death and lowered GSH. Interestingly, dietary supplementation with the leaf powder of Bacopa monnieri (BM) (which possesses neuroprotective properties and nootropic activity) in mice for 30 days offered significant protection against ACR toxicity and oxidative damage in vivo. Similarly, pretreatment with BM protected the N27 cells against ACR-induced cell death and associated oxidative damage. Co-treatment and pre-treatment of Drosophila melanogaster with BM extract protected against ACR-induced locomotor dysfunction and GSH depletion. We infer that BM displays prophylactic effects against ACR induced oxidative damage and neurotoxicity with potential therapeutic application in human pathology associated with neuropathy.
-
-
-
Beneficial Effects of Herbs, Spices and Medicinal Plants on the Metabolic Syndrome, Brain and Cognitive Function
More LessHerbs and spices have been used since ancient times to not only improve the flavor of edible food but also to prevent and treat chronic health maladies. While the scientific evidence for the use of such common herbs and medicinal plants then had been scarce or lacking, the beneficial effects observed from such use were generally encouraging. It is, therefore, not surprising that the tradition of using such herbs, perhaps even after the advent of modern medicine, has continued. More recently, due to an increased interest in understanding the nutritional effects of herbs/spices more comprehensively, several studies have examined the cellular and molecular modes of action of the active chemical components in herbs and their biological properties. Beneficial actions of herbs/spices include anti-inflammatory, antioxidant, anti-hypertensive, gluco-regulatory, and anti-thrombotic effects. One major component of herbs and spices is the polyphenols. Some of the aforementioned properties are attributed to the polyphenols and they are associated with attenuating the metabolic syndrome. Detrimental changes associated with the metabolic syndrome over time affect brain and cognitive function. Metabolic syndrome and type-2 diabetes are also risk factors for Alzheimer's disease and stroke. In addition, the neuroprotective effects of herbs and spices have been demonstrated and, whether directly or indirectly, such beneficial effects may also contribute to an improvement in cognitive function. This review evaluates the current evidence available for herbs/spices in potentially improving the metabolic syndrome, as well as their neuroprotective effects on the brain, and cognitive function in animal and human studies.
-
-
-
Neuroprotective Actions of Flavones and Flavonols: Mechanisms and Relationship to Flavonoid Structural Features
Epidemiological studies have shown positive preventive action of flavonoids on cardiovascular and neurodegenerative events. Among the six groups in which flavonoids are classified, the flavones and flavonols, based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one) are the most commonly encountered within the families and genera of the higher plants. Numerous studies support a neuroprotective activity of flavones such as luteolin and flavonols such as kaempherol and quercetin in experimental focal ischemia and models of neurodegeneration. Antioxidation, modulation of signaling cascades and gene expression as well as anti-inflammation appear as the main protective mechanisms and mitochondria are a likely main target mediating the preventive actions against oxidative stress. Flavones and flavonols re-establish the redox regulation of proteins, transcription factors and signaling cascades that are otherwise inhibited by elevated oxidative stress. The final survival or death of the neuron depends on flavone and flavonol concentrations, time of exposure and, mainly, metabolic and oxidative neuronal circumstances. Neuroprotection appears to be linked to specific structural motifs, beyond those involved in antioxidation. By themselves or as templates for synthetic compounds, flavone and flavonol molecules show potential as multi-targeted therapeutic tools for protecting the brain. Nonetheless, more research needs to be done on the correlation of potential beneficial effects of flavones and flavonols and their mechanisms of action.
-
-
-
Changes in Gene Expression in the Rat Hippocampus Following Exposure to 56Fe Particles and Protection by Berry Diets
Exposing young rats to particles of high energy and charge, such as 56Fe, enhances indices of oxidative stress and inflammation and disrupts behavior, including spatial learning and memory. In the present study, we examined whether gene expression in the hippocampus, an area of the brain important in memory, is affected by exposure to 1.5 Gy or 2.5 Gy of 1 GeV/n high-energy 56Fe particles 36 hours after irradiation. We also determined if 8 weeks of pre-feeding with 2% blueberry or 2% strawberry antioxidant diets could ameliorate irradiation-induced changes in gene expression. Alterations in gene expression profile were analyzed by pathway-focused microarrays for inflammatory cytokines and genes involved in nuclear factor-kappa B (NF-κB) signal transduction pathways. We found that genes that are directly or indirectly involved in the regulation of growth and differentiation of neurons were changed following irradiation. Genes that regulate apoptosis were up-regulated whereas genes that modulate cellular proliferation were down-regulated. The brains of animals supplemented with berry diets demonstrated an up-regulation of some protective stress signal genes. Therefore, these data suggest that 56Fe particle irradiation causes changes in gene expression in rats that are ameliorated by berry fruit diets.
-
-
-
Effect of Withania somnifera Supplementation on Rotenone-Induced Oxidative Damage in Cerebellum and Striatum of the Male Mice Brain
Authors: Mallaya Jayawanth Manjunath and MuralidharaWithania somnifera (WS) an ayurvedic medicinal herb is widely known for its memory enhancing ability and improvement of brain function. In the present study, we tested the hypothesis that WS prophylaxis could offset neurotoxicant-induced oxidative dysfunctions in developing brain employing a rotenone (ROT) mouse model. Initially, we assessed the potential of WS oral supplements (100-400 mg/ kg b.w/ d, 4wks) to modulate the endogenous levels of oxidative markers in cerebellum (cb) and striatum (st) of prepubertal (PP) mice. Further, we assessed the induction of oxidative stress in cb and st of mice administered with ROT (i.p. 0.5 and 1mg/ kg b.w, 7d). ROT caused significant elevation in the levels of reactive oxygen species (ROS), malondialdehyde (MDA), hydroperoxides (HP) and nitric oxide (NO) levels in both brain regions. Further ROT caused significant perturbations in the levels of reduced glutathione (GSH), activity levels of antioxidant enzymes, acetylcholinesterase and mitochondrial dysfunctions suggesting a state of oxidative stress. In a satellite study, we examined the protective effects of WS root powder (400mg/ kg b.w/ d, 4wks) in PP mice challenged with ROT (0.5 mg/ kg b.w/ d, 7 d). WS prophylaxis significantly offset ROT-induced oxidative damage in st and cb as evident by the normalized levels of oxidative markers (MDA, ROS levels and HP) and restoration of depleted GSH levels. Further, WS effectively normalized the NO levels in both brain regions suggesting its antiinflammatory action. Furthermore, WS prophylaxis restored the activity levels of cytosolic antioxidant enzymes, neurotransmitter function and dopamine levels in st. Taken together, these findings suggest that WS prophylaxis has the propensity to modulate neurotoxicant-mediated oxidative impairments and mitochondrial dysfunctions in specific brain regions of mice. While the exact mechanism/s underlying the neuroprotective effects of WS merit further investigation, based on our findings, we hypothesize that it may be wholly or in part due to its ability to enhance GSH, thiols and antioxidant defences in the brain of mice.
-
-
-
Encephalopathy: A Vicious Cascade Following Forebrain Ischemia and Hypoxia
By Baowan LinPost ischemic/hypoxic encephalopathy is a progressive and widespread damage syndrome in human brain, which includes production of new ischemic foci as well as neurodegeneration associated with accumulation of amyloid protein (Aβ), which emerges within days after the primary ischemic or hypoxic ictus. Patients may suddenly suffer severe dementia and Parkinson's syndrome after a symptom-free period averaging 2 weeks following resuscitation. Death of neurons in the cortex, limbic system, globus pallidus (GP) and substantia nigra (SN) and damage to white matter are responsible. From experimental studies in animals evidence is obtained to reveal the mechanisms. Injured endothelia and activated platelets lead to secondary injury via thrombosis and vasoconstriction resulting in infarction and new foci of necrosis. Blood-brain barrier (BBB) breakdown allows penetration of blood-borne toxic substances into brain resulting in neuronal degeneration and enhanced inflammatory destruction. These secondary injuries happen within two weeks after moderate global ischemia. As these pathological changes cycle between the vascular and neuronal compartments, the damage expands and worsens. Aβ, β amyloid precursor protein (βAPP) and the inflammation mediator cyclooxygenase-2 (COX2) as well as γ-aminobutyric acid (GABA) system degeneration participate in producing secondary injury. Thus, implementing multi-targeted prophylaxis before or at the brain-at-risk stage is desirable. A combination of protecting endothelia, inhibiting platelet activity and improving cerebral circulation is a fundamental strategy to block this vicious cascade, thereby ameliorating or preventing the encephalopathy.
-
-
-
Acetylcholinesterase Inhibitors from QSAR Point of View: How Close are We?
Authors: Anuradha Sharma and Poonam PiplaniIn view of the large libraries of acetylcholinesterase inhibitors (AChEIs) that are now being handled in organic synthesis, the identification of drug biological activity is advisable prior to synthesis and this can be achieved by employing predictive biological property methods. In this sense, Quantitative Structure–Activity Relationships (QSAR) or docking approaches have emerged as promising tools. The intention of this review is to summarize the present knowledge concerning computational predictions of AChEIs and AChE.
-
-
-
Brain Molecules and Appetite: The Case of Oleoylethanolamide
The neurobiological mechanisms of feeding involve the activity of several brain areas as well as the engagement of endogenous compounds such as ghrelin, melanin-concentrating hormone, orexin, neuropeptide Y, leptin, vasoactive intestinal peptide, cholecystokinin, among others. Furthermore, the family of food-intake modulators has been enlarged due to the inclusion of lipids such as N-arachidonoylethanolamide (anandamide), as well as oleoylethanolamide (OEA). In this regard, the food-intake suppressing properties of OEA have been described since pharmacological administration of this compound induces anorexia. It has been suggested that satiety induced by OEA may be through the activation of peroxisome proliferator-activated receptor-α (PPAR-α), a ligand-activated transcription factor that modulates several pathways of lipid metabolism. The mechanism of action of OEA remains unknown, it has been suggested that the ingestion of dietary fat stimulates epithelial cells of the small intestine and promotes the synthesis and release of OEA. Upon its release, this lipid acts within the gut engaging sensory fibers of the vagus nerve to diminish food-intake. Here, recent advances in our understanding of the neurobiological role of OEA in modulation of feeding will be reviewed. Also, we highlight the emerging molecular mechanism of anorexia induced by OEA.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
