Central Nervous System Agents in Medicinal Chemistry - Volume 12, Issue 2, 2012
Volume 12, Issue 2, 2012
- 
- 
The Ubiquitous Choline Transporter SLC44A1
More LessAuthors: Vera Michel and Marica BakovicCholine is a zwitter ion that is positively charged at certain pH, which necessitates transport systems to allow this amine to cross the phospholipid bilayer of cellular membranes. The solute carrier 44A1 (SLC44A1), also referred to as choline transporter-like protein 1 (CTL1), is a recently discovered choline transporter with an intermediate affinity for choline; this transport is Na+-independent and sensitive to inhibition by the drug hemicholinium-3. We highlight in this review the discovery and characterization of SLC44A1, describe its expression patterns and subcellular localization, and summarize evidence for the role of this choline transporter in the central nervous system.
 
 - 
 
- 
- 
Choline Nutrition Programs Brain Development Via DNA and Histone Methylation
More LessAuthors: Jan Krzysztof Blusztajn and Tiffany J. MellottCholine is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation – two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and genespecific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption. It will be important to determine if these actions of choline on human cognition are mediated by epigenomic mechanisms or by its influence on acetylcholine or phospholipid synthesis.
 
 - 
 
- 
- 
The Blood-Brain Barrier Choline Transporter
More LessAuthors: Werner J. Geldenhuys and David D. AllenDrug delivery to the brain is made difficult by the blood-brain barrier (BBB) which is selectively permeable to organic drug compounds. Several membrane solute and nutrient transporters are expressed in the BBB vasculature, which may be utilized as mechanism of delivery of drugs to the brain. Of interest to us, are the organic cation transporters which could be used to transport cationic compounds into the CNS. In this mini-review, we will review the current understanding of the structural requirements for designing compounds which could effectively use organic cation transporters (OCT). For the first time, structural requirements for both OCT1 and OCT2 versus the BBB choline transporter (BBBCHT) are discussed and compared. The information gained here could increase the success rate in successful CNS drug delivery and therapeutics.
 
 - 
 
- 
- 
An Introduction to the Nutrition and Metabolism of Choline
More LessCholine is a ubiquitous water soluble nutrient, often associated with the B vitamins; however, not yet officially defined as a B vitamin. It is important in the synthesis of phospholipid components of cell membranes, and plasma lipoproteins, providing structural integrity as well as being important in cell signaling; it is also important in the synthesis of the neurotransmitter acetylcholine, and the oxidized form of choline, glycine betaine, serves as an important methyl donor in the methionine cycle. It is present in a wide variety of foods, and is endogenously synthesized in humans through the sequential methylation of phosphatidylethanolamine. The present article represents an introduction to the nutrition, metabolism, and physiological functions of choline and choline derivatives in humans. The association of choline and choline derivatives in risk of chronic disease, including: neural tube defects, coronary artery disease, cancer, Alzheimer’s disease, dementia, and memory, and cystic fibrosis is reviewed.
 
 - 
 
- 
- 
Choline Transporter CHT Regulation and Function in Cholinergic Neurons
More LessAuthors: Stefanie A.G. Black and R. Jane RylettCholine uptake into cholinergic nerve terminals by the sodium-dependent high-affinity choline transporter CHT is essential for providing choline as substrate for synthesis of acetylcholine (ACh); ACh is used by cholinergic neurons to communicate information to a wide range of tissues in central and peripheral nervous systems. CHT is expressed almost exclusively in cholinergic neurons, and is subject to transcriptional and post-translational control by factors that promote or diminish cholinergic neurotransmission. The distribution of CHT proteins within cholinergic presynaptic terminals is dynamically regulated. Thus, choline uptake activity is determined largely by the plasma membrane CHT level, and this is finely controlled by a balance between internalization and recycling of CHT proteins in endosomal compartments. CHT proteins are also in synaptic vesicle membranes, thereby allowing cell surface CHT levels to increase rapidly in conjunction with exocytotic transmitter release to provide enhanced choline for ACh re-synthesis. Little is known about post-translational modification of CHT, although data is emerging that CHT activity and subcellular trafficking is modulated by kinase-mediated phosphorylation. Recent studies have also identified proteins with which CHT interacts, but this requires further investigation to reveal the role of other proteins in regulating CHT function and activity. Polymorphisms in CHT protein and modifications in its expression are linked to neurological and psychiatric disorders, and can alter function of peripheral systems that are regulated by cholinergic innervation, such as the cardiovascular system. The critical role of CHT in maintaining cholinergic transmission indicates that it could be a target for therapeutic intervention to promote ACh synthesis, but mechanisms by which this can be accomplished have not been adequately addressed.
 
 - 
 
- 
- 
Stability, Disposition, and Penetration of Catalytic Antioxidants Mn-Porphyrin and Mn-Salen and of Methylprednisolone in Spinal Cord Injury
More LessAuthors: Liqin Wu, Yichu Shan and Danxia LiuThis study measured the time courses of concentration changes following administration of the catalytic antioxidants Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) and Mn (III) 3-methoxy N, N' bis (salicyclidene) ethylenediamine chloride (EUK-134) in blood and cerebrospinal fluid (CSF) of rats with a spinal cord injury (SCI) and sham controls. Parallel measurements were made for methylprednisolone, the only drug presently used clinically for treating SCI. The time courses kinetically characterized the agents in their stability, disposition, and ability to penetrate the blood–spinal cord barrier (BSB). In both the SCI and control groups, MnTBAP was stable in CSF and in blood across the collection periods (10 h and 24 h, respectively) following administration. In the blood, [EUK-134] and [methylprednisolone] rapidly declined to near basal concentrations at 4 h and 2 h, respectively, post-administration. Therefore the order of stability in CSF and blood was MnTBAP >> EUK-134 > methylprednisolone. The maximum CSF/blood concentration ratios for EUK-134, methylprednisolone and MnTBAP post-administration were: 32 ± 3.1%, 19.2 ± 6.4%, and 4.42 ± 0.73% in the injured rats, and 22 ± 6.5%, 17.8 ± 2.9%, and 1.0 ± 0.5% in the sham control animals. This suggests an order of BSB penetration of EUK-134 > methylprednisolone >> MnTBAP. Despite much lower penetration by MnTBAP compared with EUK-134 and methylprednisolone, a lower dose of MnTBAP because of its stability provided a higher concentration in CSF than did the other agents given at higher doses. This finding supports further exploration of MnTBAP as a potential treatment for SCI.
 
 - 
 
- 
- 
Mitochondrial Targeting for Development of Novel Drug Strategies in Brain Injury
More LessAuthors: Jean F. Soustiel and Menashe ZaaroorFor years, therapeutic approach to brain injury has been mostly physiological in essence, either based on revascularization of ischemic tissue in stroke or decompression of the swollen brain in neurotrauma. Despite tremendous efforts for the development of new strategies, translational research targeting specific cellular pathophysiological processes triggered by the injury has provided deceiving results. During the past decade, disruption of mitochondrial function and structural integrity has emerged as a pivotal event in the generation of cell damage. Following the injury, a vast array of deleterious signals are generated and integrated at the mitochondrial level resulting in impairment of three major mitochondrial functions: calcium homeostasis, free radicals generation and detoxification and energy production. Increasing understanding of the biochemical complexity of these events has led to the development of new therapeutic strategies targeting mitochondrial damage that has shown encouraging data in various models of injury. Importantly, translational efforts have been already initiated with promising preliminary data in several phase II clinical studies. In this review, we will briefly describe the process of mitochondrial damage and dysfunction following brain injury and discuss the various therapeutic strategies aiming at mitochondrial protection.
 
 - 
 
- 
- 
Nitrergic Response to Clostridium perfringens Infection in the Rat Brain Regions Effect of Red Light Irradiation
More LessA single intraperitoneal injection of a gram-positive pathogen Clostridium perfringens (Cp) causes a remarkable down-regulation the constitutive nitric oxide synthase (cNOS) with a simultaneous increase in the activity of inducible NOS (iNOS) and the level of reactive nitrogen species in the rat brain major regions (cortex, striatum, hippocampus and hypothalamus) at 48 h post-administration of Cp. Treatment by both a semiconductor laser (SCL) and/or a light-emitting diode (LED) with same wavelength, energy density and time exposure (continuous wave, λ=654 nm, fluence=1.27 J/cm2, time exposure=600 s) could modulate brain nitrergic response following Cp-infection. Besides, unlike the LED, the SCL-irradiation prevents the cNOS inhibition in all the studied brain regions and might be useful in restoring its function in neurotransmission and cerebral blood flow, along with providing a protective effect against nitrosative stress-induced iNOS-mediated injury in the brain regions.
 
 - 
 
Volumes & issues
- 
Volume 25 (2025)
 - 
Volume 24 (2024)
 - 
Volume 23 (2023)
 - 
Volume 22 (2022)
 - 
Volume 21 (2021)
 - 
Volume 20 (2020)
 - 
Volume 19 (2019)
 - 
Volume 18 (2018)
 - 
Volume 17 (2017)
 - 
Volume 16 (2016)
 - 
Volume 15 (2015)
 - 
Volume 14 (2014)
 - 
Volume 13 (2013)
 - 
Volume 12 (2012)
 - 
Volume 11 (2011)
 - 
Volume 10 (2010)
 - 
Volume 9 (2009)
 - 
Volume 8 (2008)
 - 
Volume 7 (2007)
 - 
Volume 6 (2006)
 
Most Read This Month