Skip to content
2000
image of Computational Design of Drugs for Epilepsy using a Novel Guided Evolutionary Algorithm for Enhanced Blood Brain Barrier Permeability

Abstract

Introduction

Epilepsy is a common disorder of the Central Nervous System (CNS). The rational design of small-molecule drugs for disorders of the CNS is a difficult process because the majority of small molecules are unable to cross the Blood-Brain-Barrier. An efficient method for the design of inhibitors that have high permeability through the Blood-Brain-Barrier has the potential for application in drug design for CNS disorders such as Addiction, Alzheimer’s disease, Bipolar disorder, Depression, Epilepsy, Gliomas, and Tuberculous meningitis.

Methods

Supervised learning was used to model the Blood-Brain-Barrier permeability of drugs like small organic molecules. This information was utilized to guide an evolutionary algorithm for the design of inhibitors with increased affinity for the target as well as higher Blood-Brain-Barrier permeability.

Results

The ligands designed with guided evolution were predicted to have higher binding affinity for the target as well as higher permeability across the Blood-Brain-Barrier compared to an evolutionary algorithm without the guidance. The guided evolutionary method was applied to design a set of drug-like ligands that were predicted to bind to GABA-T with high affinity, to be BBB permeable, and to be chemically synthesizable.

Discussion

Despite the availability of several drugs that are approved for the treatment of epilepsy, there are many cases that do not respond to available drugs or experience adverse effects. The novel ligands designed as part of this work have the potential to address the limitations of available drugs.

Conclusion

Guided evolution is an efficient computational approach for the design of CNS drugs. The design of drugs by application of the guided evolution algorithm, developed as part of this work, has resulted in the generation of ligands that are potential drugs for the cure of epilepsy. However, the effectiveness of these drugs for the cure of epilepsy has to be validated experimentally.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249385792250709073502
2025-07-14
2025-09-27
Loading full text...

Full text loading...

References

  1. Ciccone L. Cerri C. Nencetti S. Orlandini E. Carbonic anhydrase inhibitors and epilepsy: State of the art and future perspectives. Molecules 2021 26 21 6380 10.3390/molecules26216380 34770789
    [Google Scholar]
  2. Garcia-Rosa S. de Freitas Brenha B. da Rocha V.F. Goulart E. Silva Araujo B.H. Personalized medicine using cutting edge technologies for genetic epilepsies. Curr. Neuropharmacol. 2021 19 6 813 831 10.2174/1570159X18666200915151909 32933463
    [Google Scholar]
  3. Rogawski M.A. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. 2006 69 3 273 294 10.1016/j.eplepsyres.2006.02.004 16621450
    [Google Scholar]
  4. French J.A. Refractory epilepsy: Clinical overview. Epilepsia 2007 48 s1 3 7 (Suppl. 1) 10.1111/j.1528‑1167.2007.00992.x 17316406
    [Google Scholar]
  5. Tang F. Hartz A.M.S. Bauer B. Drug-resistant epilepsy: Multiple hypotheses, few answers. Front. Neurol. 2017 8 301 10.3389/fneur.2017.00301 28729850
    [Google Scholar]
  6. Song M. Zhao W. Zhu Y. Liu W. Deng X. Huang Y. Design, synthesis, and evaluation of anticonvulsant activities of new triazolopyrimidine derivatives. Front Chem. 2022 10 925281 10.3389/fchem.2022.925281 35815216
    [Google Scholar]
  7. Castellano D. Shepard R.D. Lu W. Looking for novelty in an “old” receptor: Recent advances toward our understanding of GABAARs and their implications in receptor pharmacology. Front. Neurosci. 2021 14 616298 10.3389/fnins.2020.616298 33519367
    [Google Scholar]
  8. Macdonald R.L. Kelly K.M. Antiepileptic drug mechanisms of action. Epilepsia 1993 34 s5 S1 S8 (Suppl. 5) 10.1111/j.1528‑1157.1993.tb05918.x 7687957
    [Google Scholar]
  9. Czuczwar S.J. Patsalos P.N. The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 2001 15 5 339 350 10.2165/00023210‑200115050‑00001 11475940
    [Google Scholar]
  10. Johannessen C.U. Johannessen S.I. Valproate: Past, present, and future. CNS Drug Rev. 2003 9 2 199 216 10.1111/j.1527‑3458.2003.tb00249.x 12847559
    [Google Scholar]
  11. Hawker D.D. Silverman R.B. Synthesis and evaluation of novel heteroaromatic substrates of GABA aminotransferase. Bioorg. Med. Chem. 2012 20 19 5763 5773 10.1016/j.bmc.2012.08.009 22944334
    [Google Scholar]
  12. Salman M.M. Al-Obaidi Z. Kitchen P. Loreto A. Bill R.M. Wade-Martins R. Advances in applying computer-aided drug design for neurodegenerative diseases. Int. J. Mol. Sci. 2021 22 9 4688 10.3390/ijms22094688 33925236
    [Google Scholar]
  13. Azad I. Khan T. Ahmad N. Khan A.R. Akhter Y. Updates on drug designing approach through computational strategies: A review. Future Sci. OA 2023 9 5 FSO862 10.2144/fsoa‑2022‑0085 37180609
    [Google Scholar]
  14. Talluri S. Novel computational methods for cancer drug design. Curr. Med. Chem. 2023 37016530
    [Google Scholar]
  15. Mohanasundaram N. Sekhar T. Computational studies of molecular targets regarding the adverse effects of isoniazid drug for tuberculosis. Curr. Pharmacogenomics Person. Med. 2019 16 3 210 218 10.2174/1875692116666181108145230
    [Google Scholar]
  16. Urbina F. Lowden C.T. Culberson J.C. Ekins S. MegaSyn: Integrating generative molecular design, automated analog designer, and synthetic viability prediction. ACS Omega 2022 7 22 18699 18713 10.1021/acsomega.2c01404 35694522
    [Google Scholar]
  17. Kosz, O.; St, P.; Zi, A.; Grudzi, A.; Matosiuk, D.; Kaczor, A.A. Current approaches and tools used in drug development against Parkinson’s disease. Biomolecules 2021 11 6 897 10.3390/biom11060897 34208760
    [Google Scholar]
  18. Neumaier F. Zlatopolskiy B.D. Neumaier B. Drug penetration into the central nervous system: Pharmacokinetic concepts and in vitro model systems. Pharmaceutics 2021 13 10 1542 10.3390/pharmaceutics13101542 34683835
    [Google Scholar]
  19. Meng F. Xi Y. Huang J. Ayers P.W. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Sci. Data 2021 8 1 289 10.1038/s41597‑021‑01069‑5 34716354
    [Google Scholar]
  20. Bagchi S. Chhibber T. Lahooti B. Verma A. Borse V. Jayant R.D. In-vitro blood-brain barrier models for drug screening and permeation studies: An overview. Drug Des. Devel. Ther. 2019 13 3591 3605 10.2147/DDDT.S218708 31695329
    [Google Scholar]
  21. Carpenter T.S. Kirshner D.A. Lau E.Y. Wong S.E. Nilmeier J.P. Lightstone F.C. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys. J. 2014 107 3 630 641 10.1016/j.bpj.2014.06.024 25099802
    [Google Scholar]
  22. Rishton G.M. LaBonte K. Williams A.J. Kassam K. Kolovanov E. Computational approaches to the prediction of blood-brain barrier permeability: A comparative analysis of central nervous system drugs versus secretase inhibitors for Alzheimer’s disease. Curr. Opin. Drug Discov. Devel. 2006 9 3 303 313 16729726
    [Google Scholar]
  23. Kim T. You B.H. Han S. Shin H.C. Chung K.C. Park H. Quantum artificial neural network approach to derive a highly predictive 3D-QSAR model for blood–brain barrier passage. Int. J. Mol. Sci. 2021 22 20 10995 10.3390/ijms222010995 34681653
    [Google Scholar]
  24. Hemmateenejad B. Miri R. Safarpour M.A. Mehdipour A.R. Accurate prediction of the blood–brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling. J. Comput. Chem. 2006 27 11 1125 1135 10.1002/jcc.20437 16721721
    [Google Scholar]
  25. Vilar S. Chakrabarti M. Costanzi S. Prediction of passive blood–brain partitioning: Straightforward and effective classification models based on in silico derived physicochemical descriptors. J. Mol. Graph. Model. 2010 28 8 899 903 10.1016/j.jmgm.2010.03.010 20427217
    [Google Scholar]
  26. Thai N.Q. Theodorakis P.E. Li M.S. Fast estimation of the blood–brain barrier permeability by pulling a ligand through a lipid membrane. J. Chem. Inf. Model. 2020 60 6 3057 3067 10.1021/acs.jcim.9b00834 32469527
    [Google Scholar]
  27. Radchenko E.V. Dyabina A.S. Palyulin V.A. Towards deep neural network models for the prediction of the blood–brain barrier permeability for diverse organic compounds. Molecules 2020 25 24 5901 10.3390/molecules25245901 33322142
    [Google Scholar]
  28. Shityakov S. Neuhaus W. Dandekar T. Förster C. Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. Int. J. Comput. Biol. Drug Des. 2013 6 1/2 146 156 10.1504/IJCBDD.2013.052195 23428480
    [Google Scholar]
  29. Zhang H. Hu S. Zhang Y. Prediction of distribution of neutral, acidic and basic structurally diverse compounds between blood and brain by the nonlinear methodology. Med. Chem. 2008 4 170 189 10.2174/157340608783789103
    [Google Scholar]
  30. Durrant J.D. Lindert S. McCammon J.A. AutoGrow 3.0: An improved algorithm for chemically tractable, semi-automated protein inhibitor design. J. Mol. Graph. Model. 2013 44 104 112 10.1016/j.jmgm.2013.05.006 23792207
    [Google Scholar]
  31. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  32. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  33. Jones G. Willett P. Glen R.C. Leach A.R. Taylor R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997 267 3 727 748 10.1006/jmbi.1996.0897 9126849
    [Google Scholar]
  34. Holmes S.G. Desai U.R. Assessing genetic algorithm-based docking protocols for prediction of heparin oligosaccharide binding geometries onto proteins. Biomolecules 2023 13 11 1633 10.3390/biom13111633 38002315
    [Google Scholar]
  35. Guan B. Zhang C. Ning J. EDGA: A population evolution direction-guided genetic algorithm for protein–ligand docking. J. Comput. Biol. 2016 23 7 585 596 10.1089/cmb.2015.0190 26895461
    [Google Scholar]
  36. Talluri S. Computational design of bacteriocins based on structural scaffold of Aureocin A53. J. Bioinform. Res. Appl. 2019 15 129 143 10.1504/IJBRA.2019.099575
    [Google Scholar]
  37. Talluri S. Algorithms for protein design. Adv. Protein Chem. Struct. Biol. 2022 130 1 38 10.1016/bs.apcsb.2022.01.003 35534105
    [Google Scholar]
  38. Spiegel J.O. Durrant J.D. AutoGrow4: An open-source genetic algorithm for de novo drug design and lead optimization. J. Cheminform. 2020 12 1 25 10.1186/s13321‑020‑00429‑4 33431021
    [Google Scholar]
  39. Pavan M. Menin S. Bassani D. Sturlese M. Moro S. Implementing a scoring function based on interaction fingerprint for autogrow4: protein kinase CK1 as a case study. Front. Mol. Biosci. 2022 9 909499 10.3389/fmolb.2022.909499 35874609
    [Google Scholar]
  40. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  41. Lee H. Doud E.H. Wu R. Sanishvili R. Juncosa J.I. Liu D. Kelleher N.L. Silverman R.B. Mechanism of inactivation of γ- aminobutyric acid aminotransferase by (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115). J. Am. Chem. Soc. 2015 137 7 2628 2640 10.1021/ja512299n 25616005
    [Google Scholar]
  42. Alhossary A. Handoko S.D. Mu Y. Kwoh C.K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 2015 31 13 2214 2216 10.1093/bioinformatics/btv082 25717194
    [Google Scholar]
  43. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  44. Virtanen P. Gommers R. Oliphant T.E. Haberland M. Reddy T. Cournapeau D. Burovski E. Peterson P. Weckesser W. Bright J. van der Walt S.J. Brett M. Wilson J. Millman K.J. Mayorov N. Nelson A.R.J. Jones E. Kern R. Larson E. Carey C.J. Polat, Feng, Y.; Moore, E.W.; VanderPlas, J.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E.A.; Harris, C.R.; Archibald, A.M.; Ribeiro, A.H.; Pedregosa, F.; van Mulbregt, P.; Vijaykumar, A.; Bardelli, A.P.; Rothberg, A.; Hilboll, A.; Kloeckner, A.; Scopatz, A.; Lee, A.; Rokem, A.; Woods, C.N.; Fulton, C.; Masson, C.; Häggström, C.; Fitzgerald, C.; Nicholson, D.A.; Hagen, D.R.; Pasechnik, D.V.; Olivetti, E.; Martin, E.; Wieser, E.; Silva, F.; Lenders, F.; Wilhelm, F.; Young, G.; Price, G.A.; Ingold, G-L.; Allen, G.E.; Lee, G.R.; Audren, H.; Probst, I.; Dietrich, J.P.; Silterra, J.; Webber, J.T.; Slavi J.; Nothman, J.; Buchner, J.; Kulick, J.; Schönberger, J.L.; de Miranda Cardoso, J.V.; Reimer, J.; Harrington, J.; Rodríguez, J.L.C.; Nunez-Iglesias, J.; Kuczynski, J.; Tritz, K.; Thoma, M.; Newville, M.; Kümmerer, M.; Bolingbroke, M.; Tartre, M.; Pak, M.; Smith, N.J.; Nowaczyk, N.; Shebanov, N.; Pavlyk, O.; Brodtkorb, P.A.; Lee, P.; McGibbon, R.T.; Feldbauer, R.; Lewis, S.; Tygier, S.; Sievert, S.; Vigna, S.; Peterson, S.; More, S.; Pudlik, T.; Oshima, T.; Pingel, T.J.; Robitaille, T.P.; Spura, T.; Jones, T.R.; Cera, T.; Leslie, T.; Zito, T.; Krauss, T.; Upadhyay, U.; Halchenko, Y.O.; Vázquez-Baeza, Y. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020 17 3 261 272 10.1038/s41592‑019‑0686‑2 32015543
    [Google Scholar]
  45. Landrum G. Tosco P. Kelley, B rdkit/rdkit: 2024_03_1 (Q1 2024) Release. 2024 Available from
    [Google Scholar]
  46. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  47. Daina A. Zoete V. A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  48. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  49. Knox C. Wilson M. Klinger C.M. Franklin M. Oler E. Wilson A. Pon A. Cox J. Chin N.E.L. Strawbridge S.A. Garcia-Patino M. Kruger R. Sivakumaran A. Sanford S. Doshi R. Khetarpal N. Fatokun O. Doucet D. Zubkowski A. Rayat D.Y. Jackson H. Harford K. Anjum A. Zakir M. Wang F. Tian S. Lee B. Liigand J. Peters H. Wang R.Q.R. Nguyen T. So D. Sharp M. da Silva R. Gabriel C. Scantlebury J. Jasinski M. Ackerman D. Jewison T. Sajed T. Gautam V. Wishart D.S. DrugBank 6.0: The drugbank knowledgebase for 2024. Nucleic Acids Res. 2024 52 D1 D1265 D1275 10.1093/nar/gkad976 37953279
    [Google Scholar]
  50. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bye-A-Jee H. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Batista Neto T.M. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Zhang J. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  51. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  52. Silverman R.B. Design and mechanism of GABA aminotransferase inactivators. Treatments for epilepsies and addictions. Chem. Rev. 2018 118 7 4037 4070 10.1021/acs.chemrev.8b00009 29569907
    [Google Scholar]
  53. Lieb A. Weston M. Kullmann D.M. Designer receptor technology for the treatment of epilepsy. EBioMedicine 2019 43 641 649 10.1016/j.ebiom.2019.04.059 31078519
    [Google Scholar]
  54. Grover S. Narang R.K. Singh S. GABA transaminase: A key player and potential therapeutic target for neurological disorders. Cent. Nerv. Syst. Agents Med. Chem. 2024 24 1 57 67 10.2174/0118715249267700231116053516 38243961
    [Google Scholar]
  55. Łukawski K. Gryta P. Łuszczki J. Czuczwar S.J Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin. Drug Discov 2016 11 4 369 382 10.1517/17460441.2016.1154840 26924638
    [Google Scholar]
  56. Löscher W. Single-target versus multi-target drugs versus combinations of drugs with multiple targets: Preclinical and clinical evidence for the treatment or prevention of epilepsy. Front. Pharmacol. 2021 12 730257 10.3389/fphar.2021.730257 34776956
    [Google Scholar]
  57. de Souza Neto L.R. Moreira-Filho J.T. Neves B.J. Maidana R.L.B.R. Guimarães A.C.R. Furnham N. Andrade C.H. Silva F.P. In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem. 2020 8 93 10.3389/fchem.2020.00093 32133344
    [Google Scholar]
  58. Mouchlis V.D. Afantitis A. Serra A. Fratello M. Papadiamantis A.G. Aidinis V. Lynch I. Greco D. Melagraki G. Advances in de novo drug design: From conventional to machine learning methods. Int. J. Mol. Sci. 2021 22 4 1676 10.3390/ijms22041676 33562347
    [Google Scholar]
  59. Selvaraj C. Chandra I. Singh S.K. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Mol. Divers. 2022 26 3 1893 1913 10.1007/s11030‑021‑10326‑z 34686947
    [Google Scholar]
  60. Lu C. Liu S. Shi W. Yu J. Zhou Z. Zhang X. Lu X. Cai F. Xia N. Wang Y. Systemic evolutionary chemical space exploration for drug discovery. J. Cheminform. 2022 14 1 19 10.1186/s13321‑022‑00598‑4 35365231
    [Google Scholar]
  61. Guntner A.S. Peyrl A. Mayr L. Englinger B. Berger W. Slavc I. Buchberger W. Gojo J. Cerebrospinal fluid penetration of targeted therapeutics in pediatric brain tumor patients. Acta Neuropathol. Commun. 2020 8 1 78 10.1186/s40478‑020‑00953‑2 32493453
    [Google Scholar]
  62. Katritzky A.R. Kuanar M. Slavov S. Dobchev D.A. Fara D.C. Karelson M. Acree W.E. Solov’ev V.P. Varnek A. Correlation of blood–brain penetration using structural descriptors. Bioorg. Med. Chem. 2006 14 14 4888 4917 10.1016/j.bmc.2006.03.012 16697202
    [Google Scholar]
  63. Fridén M. Winiwarter S. Jerndal G. Bengtsson O. Wan H. Bredberg U. Hammarlund-Udenaes M. Antonsson M. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J. Med. Chem. 2009 52 20 6233 6243 10.1021/jm901036q 19764786
    [Google Scholar]
  64. Zhu L. Zhao J. Zhang Y. Zhou W. Yin L. Wang Y. Fan Y. Chen Y. Liu H. ADME properties evaluation in drug discovery: In silico prediction of blood–brain partitioning. Mol. Divers. 2018 22 4 979 990 10.1007/s11030‑018‑9866‑8 30083853
    [Google Scholar]
  65. Muehlbacher M. Spitzer G.M. Liedl K.R. Kornhuber J. Qualitative prediction of blood–brain barrier permeability on a large and refined dataset. J. Comput. Aided Mol. Des. 2011 25 12 1095 1106 10.1007/s10822‑011‑9478‑1 22109848
    [Google Scholar]
  66. Naef R. A generally applicable computer algorithm based on the group additivity method for the calculation of seven molecular descriptors: Heat of combustion, LogPO/W, LogS, refractivity, polarizability, toxicity and logbb of organic compounds; Scope and limits of applicability. Molecules 2015 20 10 18279 18351 10.3390/molecules201018279 26457702
    [Google Scholar]
  67. Wu Z. Xian Z. Ma W. Liu Q. Huang X. Xiong B. He S. Zhang W. Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method. Comput. Methods Programs Biomed. 2021 200 105943 10.1016/j.cmpb.2021.105943 33515846
    [Google Scholar]
  68. Domenico A. Nicola G. Daniela T. Fulvio C. Nicola A. Orazio N. De Novo drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization. J. Chem. Inf. Model. 2020 60 10 4582 4593 10.1021/acs.jcim.0c00517 32845150
    [Google Scholar]
  69. Vicidomini C. Fontanella F. D’Alessandro T. Roviello G.N. A survey on computational methods in drug discovery for neurodegenerative diseases. Biomolecules 2024 14 10 1330 1355 10.3390/biom14101330 39456263
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249385792250709073502
Loading
/content/journals/cnsamc/10.2174/0118715249385792250709073502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test