Skip to content
2000
image of Synthesis, Computational Studies of New Chalcone Derivatives as

Abstract

Introduction

Chalcone derivatives are known for their diverse biological activities, including anxiolytic and skeletal muscle relaxant properties. Recent studies indicate that structural modifications can enhance their therapeutic effectiveness. This study aimed to synthesize and biologically evaluate novel chalcone derivatives, investigating their structure-activity relationship through computational studies and assessing their pharmacological potential.

Methods

Five chalcone derivatives (P1–P5) were synthesized via Claisen-Schmidt condensation and characterized using infrared spectroscopy (IR) and nuclear magnetic resonance (NMR) spectroscopy. Their physicochemical and pharmacokinetic profiles were analyzed SWISS ADME, confirming drug-likeness. Biological assessments, including the Elevated Plus Maze (EPM), Open Field Test (OFT), Hole Board Test (HBT), and Rotarod Test, were conducted to evaluate anxiolytic and muscle-relaxant activities.

Results

The synthesized chalcones exhibited yields of 60%–75% and complied with Lipinski’s rule, showing no violations. Among the tested compounds, P2 demonstrated the highest anxiolytic activity, as evidenced by increased exploratory behaviour in EPM, OFT, and HBT. P1 exhibited the strongest skeletal muscle relaxant effect in the Rotarod Test, comparable to diazepam.

Discussion

The study findings suggest that these chalcone derivatives may serve as promising candidates for anxiolytic and muscle-relaxant therapy. Computational analysis supports their pharmacokinetic suitability. Further research is necessary to explore their mechanisms and potential clinical applications.

Conclusion

Chalcone derivatives (P1–P5) were successfully synthesized and studied. They showed strong effects for reducing anxiety and relaxing muscles, making them worthy of further research.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249384074250709074253
2025-07-17
2025-09-03
Loading full text...

Full text loading...

References

  1. Herencia F. Ferrándiz M.L. Ubeda A. Domínguez J. Charris J.E. Lobo G.M. Alcaraz M.J. Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorg. Med. Chem. Lett. 1998 8 10 1169 1174 10.1016/S0960‑894X(98)00179‑6 9871729
    [Google Scholar]
  2. Mahapatra D.K. Bharti S.K. Asati V. Chalcone derivatives: Anti-inflammatory potential and molecular targets perspectives. Curr. Top. Med. Chem. 2017 17 28 3146 3169 10.2174/1568026617666170914160446 28914193
    [Google Scholar]
  3. Mittal A. Vashistha V.K. Das D.K. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review. Free Radic. Res. 2022 56 5-6 378 397 10.1080/10715762.2022.2120396 36063087
    [Google Scholar]
  4. Narsinghani T. Sharma M.C. Bhargav S. Synthesis, docking studies and antioxidant activity of some chalcone and aurone derivatives. Med. Chem. Res. 2013 22 9 4059 4068 10.1007/s00044‑012‑0413‑3
    [Google Scholar]
  5. Prasad Y.R. Rao A.L. Rambabu R. Synthesis and antimicrobial activity of some chalcone derivatives. J. Chem. 2008 5 3 461 466 10.1155/2008/876257
    [Google Scholar]
  6. Ritter M. Mastelari Martins R. Dias D. Pereira M.P. Recent advances on the synthesis of chalcones with antimicrobial activities: A brief review. Lett. Org. Chem. 2014 11 7 498 508 10.2174/1570178611666140218004421
    [Google Scholar]
  7. Fang X. Yang B. Cheng Z. Zhang P. Yang M. Synthesis and antimicrobial activity of novel chalcone derivatives. Res. Chem. Intermed. 2014 40 4 1715 1725 10.1007/s11164‑013‑1076‑5
    [Google Scholar]
  8. Doan T.N. Tran D.T. Synthesis, antioxidant and antimicrobial activities of a novel series of chalcones, pyrazolic chalcones, and allylic chalcones. Pharmacol. Pharm. 2011 2 4 282 288 10.4236/pp.2011.24036
    [Google Scholar]
  9. Chauhan R. Dwivedi J. Siddiqi Anees A.A. Kishore D. Synthesis and antimicrobial activity of chalcone derivatives of indole nucleus. Pharm. Chem. J. 2011 44 10 542 550 10.1007/s11094‑011‑0515‑0
    [Google Scholar]
  10. Aher S.N. Sonawane S.N. Sonawane P.R. Surana K.R. Mahajan S.K. Patil D.M. Insilico drug design, synthesis and evaluation of anti-inflammatory activity pyrimidine analogue. Biosci. Biotechnol. Res. Asia 2024 21 2 10.13005/bbra/3261
    [Google Scholar]
  11. Karthikeyan C. Narayana Moorthy N.S.H. Ramasamy S. Vanam U. Manivannan E. Karunagaran D. Trivedi P. Advances in chalcones with anticancer activities. Recent Patents Anticancer Drug Discov. 2014 10 1 97 115 10.2174/1574892809666140819153902 25138130
    [Google Scholar]
  12. Constantinescu T. Lungu C.N. Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci. 2021 22 21 11306 10.3390/ijms222111306 34768736
    [Google Scholar]
  13. Syam S. Abdelwahab S.I. Al-Mamary M.A. Mohan S. Synthesis of chalcones with anticancer activities. Molecules 2012 17 6 6179 6195 10.3390/molecules17066179 22634834
    [Google Scholar]
  14. Barber K. Mendonca P. Soliman K.F.A. The neuroprotective effects and therapeutic potential of the chalcone cardamonin for Alzheimer’s disease. Brain Sci. 2023 13 1 145 10.3390/brainsci13010145 36672126
    [Google Scholar]
  15. Sooknual P. Pingaew R. Phopin K. Ruankham W. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Synthesis and neuroprotective effects of novel chalcone-triazole hybrids. Bioorg. Chem. 2020 105 104384 10.1016/j.bioorg.2020.104384 33130346
    [Google Scholar]
  16. Pérez-González A. Castañeda-Arriaga R. Guzmán-López E.G. Hernández-Ayala L.F. Galano A. Chalcone derivatives with a high potential as multifunctional antioxidant neuroprotectors. ACS Omega 2022 7 43 38254 38268 10.1021/acsomega.2c05518 36340167
    [Google Scholar]
  17. Mahapatra D.K. Bharti S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016 148 154 172 10.1016/j.lfs.2016.02.048 26876916
    [Google Scholar]
  18. Sashidhara K.V. Palnati G.R. Sonkar R. Avula S.R. Awasthi C. Bhatia G. Coumarin chalcone fibrates: A new structural class of lipid lowering agents. Eur. J. Med. Chem. 2013 64 422 431 10.1016/j.ejmech.2013.04.026 23665798
    [Google Scholar]
  19. Kumar H. Devaraji V. Joshi R. Jadhao M. Ahirkar P. Prasath R. Bhavana P. Ghosh S.K. Antihypertensive activity of a quinoline appended chalcone derivative and its site specific binding interaction with a relevant target carrier protein. RSC Advances 2015 5 80 65496 65513 10.1039/C5RA08778C
    [Google Scholar]
  20. Avila-Villarreal G. Hernández-Abreu O. Hidalgo-Figueroa S. Navarrete-Vázquez G. Escalante-Erosa F. Peña-Rodríguez L.M. Villalobos-Molina R. Estrada-Soto S. Antihypertensive and vasorelaxant effects of dihydrospinochalcone-A isolated from Lonchocarpus xuul Lundell by NO production: Computational and ex vivo approaches. Phytomedicine 2013 20 14 1241 1246 10.1016/j.phymed.2013.06.011 23880329
    [Google Scholar]
  21. Go M. Wu X. Liu X. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem. 2005 12 4 483 499 10.2174/0929867053363153 15720256
    [Google Scholar]
  22. Batovska D. Todorova I. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 2010 5 1 1 29 10.2174/157488410790410579 19891604
    [Google Scholar]
  23. Takac P. Kello M. Vilkova M. Vaskova J. Michalkova R. Mojzisova G. Mojzis J. Antiproliferative effect of acridine chalcone is mediated by induction of oxidative stress. Biomolecules 2020 10 2 345 10.3390/biom10020345 32098428
    [Google Scholar]
  24. Guzy J. Vašková-Kubálková J. Rozmer Z. Fodor K. Mareková M. Poškrobová M. Perjési P. Activation of oxidative stress response by hydroxyl substituted chalcones and cyclic chalcone analogues in mitochondria. FEBS Lett. 2010 584 3 567 570 10.1016/j.febslet.2009.11.098 20004200
    [Google Scholar]
  25. Hsu Y.L. Kuo P.L. Tzeng W.S. Lin C.C. Chalcone inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis. Food Chem. Toxicol. 2006 44 5 704 713 10.1016/j.fct.2005.10.003 16307839
    [Google Scholar]
  26. Egbujor M.C. Saha S. Buttari B. Profumo E. Saso L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: A therapeutic road map for oxidative stress. Expert Rev. Clin. Pharmacol. 2021 14 4 465 480 10.1080/17512433.2021.1901578 33691555
    [Google Scholar]
  27. Yadav G. Ganguly S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem. 2015 97 1 419 443 10.1016/j.ejmech.2014.11.053 25479684
    [Google Scholar]
  28. McKinney J.D. Richard A. Waller C. Newman M.C. Gerberick F. The practice of structure activity relationships (SAR) in toxicology. Toxicol. Sci. 2000 56 1 8 17 10.1093/toxsci/56.1.8 10869449
    [Google Scholar]
  29. Bandgar B.P. Hote B.S. Dhole N.A. Gacche R.N. Synthesis and biological evaluation of novel series of chalcone derivatives as inhibitors of cyclooxygenase and LPS-induced TNF-α with potent antioxidant properties. Med. Chem. Res. 2012 21 9 2292 2299 10.1007/s00044‑011‑9746‑6
    [Google Scholar]
  30. Kumar R. Arora J. Prasad A.K. Islam N. Verma A.K. Synthesis and antimicrobial activity of pyrimidine chalcones. Med. Chem. Res. 2013 22 11 5624 5631 10.1007/s00044‑013‑0555‑y
    [Google Scholar]
  31. Liu H. Long S. Rakesh K.P. Zha G.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem. 2020 185 111804 10.1016/j.ejmech.2019.111804 31675510
    [Google Scholar]
  32. Enüstün B.V. Şentürk H.S. Yurdakul O. Capillary freezing and melting. J. Colloid Interface Sci. 1978 65 3 509 516 10.1016/0021‑9797(78)90103‑0
    [Google Scholar]
  33. Rechnitzer L.A. Tevebaugh A.D. Apparatus to measure high temperature melting points by the capillary tube method. Rev. Sci. Instrum. 1960 31 2 215 216 10.1063/1.1716941
    [Google Scholar]
  34. Savvatimskiy A.I. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 2005 43 6 1115 1142 10.1016/j.carbon.2004.12.027
    [Google Scholar]
  35. Tiers G.V.D. Calibration of capillary melting-point apparatus to the international temperature scale of 1990 (ITS-90) by use of fluxed highly pure metals. Anal. Chim. Acta 1990 237 241 244 10.1016/S0003‑2670(00)83924‑0
    [Google Scholar]
  36. Bunce S.C. Thermometer calibration for determination of capillary melting points. Anal. Chem. 1953 25 5 825 826 10.1021/ac60077a049
    [Google Scholar]
  37. Rawat P. Khan M.F. Kumar M. Tamarkar A.K. Srivastava A.K. Arya K.R. Maurya R. Constituents from fruits of Cupressus sempervirens. Fitoterapia 2010 81 3 162 166 10.1016/j.fitote.2009.08.014 19686818
    [Google Scholar]
  38. Dutta B. Jana R. Bhanja A.K. Ray P.P. Sinha C. Mir M.H. Supramolecular aggregate of Cadmium (II)-based one-dimensional coordination polymer for device fabrication and sensor application. Inorg. Chem. 2019 58 4 2686 2694 10.1021/acs.inorgchem.8b03294 30698955
    [Google Scholar]
  39. Saxena R. Meena P.L. Flow injection online solid phase extraction system using Amberlite XAD-16 functionalized with 8-hydroxyquinoline for copper and zinc determination by flame atomic absorption spectrometry. RSC Advances 2014 4 39 20216 20225 10.1039/C4RA01260G
    [Google Scholar]
  40. Mondal S. Mandal S.M. Mondal T.K. Sinha C. Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases. J. Mol. Struct. 2017 1127 557 567 10.1016/j.molstruc.2016.08.011
    [Google Scholar]
  41. Gan Z. Hung I. Wang X. Paulino J. Wu G. Litvak I.M. Gor’kov P.L. Brey W.W. Lendi P. Schiano J.L. Bird M.D. Dixon I.R. Toth J. Boebinger G.S. Cross T.A. NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet. J. Magn. Reson. 2017 284 125 136 10.1016/j.jmr.2017.08.007 28890288
    [Google Scholar]
  42. Cheng S.C. Huang M.Z. Shiea J. Thin layer chromatography/mass spectrometry. J. Chromatogr. A 2011 1218 19 2700 2711 10.1016/j.chroma.2011.01.077 21334632
    [Google Scholar]
  43. Pyka A. Detection progress of selected drugs in TLC. BioMed Res. Int. 2014 2014 1 1 19 10.1155/2014/732078 24551853
    [Google Scholar]
  44. Kalász H. Báthori M. Pharmaceutical applications of TLC. LC GC Eur. 2001 14 5 311 321
    [Google Scholar]
  45. Armstrong D.W. Pseudophase liquid chromatography: Applications to TLC. J. Liq. Chromatogr. 1980 3 6 895 900 10.1080/01483918008060200
    [Google Scholar]
  46. Maseras F. Lledós A. Clot E. Eisenstein O. Transition metal polyhydrides: From qualitative ideas to reliable computational studies. Chem. Rev. 2000 100 2 601 636 10.1021/cr980397d 11749246
    [Google Scholar]
  47. Şahin S. A single-molecule with multiple investigations: Synthesis, characterization, computational methods, inhibitory activity against Alzheimer’s disease, toxicity, and ADME studies. Comput. Biol. Med. 2022 146 105514 10.1016/j.compbiomed.2022.105514 35462270
    [Google Scholar]
  48. Hantoush A. Najim Z. Abachi F. Density functional theory, ADME and docking studies of some tetrahydropyrimidine-5-carboxylate derivatives. Eurasian Chemical Communications 2022 4 778 789
    [Google Scholar]
  49. Catlow C.R.A. Guo Z.X. Miskufova M. Shevlin S.A. Smith A.G.H. Sokol A.A. Advances in computational studies of energy materials. Philos. Trans A. Math. Phys. Eng. Sci. 2010 368 1923 3379 3456
    [Google Scholar]
  50. Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  51. Singh Bora K. Bhagwan Singh S. Evaluation of anti-anxiety activity of Melissa parviflora (Benth.) in rats. Thaiphesatchasan 2015 39 3 70 75
    [Google Scholar]
  52. Ankali K.N. Rangaswamy J. Shalavadi M. Naik N. Krishnamurthy G. Synthesis and molecular docking of novel 1,3-thiazole derived 1,2,3-triazoles and in vivo biological evaluation for their anti-anxiety and anti-inflammatory activity. J. Mol. Struct. 2021 1236 130357 10.1016/j.molstruc.2021.130357
    [Google Scholar]
  53. Gupta Atyam V.S.S.S. Sarva Raidu C. Nannapaneni D.T. Reddy M.I. Synthesis, characterization, and biological evaluation of benzimidazole derivatives as potential anxiolytics. J. Young Pharm. 2010 2 3 273 279 10.4103/0975‑1483.66809 21042485
    [Google Scholar]
  54. File S.E. The interplay of learning and anxiety in the elevated plus-maze. Behav. Brain Res. 1993 58 1-2 199 202 10.1016/0166‑4328(93)90103‑W 8136046
    [Google Scholar]
  55. Espejo E.F. Structure of the mouse behaviour on the elevated plus-maze test of anxiety. Behav. Brain Res. 1997 86 1 105 112 10.1016/S0166‑4328(96)02245‑0 9105588
    [Google Scholar]
  56. Gould T.D. Dao D.T. Kovacsics C.E. The open field test. Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests. Totowa, NJ Humana Press 2009 1 20 10.1007/978‑1‑60761‑303‑9_1
    [Google Scholar]
  57. Seibenhener M.L. Wooten M.C. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 2015 96 96 e52434 25742564
    [Google Scholar]
  58. Carola V. D’Olimpio F. Brunamonti E. Mangia F. Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 2002 134 1-2 49 57 10.1016/S0166‑4328(01)00452‑1 12191791
    [Google Scholar]
  59. Wong P.T.H. Ong Y.P. Acute antidepressant-like and antianxiety-like effects of tryptophan in mice. Pharmacology 2001 62 3 151 156 10.1159/000056088 11287816
    [Google Scholar]
  60. Singh J. Kumar A. Sharma A. Antianxiety activity guided isolation and characterization of bergenin from Caesalpinia digyna Rottler roots. J. Ethnopharmacol. 2017 195 182 187 10.1016/j.jep.2016.11.016 27845264
    [Google Scholar]
  61. Luo T. Zhao Z. Wu M. Ren X. Xu Z. Li L. Yi Y. Wang H. Wang L. Network pharmacology screening, in vitro and in vivo evaluation of antianxiety and antidepressant drug-food analogue. Phytomedicine 2024 134 155999 10.1016/j.phymed.2024.155999 39241390
    [Google Scholar]
  62. Takeda H. Tsuji M. Matsumiya T. Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur. J. Pharmacol. 1998 350 1 21 29 10.1016/S0014‑2999(98)00223‑4 9683010
    [Google Scholar]
  63. Lalonde R. Strazielle C. The hole-board test in mutant mice. Behav. Genet. 2022 52 3 158 169 10.1007/s10519‑022‑10102‑1 35482162
    [Google Scholar]
  64. Ohl F. Sillaber I. Binder E. Keck M.E. Holsboer F. Differential analysis of behavior and diazepam-induced alterations in C57BL/6N and BALB/c mice using the modified hole board test. J. Psychiatr. Res. 2001 35 3 147 154 10.1016/S0022‑3956(01)00017‑6 11461710
    [Google Scholar]
  65. d’Isa R. Comi G. Leocani L. The 4‐hole‐board test for assessment of long‐term spatial memory in mice. Curr. Protoc. 2021 1 8 e228 10.1002/cpz1.228 34432376
    [Google Scholar]
  66. Arenas M.C. Daza-Losada M. Vidal-Infer A. Aguilar M.A. Miñarro J. Rodríguez-Arias M. Capacity of novelty-induced locomotor activity and the hole-board test to predict sensitivity to the conditioned rewarding effects of cocaine. Physiol. Behav. 2014 133 152 160 10.1016/j.physbeh.2014.05.028 24878312
    [Google Scholar]
  67. Tirumalasetty J. Rasamal K. Nutalapati C. Samreen S. Evaluation of centrally acting skeletal muscle relaxant activity of aqueous extract of Cinnamomum zeylanicum bark in albino mice. J. Dr. NTR Univ. Health Sci. 2012 1 2 94 10.4103/2277‑8632.98345
    [Google Scholar]
  68. Tirumalasetti J. Patel M. Shaikh U. Harini K. Shankar J. Evaluation of skeletal muscle relaxant activity of aqueous extract of Nerium oleander flowers in Albino rats. Indian J. Pharmacol. 2015 47 4 409 413 10.4103/0253‑7613.161265 26288474
    [Google Scholar]
  69. Rustay N.R. Wahlsten D. Crabbe J.C. Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav. Brain Res. 2003 141 2 237 249 10.1016/S0166‑4328(02)00376‑5 12742261
    [Google Scholar]
  70. Bohlen M. Cameron A. Metten P. Crabbe J.C. Wahlsten D. Calibration of rotational acceleration for the rotarod test of rodent motor coordination. J. Neurosci. Methods 2009 178 1 10 14 10.1016/j.jneumeth.2008.11.001 19041892
    [Google Scholar]
  71. Willett P. The calculation of molecular structural similarity: Principles and practice. Mol. Inform. 2014 33 6-7 403 413 10.1002/minf.201400024 27485978
    [Google Scholar]
  72. Bender A. Mussa H.Y. Glen R.C. Reiling S. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): Evaluation of performance. J. Chem. Inf. Comput. Sci. 2004 44 5 1708 1718 10.1021/ci0498719 15446830
    [Google Scholar]
  73. Matter H. Selecting optimally diverse compounds from structure databases: A validation study of two-dimensional and three-dimensional molecular descriptors. J. Med. Chem. 1997 40 8 1219 1229 10.1021/jm960352+ 9111296
    [Google Scholar]
  74. Mauri A. alvaDesc: A tool to calculate and analyze molecular descriptors and fingerprints. In: Ecotoxicological QSARs; Humana, 2020 801 820 10.1007/978‑1‑0716‑0150‑1_32
    [Google Scholar]
  75. Kumar S. Kumar A. Synthesis, computational and pharmacological evaluation of 7-(2-(2-(3-(substituted phenyl) acryloyl) phenoxy) ethoxy)-4-methyl-2H-chromen-2-ones as CNS agents. CNS Agents Med. Chem. 2023 23 1 57 64
    [Google Scholar]
  76. Gu L. Yu Q. Li Q. Zhang L. Lu H. Zhang X. Andrographolide protects PC12 cells against β-amyloid-induced autophagy-associated cell death through activation of the Nrf2-mediated p62 signaling pathway. Int. J. Mol. Sci. 2018 19 9 2844 10.3390/ijms19092844 30235892
    [Google Scholar]
  77. Zukić S. Osmanović A. Harej Hrkać A. Kraljević Pavelić S. Špirtović-Halilović S. Veljović E. Roca S. Trifunović S. Završnik D. Maran U. Data-driven modelling of substituted pyrimidine and uracil-based derivatives validated with newly synthesized and antiproliferative evaluated compounds. Int. J. Mol. Sci. 2024 25 17 9390 10.3390/ijms25179390 39273338
    [Google Scholar]
  78. Patel A. Panchal I. Parmar I. Mishtry B. Synthesis of new flavonoid and chalcone derivatives as antimicrobial agents by green chemistry approach. Int. J. Pharm. Sci. Res. 2017 8 6 2725 2730 10.13040/IJPSR.0975‑8232.8(6).2725‑30
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249384074250709074253
Loading
/content/journals/cnsamc/10.2174/0118715249384074250709074253
Loading

Data & Media loading...

Supplements

Supplementary data (IR & NMR spectra of P1-P5) are available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test