Skip to content
2000
image of Role of Morin & Alpha-Lipoic Acid in Diabetic Neuropathic Pain

Abstract

Recent studies have shown that plant-derived flavonoids may be useful in the treatment of diabetes. Plants in the Moraceae family are commonly known to contain the bioflavonoid morin. Its pharmacological properties include anti-inflammatory, anti-tumor, anti-diabetic, cardioprotective, neuroprotective, and nephroprotective properties. An organic dithiol molecule called alpha-lipoic acid is essential to mitochondrial bioenergetic functions. Its antioxidant properties have led to significant research in the treatment of diabetic conditions. Diabetic neuropathic pain is associated with poor glucose regulation and metabolic abnormalities, specifically oxidative stress (OS) and inflammation. Many mediators and signaling pathways play a crucial role in the development and pathogenesis of diabetic neuropathic pain, including the polyol pathway, advanced glycation end products, glutamate pathway, trophic factors, activation of channels, inflammation, and OS. Morin is useful in controlling blood sugar levels and lowering the problems associated with diabetes, according to studies conducted in a variety of in vitro and in vivo studies. Alpha-lipoic acid (ALA) is a naturally occurring chemical that is necessary for the function of specific enzymes involved in mitochondrial and oxidative metabolism. Dihydrolipoic acid (DHLA), the reduced form of ALA, is thought to have a variety of biological activities, including the reduction of oxidized forms of other agents, including vitamin E and C, metal chelation, and modulation of signal transduction of several pathways (insulin). With its antioxidant properties and ability to scavenge reactive oxygen species, ALA may be able to inhibit the oxidative stress-inflammation pathways that are triggered in diabetic neuropathy. Thus, in this paper, we studied the impact of dietary flavonoid morin and alpha lipoic acid on the molecular mechanism causing major diabetic problems.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249352790250711092129
2025-07-28
2025-09-27
Loading full text...

Full text loading...

References

  1. AL-Ishaq R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019 9 9 430 10.3390/biom9090430 31480505
    [Google Scholar]
  2. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. Oluleye T.S. Diabetic retinopathy: Current developments in pathogenesis and management. Afr. J. Med. Med. Sci. 2010 39 3 199 206 21416789
    [Google Scholar]
  4. Pop-Busui R. Boulton A.J.M. Feldman E.L. Bril V. Freeman R. Malik R.A. Sosenko J.M. Ziegler D. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care 2017 40 1 136 154 10.2337/dc16‑2042 27999003
    [Google Scholar]
  5. Shillo P. Sloan G. Greig M. Hunt L. Selvarajah D. Elliott J. Painful and painless diabetic neuropathies: What is the difference? Curr. Diab. Rep. 2019 19 6 32 10.1007/s11892‑019‑1150‑5 31065863
    [Google Scholar]
  6. Ziegler D. Landgraf R. Lobmann R. Reiners K. Rett K. Schnell O. Strom A. Painful and painless neuropathies are distinct and largely undiagnosed entities in subjects participating in an educational initiative (PROTECT study). Diabetes Res. Clin. Pract. 2018 139 147 154 10.1016/j.diabres.2018.02.043 29518491
    [Google Scholar]
  7. Colloca L. Ludman T. Bouhassira D. Baron R. Dickenson A.H. Yarnitsky D. Freeman R. Truini A. Attal N. Finnerup N.B. Eccleston C. Kalso E. Bennett D.L. Dworkin R.H. Raja S.N. Neuropathic pain. Nat. Rev. Dis. Primers 2017 3 1 17002 10.1038/nrdp.2017.2 28205574
    [Google Scholar]
  8. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 414 6865 813 820 10.1038/414813a 11742414
    [Google Scholar]
  9. Ziegler D. Treatment of diabetic neuropathy and neuropathic pain: How far have we come? Diabetes Care 2008 31 S255 S261 (Suppl. 2) 10.2337/dc08‑s263 18227494
    [Google Scholar]
  10. Holman R.R. Paul S.K. Bethel M.A. Matthews D.R. Neil H.A.W. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008 359 15 1577 1589 10.1056/NEJMoa0806470 18784090
    [Google Scholar]
  11. Rochette L. Ghibu S. Richard C. Zeller M. Cottin Y. Vergely C. Direct and indirect antioxidant properties of α‐lipoic acid and therapeutic potential. Mol. Nutr. Food Res. 2013 57 1 114 125 10.1002/mnfr.201200608 23293044
    [Google Scholar]
  12. Konrad D. Somwar R. Sweeney G. Yaworsky K. Hayashi M. Ramlal T. Klip A. The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: Potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes 2001 50 6 1464 1471 10.2337/diabetes.50.6.1464 11375349
    [Google Scholar]
  13. Targonsky E.D. Dai F. Koshkin V. Karaman G.T. Gyulkhandanyan A.V. Zhang Y. Chan C.B. Wheeler M.B. α-Lipoic acid regulates AMP-activated protein kinase and inhibits insulin secretion from beta cells. Diabetologia 2006 49 7 1587 1598 10.1007/s00125‑006‑0265‑9 16752177
    [Google Scholar]
  14. Ghelani H. Razmovski-Naumovski V. Nammi S. Chronic treatment of (R)‐ α ‐lipoic acid reduces blood glucose and lipid levels in high‐fat diet and low‐dose streptozotocin‐induced metabolic syndrome and type 2 diabetes in Sprague‐Dawley rats. Pharmacol. Res. Perspect. 2017 5 3 e00306 10.1002/prp2.306 28603627
    [Google Scholar]
  15. Jones W. Li X. Qu Z. Perriott L. Whitesell R.R. May J.M. Uptake, recycling, and antioxidant actions of α-lipoic acid in endothelial cells. Free Radic. Biol. Med. 2002 33 1 83 93 10.1016/S0891‑5849(02)00862‑6 12086686
    [Google Scholar]
  16. Ziegler D. Hanefeld M. Ruhnau K.J. Hasche H. Lobisch M. Schütte K. Kerum G. Malessa R. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: A 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 1999 22 8 1296 1301 10.2337/diacare.22.8.1296 10480774
    [Google Scholar]
  17. Mezza T. Cinti F. Cefalo C.M.A. Pontecorvi A. Kulkarni R.N. Giaccari A. β-cell fate in human insulin resistance and type 2 diabetes: A perspective on islet plasticity. Diabetes 2019 68 6 1121 1129 10.2337/db18‑0856 31109941
    [Google Scholar]
  18. Mezza T. Cefalo C.M.A. Cinti F. Quero G. Pontecorvi A. Alfieri S. Holst J.J. Giaccari A. Endocrine and metabolic insights from pancreatic surgery. Trends Endocrinol. Metab. 2020 31 10 760 772 10.1016/j.tem.2020.07.003 32830029
    [Google Scholar]
  19. Genazzani A.D. Shefer K. Della Casa D. Prati A. Napolitano A. Manzo A. Despini G. Simoncini T. Modulatory effects of alpha-lipoic acid (ALA) administration on insulin sensitivity in obese PCOS patients. J. Endocrinol. Invest. 2018 41 5 583 590 10.1007/s40618‑017‑0782‑z 29090431
    [Google Scholar]
  20. Moffa S. Mezza T. Cefalo C.M.A. Cinti F. Impronta F. Sorice G.P. Santoro A. Di Giuseppe G. Pontecorvi A. Giaccari A. The interplay between immune system and microbiota in diabetes. Mediators Inflamm. 2019 2019 1 10 10.1155/2019/9367404 32082078
    [Google Scholar]
  21. Caselli A. Cirri P. Santi A. Paoli P. Morin: A promising natural drug. Curr. Med. Chem. 2016 23 8 774 791 10.2174/0929867323666160106150821 26018232
    [Google Scholar]
  22. Gopal J.V. Morin hydrate: Botanical origin, pharmacological activity and its applications: A mini-review. Pharm. J. 2013 5 3 123 126 10.1016/j.phcgj.2013.04.006
    [Google Scholar]
  23. Solairaja S. Andrabi M.Q. Dunna N.R. Venkatabalasubramanian S. Overview of morin and its complementary role as an adjuvant for anticancer agents. Nutr. Cancer 2020 73 6 927 942 10.1080/01635581.2020.1778747 32530303
    [Google Scholar]
  24. Janeiro P. Brett A.M.O. Solid state electrochemical oxidation mechanisms of morin in aqueous media. Electroanalysis 2005 17 9 733 738 10.1002/elan.200403155
    [Google Scholar]
  25. Solairaja S. Andrabi M.Q. Dunna N.R. Venkatabalasubramanian S. Overview of morin and its complementary role as an adjuvant for anticancer agents. Nutr. Cancer 2021 73 6 927 942 10.1080/01635581.2020.1778747 32530303
    [Google Scholar]
  26. Zeng L.H. Wu J. Fung B. Tong J.H. Mickle D. Wu T.W. Comparative protection against oxyradicals by three flavonoids on cultured endothelial cells. Biochem. Cell Biol. 1997 75 6 717 720 10.1139/o97‑062 9599660
    [Google Scholar]
  27. Wolfe K.L. Liu R.H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem. 2008 56 18 8404 8411 10.1021/jf8013074 18702468
    [Google Scholar]
  28. Mendoza-Wilson A.M. Santacruz-Ortega H. Balandr´ an-Quintana R.R. Spectroscopic and computational study of the major oxidation products formed during the reaction of two quercetin conformers with a free radical. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011 81 1 481 488 10.1016/j.saa.2011.06.041 21767979
    [Google Scholar]
  29. Brown E.J. Khodr H. Hider C.R. Rice-Evans C.A. Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochem. J. 1998 330 3 1173 1178 10.1042/bj3301173 9494082
    [Google Scholar]
  30. Kataria R. Khatkar A. Molecular docking, synthesis, kinetics study, structure–activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors. BMC Chem. 2019 13 1 45 10.1186/s13065‑019‑0562‑2 31384793
    [Google Scholar]
  31. Mendoza-Wilson A.M. Santacruz-Ortega H. Balandrán-Quintana R.R. Relationship between structure, properties, and the radical scavenging activity of morin. J. Mol. Struct. 2011 995 1-3 134 141 10.1016/j.molstruc.2011.04.004
    [Google Scholar]
  32. Wu T.W. Fung K.P. Wu J. Yang C.C. Lo J. Weisel R.D. Morin hydrate inhibits azo-initiator induced oxidation of human low density lipoprotein. Life Sci. 1995 58 2 PL17 PL22 10.1016/0024‑3205(95)02270‑8 8606614
    [Google Scholar]
  33. 刘; Lang, A.S.; Williams, A.J.; Curtin, E. ONS open melting point collection. Nat. Preced. 2011 1 1 1 5 10.1038/NPRE.2011.6229.1
    [Google Scholar]
  34. Sinha K. Ghosh J. Sil P.C. Morin and its role in chronic diseases. Adv. Exp. Med. Biol. 2016 928 453 471 10.1007/978‑3‑319‑41334‑1_19 27671828
    [Google Scholar]
  35. Thakur K. Zhu Y.Y. Feng J.Y. Zhang J.G. Hu F. Prasad C. Wei Z.J. Morin as an imminent functional food ingredient: An update on its enhanced efficacy in the treatment and prevention of metabolic syndromes. Food Funct. 2020 11 10 8424 8443 10.1039/D0FO01444C 33043925
    [Google Scholar]
  36. Kawabata K. Yoshioka Y. Terao J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019 24 2 370 10.3390/molecules24020370 30669635
    [Google Scholar]
  37. Marín L. Miguélez E.M. Villar C.J. Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int. 2015 2015 1 18 10.1155/2015/905215 25802870
    [Google Scholar]
  38. Arroo R.R. Wang M.F. Bhambra A.S. Chemopreventive potential of flavones, flavonols, and their glycosides. Handbook of Dietary Phytochemicals. Singapore Springer 2020 1 19 10.1007/978‑981‑13‑1745‑3_5‑1
    [Google Scholar]
  39. Hou Y.C. Chao P.D.L. Ho H.J. Wen C.C. Hsiu S.L. Profound difference in pharmacokinetics between morin and its isomer quercetin in rats. J. Pharm. Pharmacol. 2003 55 2 199 203 10.1211/002235702487 12631412
    [Google Scholar]
  40. Schramm D.D. Collins H.E. German J.B. Flavonoid transport by mammalian endothelial cells. J. Nutr. Biochem. 1999 10 4 193 197 10.1016/S0955‑2863(98)00104‑1 15539289
    [Google Scholar]
  41. Li J. Yang Y. Ning E. Peng Y. Zhang J. Mechanisms of poor oral bioavailability of flavonoid morin in rats: From physicochemical to biopharmaceutical evaluations. Eur. J. Pharm. Sci. 2019 128 290 298 10.1016/j.ejps.2018.12.011 30557605
    [Google Scholar]
  42. Tian X. Yang X. Wang K. Yang X. The efflux of flavonoids morin, isorhamnetin-3-O-rutinoside and diosmetin-7-O-β-D-xylopyranosyl-(1-6) -β-D-glucopyranoside in the human intestinal cell line caco-2. Pharm. Res. 2006 23 8 1721 1728 10.1007/s11095‑006‑9030‑5 16832612
    [Google Scholar]
  43. Tian X.J. Yang X.W. Yang X. Wang K. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. Int. J. Pharm. 2009 367 1-2 58 64 10.1016/j.ijpharm.2008.09.023 18848870
    [Google Scholar]
  44. Priya R. Oxidative stress in psoriasis. Biomed. Res. 2013 25 1 132 134
    [Google Scholar]
  45. Kim Y.J. Kim E.H. Hahm K.B. Oxidative stress in inflammation‐based gastrointestinal tract diseases: Challenges and opportunities. J. Gastroenterol. Hepatol. 2012 27 6 1004 1010 10.1111/j.1440‑1746.2012.07108.x 22413852
    [Google Scholar]
  46. Sivan Shali K Mini, S Antidiabetic effects of bioflavonoid morin. In: Advances in Plant. ScienceBhumi Publishing India 2022IV 21 33
    [Google Scholar]
  47. Kitada M. Zhang Z. Mima A. King G.L. Molecular mechanisms of diabetic vascular complications. J. Diabetes Investig. 2010 1 3 77 89 10.1111/j.2040‑1124.2010.00018.x 24843412
    [Google Scholar]
  48. Réus G.Z. Carlessi A.S. Silva R.H. Ceretta L.B. Quevedo J. Relationship of oxidative stress as a link between Diabetes mellitus and major depressive disorder. Oxid. Med. Cell. Longev. 2019 2019 1 6 10.1155/2019/8637970 30944699
    [Google Scholar]
  49. Vanitha P. Senthilkumar S. Dornadula S. Anandhakumar S. Rajaguru P. Ramkumar K.M. Morin activates the Nrf2-ARE pathway and reduces oxidative stress-induced DNA damage in pancreatic beta cells. Eur. J. Pharmacol. 2017 801 9 18 10.1016/j.ejphar.2017.02.026 28216051
    [Google Scholar]
  50. Sykiotis G.P. Habeos I.G. Samuelson A.V. Bohmann D. The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr. Opin. Clin. Nutr. Metab. Care 2011 14 1 41 48 10.1097/MCO.0b013e32834136f2 21102319
    [Google Scholar]
  51. Rajput Shahid Ali Wang, Xiu-qi; Yan, Hui-Chao Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed. Pharmacother. 2021 138 111511 10.1016/j.biopha.2021.111511 33744757
    [Google Scholar]
  52. Park J.Y. Kang K.A. Kim K.C. Cha J.W. Kim E.H. Hyun J.W. Morin induces heme oxygenase-1 via ERK-Nrf2 signaling pathway. J. Cancer Prev. 2013 18 3 249 256 10.15430/JCP.2013.18.3.249 25337552
    [Google Scholar]
  53. Lee M.H. Han M.H. Lee D.S. Park C. Hong S.H. Kim G.Y. Hong S.H. Song K.S. Choi I.W. Cha H.J. Choi Y.H. Morin exerts cytoprotective effects against oxidative stress in C2C12 myoblasts via the upregulation of Nrf2-dependent HO-1 expression and the activation of the ERK pathway. Int. J. Mol. Med. 2017 39 2 399 406 10.3892/ijmm.2016.2837 28035409
    [Google Scholar]
  54. Rizvi F. Mathur A. Krishna S. Siddiqi M.I. Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015 6 587 598 10.1016/j.redox.2015.10.002 26513344
    [Google Scholar]
  55. Lontchi-Yimagou E. Sobngwi E. Matsha T.E. Kengne A.P. Diabetes mellitus and inflammation. Curr. Diab. Rep. 2013 13 3 435 444 10.1007/s11892‑013‑0375‑y 23494755
    [Google Scholar]
  56. Abuohashish H.M. Al-Rejaie S.S. Al-Hosaini K.A. Parmar M.Y. Ahmed M.M. Alleviating effects of morin against experimentally-induced diabetic osteopenia. Diabetol. Metab. Syndr. 2013 5 1 5 10.1186/1758‑5996‑5‑5 23384060
    [Google Scholar]
  57. Wysham C. Shubrook J. Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications. Postgrad. Med. 2020 132 8 676 686 10.1080/00325481.2020.1771047 32543261
    [Google Scholar]
  58. Diane A. Abunada H. Khattab N. Moin A.S.M. Butler A.E. Dehbi M. Role of the DNAJ/HSP40 family in the pathogenesis of insulin resistance and type 2 diabetes. Ageing Res. Rev. 2021 67 101313 10.1016/j.arr.2021.101313 33676026
    [Google Scholar]
  59. Paoli P. Cirri P. Caselli A. Ranaldi F. Bruschi G. Santi A. Camici G. The insulin-mimetic effect of Morin: A promising molecule in diabetes treatment. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 4 3102 3111 10.1016/j.bbagen.2013.01.017 23352912
    [Google Scholar]
  60. Tanvir Kabir Md. Nuzhat Tabassum Md. Therapeutic potential of polyphenols in the management of diabetic neuropathy. Evid. Based Complement. Alternat. Med. 2021 2021 9940169 10.1155/2021/9940169 34093722
    [Google Scholar]
  61. Zenker J. Ziegler D. Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci. 2013 36 8 439 449 10.1016/j.tins.2013.04.008 23725712
    [Google Scholar]
  62. Bayram E.H. Sezer A.D. Elçioglu H.K. Diabetic neuropathy and treatment strategy—new challenges and applications. In: Smart Drug Delivery System. London, UK IntechOpen 2016 10.5772/62221
    [Google Scholar]
  63. Roshanravan H. Kim E.Y. Dryer S.E. NMDA receptors as potential therapeutic targets in diabetic nephropathy: Increased renal NMDA receptor subunit expression in akita mice and reduced nephropathy following sustained treatment with memantine or MK-801. Diabetes 2016 65 10 3139 3150 10.2337/db16‑0209 27388219
    [Google Scholar]
  64. Bai H-P. Liu P. Wu Y-M. Guo W-Y. Guo Y-X. Wang X-L. Activation of spinal GABAB receptors normalizes N-methyl-D-aspartate receptor in diabetic neuropathy. J. Neurol. Sci. 2014 341 1-2 68 72 10.1016/j.jns.2014.04.002 24787504
    [Google Scholar]
  65. Fakhri S. Abbaszadeh F. Dargahi L. Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018 136 1 20 10.1016/j.phrs.2018.08.012 30121358
    [Google Scholar]
  66. Khomula E.V. Viatchenko-Karpinski V.Y. Borisyuk A.L. Duzhyy D.E. Belan P.V. Voitenko N.V. Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 5 636 649 10.1016/j.bbadis.2013.01.017 23376589
    [Google Scholar]
  67. Pabbidi M.R. Premkumar L.S. Role of transient receptor potential channels Trpv1 and Trpm8 in diabetic peripheral neuropathy. J. Diabetes Treat. 2017 2017 4 29 30613832
    [Google Scholar]
  68. Premkumar L.S. Abooj M. TRP channels and analgesia. Life Sci. 2013 92 8-9 415 424 10.1016/j.lfs.2012.08.010 22910182
    [Google Scholar]
  69. Dolphin A.C. Calcium channel auxiliary α2δ and β subunits: Trafficking and one step beyond. Nat. Rev. Neurosci. 2012 13 8 542 555 10.1038/nrn3311 22805911
    [Google Scholar]
  70. Bierhaus A. Fleming T. Stoyanov S. Leffler A. Babes A. Neacsu C. Sauer S.K. Eberhardt M. Schnölzer M. Lasitschka F. Neuhuber W.L. Kichko T.I. Konrade I. Elvert R. Mier W. Pirags V. Lukic I.K. Morcos M. Dehmer T. Rabbani N. Thornalley P.J. Edelstein D. Nau C. Forbes J. Humpert P.M. Schwaninger M. Ziegler D. Stern D.M. Cooper M.E. Haberkorn U. Brownlee M. Reeh P.W. Nawroth P.P. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 2012 18 6 926 933 10.1038/nm.2750 22581285
    [Google Scholar]
  71. Yagihashi S. Mizukami H. Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J. Diabetes Investig. 2011 2 1 18 32 10.1111/j.2040‑1124.2010.00070.x 24843457
    [Google Scholar]
  72. Ramasamy R. Goldberg I.J. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ. Res. 2010 106 9 1449 1458 10.1161/CIRCRESAHA.109.213447 20466987
    [Google Scholar]
  73. Hotta N. Kawamori R. Fukuda M. Shigeta Y. Long‐term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: Multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet. Med. 2012 29 12 1529 1533 10.1111/j.1464‑5491.2012.03684.x 22507139
    [Google Scholar]
  74. Uddin M.S. Upaganlawar A.B. Oxidative stress and antioxidant defense: Biomedical value in health and diseases. Hauppauge, NY, USA Nova Science Publishers 2019
    [Google Scholar]
  75. Edwards J.F. Casellini C.M. Parson H.K. Obrosova I.G. Yorek M. Vinik A.I. Role of peroxynitrite in the development of diabetic peripheral neuropathy. Diabetes Care 2015 38 7 e100 e101 10.2337/dc14‑2918 26106228
    [Google Scholar]
  76. Rhee S.Y. Kim Y.S. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab. J. 2018 42 3 188 195 10.4093/dmj.2017.0105 29885110
    [Google Scholar]
  77. Van Dam P.S. Cotter M.A. Bravenboer B. Cameron N.E. Pathogenesis of diabetic neuropathy: Focus on neurovascular mechanisms. Eur. J. Pharmacol. 2013 719 1-3 180 186 10.1016/j.ejphar.2013.07.017 23872412
    [Google Scholar]
  78. Jiang B. Geng Q. Li T. Mohammad Firdous S. Zhou X. Morin attenuates STZ-induced diabetic retinopathy in experimental animals. Saudi J. Biol. Sci. 2020 27 8 2139 2142 10.1016/j.sjbs.2020.06.001 32714041
    [Google Scholar]
  79. Uddin M.S. Kabir M.T. Jakaria M. Mamun A.A. Niaz K. Amran M.S. Barreto G.E. Ashraf G.M. Endothelial PPARc is crucial for averting age-related vascular dysfunction by stalling oxidative stress and ROCK. Neurotox. Res. 2019 36 3 583 601 10.1007/s12640‑019‑00047‑5 31055770
    [Google Scholar]
  80. Syndrome M. PPAR gamma gene – A review. Diabetes Metab. Syndr. 2015 9 1 46 50 10.1016/j.dsx.2014.09.015 25450819
    [Google Scholar]
  81. Freitag C.M. Miller R.J. Peroxisome proliferator-activated receptor agonists modulate neuropathic pain: A link to chemokines? Front. Cell. Neurosci. 2014 8 238 10.3389/fncel.2014.00238 25191225
    [Google Scholar]
  82. Griggs R.B. Donahue R.R. Adkins B.G. Anderson K.L. Thibault O. Taylor B.K. Pioglitazone inhibits the development of hyperalgesia and sensitization of spinal nociresponsive neurons in type 2 diabetes. J. Pain 2016 17 3 359 373 10.1016/j.jpain.2015.11.006 26687453
    [Google Scholar]
  83. Okine B.N. Gaspar J.C. Finn D.P. PPARs and pain. Br. J. Pharmacol. 2019 176 10 1421 1442 10.1111/bph.14339 29679493
    [Google Scholar]
  84. Bachewal P. Gundu C. Yerra V.G. Kalvala A.K. Areti A. Kumar A. Morin exerts neuroprotection via attenuation of ROS induced oxidative damage and neuroinflammation in experimental diabetic neuropathy. Biofactors 2018 44 2 109 122 10.1002/biof.1397 29193444
    [Google Scholar]
  85. Aleisa A.M. Al-Rejaie S.S. Abuohashish H.M. Ahmed M.M. Parmar M.Y. Nephro-protective role of morin against experimentally induced diabetic nephropathy. Dig. J. Nanomater. Biostruct. 2013 8 1 395 401
    [Google Scholar]
  86. Naowaboot J. Wannasiri S. Pannangpetch P. Morin attenuates hepatic insulin resistance in high-fat-diet-induced obese mice. J. Physiol. Biochem. 2016 72 2 269 280 10.1007/s13105‑016‑0477‑5 26976296
    [Google Scholar]
  87. Taguchi K. Tano I. Kaneko N. Matsumoto T. Kobayashi T. Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomed. Pharmacother. 2020 129 110463 10.1016/j.biopha.2020.110463 32768953
    [Google Scholar]
  88. Vanitha P. Uma C. Suganya N. Bhakkiyalakshmi E. Suriyanarayanan S. Gunasekaran P. Sivasubramanian S. Ramkumar K.M. Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats. Environ. Toxicol. Pharmacol. 2014 37 1 326 335 10.1016/j.etap.2013.11.017 24384280
    [Google Scholar]
  89. Alkhamees Osama Morin a flavonoid exerts antioxidant potential in streptozotocin-induced hepatotoxicity. Br. J. Pharmacol. Toxicol. 2013 4 1 10 17 10.19026/bjpt.4.5382
    [Google Scholar]
  90. Ola M.S. Aleisa A.M. Al-Rejaie S.S. Abuohashish H.M. Parmar M.Y. Alhomida A.S. Ahmed M.M. Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol. Sci. 2014 35 7 1003 1008 10.1007/s10072‑014‑1628‑5 24413816
    [Google Scholar]
  91. Razavi T. Kouhsari S.M. Abnous K. Morin exerts anti-diabetic effects in human HepG2 cells via down-regulation of miR-29a. Exp. Clin. Endocrinol. Diabetes 2019 127 9 615 622 10.1055/a‑0650‑4082 30296791
    [Google Scholar]
  92. Wang N. Zhang J. Qin M. Yi W. Yu S. Chen Y. Guan J. Zhang R. Amelioration of streptozotocin induced pancreatic β cell damage by morin: Involvement of the AMPK FOXO3 catalase signaling pathway. Int. J. Mol. Med. 2018 41 3 1409 1418 10.3892/ijmm.2017.3357 29286118
    [Google Scholar]
  93. Lin M.H. Hsu C.C. Lin J. Cheng J.T. Wu M.C. Investigation of morin‐induced insulin secretion in cultured pancreatic cells. Clin. Exp. Pharmacol. Physiol. 2017 44 12 1254 1262 10.1111/1440‑1681.12815 28699234
    [Google Scholar]
  94. Kapoor R. Kakkar P. Protective role of morin, a flavonoid, against high glucose induced oxidative stress mediated apoptosis in primary rat hepatocytes. PLoS One 2012 7 8 e41663 10.1371/journal.pone.0041663 22899998
    [Google Scholar]
  95. Wang X. Zhang D.M. Gu T.T. Ding X.Q. Fan C.Y. Zhu Q. Shi Y.W. Hong Y. Kong L.D. Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Biochem. Pharmacol. 2013 86 12 1791 1804 10.1016/j.bcp.2013.10.005 24134913
    [Google Scholar]
  96. Ke Y. Liu C. Hao J. Lu L. Lu N. Wu Z. Zhu S. Chen X. Morin inhibits cell proliferation and fibronectin accumulation in rat glomerular mesangial cells cultured under high glucose condition. Biomed. Pharmacother. 2016 84 622 627 10.1016/j.biopha.2016.09.088 27694007
    [Google Scholar]
  97. Camiolo G. Tibullo D. Giallongo C. Romano A. Parrinello N.L. Musumeci G. Di Rosa M. Vicario N. Brundo M.V. Amenta F. Ferrante M. Copat C. Avola R. Li Volti G. Salvaggio A. Di Raimondo F. Palumbo G.A. α-lipoic acid reduces iron-induced toxicity and oxidative stress in a model of iron overload. Int. J. Mol. Sci. 2019 20 3 609 10.3390/ijms20030609 30708965
    [Google Scholar]
  98. Islam M.T. Antioxidant activities of dithiol alpha-lipoic acid. Bangladesh Journal of Medical Science 1970 8 3 46 51 10.3329/bjms.v8i3.3982
    [Google Scholar]
  99. Courtney E. Critical appraisal of the use of alpha lipoic acid (thiotic acid) in the treatment of symptomatic diabetic polyneuropathy. Ther. Clin. Risk Manag. 2011 7 377 378 10.2147/TCRM.S11325 21941444
    [Google Scholar]
  100. Eze E.D. Atsukwei D. Adams M.D. Tende J.A. Malgwi I.S. Onuoha T.N. Effects of alpha lipoic acid on blood glucose, body weight and haematological profile of streptozotoci. Eur J. Res. Med. Sci. 2015 3 2 25
    [Google Scholar]
  101. Alpha lipoic acid - Literature education series on dietary supple-ments. 2009 Available fromhttps://www.huhs.edu/literature/Al pha%20Lipoic%20Acid.pdf
  102. Rochette L. Ghibu S. Muresan A. Vergely C. Alpha-lipoic acid: Molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol. 2015 93 12 1021 1027 10.1139/cjpp‑2014‑0353 26406389
    [Google Scholar]
  103. Shay K.P. Moreau R.F. Smith E.J. Smith A.R. Hagen T.M. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta 2009 1790 10 1149 1160 10.1016/j.bbagen.2009.07.026 19664690
    [Google Scholar]
  104. Papanas N. Maltezos E. α-Lipoic acid, diabetic neuropathy, and Nathan’s prophecy. Angiology 2012 63 2 81 83 10.1177/0003319711421165 22253286
    [Google Scholar]
  105. Ziegler D. Low P.A. Litchy W.J. Boulton A.J.M. Vinik A.I. Freeman R. Samigullin R. Tritschler H. Munzel U. Maus J. Schütte K. Dyck P.J. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy. Diabetes Care 2011 34 9 2054 2060 10.2337/dc11‑0503 21775755
    [Google Scholar]
  106. Goraca Anna Huk-kolega Halina Piechota Aleksandra Klenieska, Paulina Lipoic acid - biological activity and therapeutic potential. Pharmacol. Rep. 2011 63 4 849 858 10.1016/s1734‑1140(11)70600‑4 22001972
    [Google Scholar]
  107. Nagateja Ch.O.V. Diabetic neuropathy and use of alpha-lipoic acid in diabetic neuropathy. Int. J. Pharm. Sci. Rev. Res. 2020 63 1 173 180
    [Google Scholar]
  108. Maglione E. Marrese C. Migliaro E. Marcuccio F. Panico C. Salvati C. Citro G. Quercio M. Roncagliolo F. Torello C. Brufani M. Increasing bioavailability of (R)-α-lipoic acid to boost antioxidant activity in the treatment of neuropathic pain. Acta Biomed. 2015 86 3 226 233 26694149
    [Google Scholar]
  109. Gomes M.B. Negrato C.A. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol. Metab. Syndr. 2014 6 1 80 10.1186/1758‑5996‑6‑80 25104975
    [Google Scholar]
  110. Lipoic acid - cleveland clinic wellness. Available from:http://www.clevelandclinicwellness.com/employerprograms/documents/png/alphaLipoicAcid.pdf
  111. Bertolotto Fulvio Massone, Antonino Combination of alpha lipoic acid and superoxide dismutase leads to physiological and symptomatic improvements in diabetic neuropathy. Drugs R D. 2012 12 1 29 34 10.2165/11599200‑000000000‑00000 22329607
    [Google Scholar]
  112. Golbidi S. Badran M. Laher I. Diabetes and alpha lipoic Acid. Front. Pharmacol. 2011 2 69 10.3389/fphar.2011.00069 22125537
    [Google Scholar]
  113. Pansare K. Upasani C. Upaganlwar A. Sonawane G. Pre-clinical study of lycopene alone and in combination with olive oil in streptozotocin-induced diabetic nephropathy. Vidyabh Int. Interdiscip Res. J. 2021 Special Issue 320
    [Google Scholar]
  114. Garkuwa U.A. Usman Adamu; Saleh, Malajiya Ibrahim Alhaji; Alhas-san, Abdulwahab; Kawu, Mohammed Umaru Alpha lipoic acid im-proved spatial working memory and reduced acetylcholinesterase levels in type-2 diabetic Wistar rats. J. Pharmacol. Allied Med. 2023 1 2 78 85 10.58985/jpam.2023.v01i02.10
    [Google Scholar]
  115. Verma, Pooja Effect of alpha-lipoic acid and its Nano-formulation on streptozotocin induced diabetic neuropathy in rats. The Pharma Innovation Journal 2018 7 1 482 485
    [Google Scholar]
  116. Skalská S. Kučera P. Goldenberg Z. Štefek M. Kyselová Z. Jariabka P. Gajdošíková A. Klobučníková K. Traubner P. Štolc S. Neuropathy in a rat model of mild diabetes induced by multiple low doses of streptozotocin: Effects of the antioxidant stobadine in comparison with a high-dose α-lipoic acid treatment. Gen. Physiol. Biophys. 2010 29 1 50 58 10.4149/gpb_2010_01_50 20371880
    [Google Scholar]
  117. Tasci I. Demir C. Kuloglu T. Effects of alpha lipoic acid on loss of myelin sheath of sciatic nerve in experimentally induced diabetic rats. Med. Arh. 2018 72 3 178 181 10.5455/medarh.2018.72.178‑181 30061762
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249352790250711092129
Loading
/content/journals/cnsamc/10.2174/0118715249352790250711092129
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test