Skip to content
2000
image of Study of the Antidepressant Effects of the Combination of Agmatine and Melatonin Following Restraint Stress in Mice: the Role of Oxidative 
Factors

Abstract

Objective

Major Depressive Disorder (MDD) is a psychiatric disorder that has a tight connection to stressful experiences, decreased levels of endogenous antioxidants and enhanced levels of oxidative stress. We drafted this research to define the results of combining agmatine and melatonin on stress-induced depression in mice.

Methods

Experimental groups included the non-stressed group treated with vehicle (ethanol at a concentration of 0.0005%), stressed vehicle (ethanol at a concentration of 0.0005%)-treated group, group treated with fluoxetine (10 mg/kg/day), group treated with melatonin (10 mg/kg/day), group treated with agmatine (1 mg/kg/day), group receiving a combination of melatonin (10 mg/kg/day) and agmatine (1 mg/kg/day). The animals were subjected to restraint stress for two hours daily for a duration of one week, concurrently with the daily oral administration of agents through drinking water. Open field test and forced swimming test were operated on the 8th day. The oxidative stress markers were measured in the mice hippocampus.

Results

Stress led to the elevation of immobility time. The combination group showed a significant effect in comparison to the agmatine and melatonin groups. The combination of melatonin and agmatine was successful in the elevation of hippocampus catalase activity; and this effect was comparable in the fluoxetine group. We observed enhancement of superoxide dismutase activity in treatment groups and reduction in levels in melatonin, agmatine and combination groups.

Conclusion

A combination of agmatine and melatonin improves stress-induced depression more effectively than each alone, which may result from suppressing oxidative stress.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249347833250307041355
2025-03-25
2025-10-18
Loading full text...

Full text loading...

References

  1. Yan S. Xu C. Yang M. Zhang H. Cheng Y. Xue Z. He Z. Wang T. Bai S. Wang G. Wu J. Tong Z. Cai X. The expression of agmatinase manipulates the affective state of rats subjected to chronic restraint stress. Neuropharmacology 2023 229 109476 10.1016/j.neuropharm.2023.109476 36849038
    [Google Scholar]
  2. McEwen B.S. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000 886 1-2 172 189 10.1016/S0006‑8993(00)02950‑4 11119695
    [Google Scholar]
  3. Bathina K.C. ten Thij M. Lorenzo-Luaces L. Rutter L.A. Bollen J. Individuals with depression express more distorted thinking on social media. Nat. Hum. Behav. 2021 5 4 458 466 10.1038/s41562‑021‑01050‑7 33574604
    [Google Scholar]
  4. Andrade L. Caraveo-anduaga J.J. Berglund P. Bijl R.V. Graaf R.D. Vollebergh W. Dragomirecka E. Kohn R. Keller M. Kessler R.C. Kawakami N. Kiliç C. Offord D. Bedirhan Ustun T. Wittchen H.U. The epidemiology of major depressive episodes: Results from the International Consortium of Psychiatric Epidemiology (ICPE) surveys. Int. J. Methods Psychiatr. Res. 2003 12 1 3 21 10.1002/mpr.138 12830306
    [Google Scholar]
  5. Al-harbi K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence 2012 6 369 388 10.2147/PPA.S29716 22654508
    [Google Scholar]
  6. Caruso G. Grasso M. Fidilio A. Torrisi S.A. Musso N. Geraci F. Tropea M.R. Privitera A. Tascedda F. Puzzo D. Salomone S. Drago F. Leggio G.M. Caraci F. Antioxidant activity of fluoxetine and vortioxetine in a non-transgenic animal model of alzheimer’s disease. Front. Pharmacol. 2021 12 809541 10.3389/fphar.2021.809541 35002742
    [Google Scholar]
  7. Sakhaee E Ostadhadi S Khan MI Yousefi F Norouzi-Javidan A Akbarian R Chamanara M. Zolfaghari S. The role of NMDA receptor and nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effect of dextromethorphan in mice forced swimming test and tail suspension test. Biomed Pharmacother. 2017 85 627 634 10.1016/j.biopha.2016.11.073
    [Google Scholar]
  8. Liu T. Zhong S. Liao X. Chen J. He T. Lai S. Jia Y. A meta-analysis of oxidative stress markers in depression. PLoS One 2015 10 10 e0138904 10.1371/journal.pone.0138904 26445247
    [Google Scholar]
  9. Mehrzadi S. Hosseini A. Hassani S. Azimirad F. Hosseinzadeh A. Evaluating the antidepressant-like properties of melatonin and vitamin D3 combination in mice subjected to restraint stress: Investigating the involvement of Oxidative stress. Curr. Drug Ther. 2024 19 4 470 479 10.2174/1574885518666230811121026
    [Google Scholar]
  10. Bakunina N. Pariante C.M. Zunszain P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015 144 3 365 373 10.1111/imm.12443 25580634
    [Google Scholar]
  11. Quera Salva M.A. Hartley S. Barbot F. Alvarez J.C. Lofaso F. Guilleminault C. Circadian rhythms, melatonin and depression. Curr. Pharm. Des. 2011 17 15 1459 1470 10.2174/138161211796197188 21476953
    [Google Scholar]
  12. Won E. Na K.S. Kim Y.K. Associations between melatonin, neuroinflammation, and brain alterations in depression. Int. J. Mol. Sci. 2021 23 1 305 10.3390/ijms23010305 35008730
    [Google Scholar]
  13. Tonon A.C. Pilz L.K. Markus R.P. Hidalgo M.P. Elisabetsky E. Melatonin and depression: A translational perspective from animal models to clinical studies. Front. Psychiatry 2021 12 638981 10.3389/fpsyt.2021.638981 33897495
    [Google Scholar]
  14. Ashkenazy-Frolinger T. Kronfeld-Schor N. Juetten J. Einat H. It is darkness and not light: Depression-like behaviors of diurnal unstriped Nile grass rats maintained under a short photoperiod schedule. J. Neurosci. Methods 2010 186 2 165 170 10.1016/j.jneumeth.2009.11.013 19932714
    [Google Scholar]
  15. Dubocovich M.L. Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocr. J. 2005 27 2 101 110 10.1385/ENDO:27:2:101 16217123
    [Google Scholar]
  16. Launay J.M. Lemaître B.J. Husson H.P. Dreux C. Hartmann L. Da Prada M. Melatonin synthesis by rabbit platelets. Life Sci. 1982 31 14 1487 1494 10.1016/0024‑3205(82)90010‑8 7144437
    [Google Scholar]
  17. Dubocovich M.L. Delagrange P. Krause D.N. Sugden D. Cardinali D.P. Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol. Rev. 2010 62 3 343 380 10.1124/pr.110.002832 20605968
    [Google Scholar]
  18. Fava M. Daytime sleepiness and insomnia as correlates of depression. J. Clin. Psychiatry 2004 65 Suppl. 16 27 32 15575802
    [Google Scholar]
  19. Lam R.W. Sleep disturbances and depression: A challenge for antidepressants. Int. Clin. Psychopharmacol. 2006 21 Suppl. 1 S25 S29 10.1097/01.yic.0000195658.91524.61 16436937
    [Google Scholar]
  20. Tsuno N. Besset A. Ritchie K. Sleep and depression. J. Clin. Psychiatry 2005 66 10 1254 1269 10.4088/JCP.v66n1008 16259539
    [Google Scholar]
  21. Ogłodek EA Just MJ Szromek AR Araszkiewicz A Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol. Rep.s 2016 68 5 945
    [Google Scholar]
  22. Neis V.B. Bettio L.E.B. Moretti M. Rosa P.B. Ribeiro C.M. Freitas A.E. Gonçalves F.M. Leal R.B. Rodrigues A.L.S. Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacol. Biochem. Behav. 2016 150-151 108 114 10.1016/j.pbb.2016.10.004 27743829
    [Google Scholar]
  23. Valverde A.P. Camargo A. Rodrigues A.L.S. Agmatine as a novel candidate for rapid-onset antidepressant response. World J. Psychiatry 2021 11 11 981 996 10.5498/wjp.v11.i11.981 34888168
    [Google Scholar]
  24. Feng Y. Piletz J.E. Leblanc M.H. Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr. Res. 2002 52 4 606 611 10.1203/00006450‑200210000‑00023 12357058
    [Google Scholar]
  25. Zhu M.Y. Piletz J.E. Halaris A. Regunathan S. Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cells. Cell. Mol. Neurobiol. 2003 23 4/5 865 872 10.1023/A:1025069407173 14514037
    [Google Scholar]
  26. Cai S. Glycine/NMDA receptor antagonists as potential CNS therapeutic agents: ACEA-1021 and related compounds. Curr. Top. Med. Chem. 2006 6 7 651 662 10.2174/156802606776894465 16719807
    [Google Scholar]
  27. Huang Z. Huang P.L. Panahian N. Dalkara T. Fishman M.C. Moskowitz M.A. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994 265 5180 1883 1885 10.1126/science.7522345 7522345
    [Google Scholar]
  28. Kaindl A.M. Degos V. Peineau S. Gouadon E. Chhor V. Loron G. Le Charpentier T. Josserand J. Ali C. Vivien D. Collingridge G.L. Lombet A. Issa L. Rene F. Loeffler J.P. Kavelaars A. Verney C. Mantz J. Gressens P. Activation of microglial N‐methyl‐D‐aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann. Neurol. 2012 72 4 536 549 10.1002/ana.23626 23109148
    [Google Scholar]
  29. Zomkowski A.D.E. Hammes L. Lin J. Calixto J.B. Santos A.R.S. Rodrigues A.L.S. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 2002 13 4 387 391 10.1097/00001756‑200203250‑00005 11930146
    [Google Scholar]
  30. Porsolt R.D. Bertin A. Jalfre M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977 229 2 327 336 596982
    [Google Scholar]
  31. Yankelevitch-Yahav R Franko M Huly A Doron R The forced swim test as a model of depressive-like behavior. J. Vis. Exp. 2015 2 52587 10.3791/52587‑v
    [Google Scholar]
  32. Borsini F. Meli A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl.) 1988 94 2 147 160 10.1007/BF00176837 3127840
    [Google Scholar]
  33. Korczak D.J. Pereira S. Koulajian K. Matejcek A. Giacca A. Type 1 diabetes mellitus and major depressive disorder: Evidence for a biological link. Diabetologia 2011 54 10 2483 2493 10.1007/s00125‑011‑2240‑3 21789690
    [Google Scholar]
  34. Menezes Zanoveli J. de Morais H. Caroline da Silva Dias I. Karoline Schreiber A. Pasquini de Souza C. Maria da Cunha J. Depression associated with diabetes: From pathophysiology to treatment. Curr. Diabetes Rev. 2016 12 3 165 178 10.2174/1573399811666150515125349 25981499
    [Google Scholar]
  35. Rebai R. Jasmin L. Boudah A. The antidepressant effect of melatonin and fluoxetine in diabetic rats is associated with a reduction of the oxidative stress in the prefrontal and hippocampal cortices. Brain Res. Bull. 2017 134 142 150 10.1016/j.brainresbull.2017.07.013 28746841
    [Google Scholar]
  36. Munhoz C.D. García-Bueno B. Madrigal J.L. Lepsch L.B. Scavone C. Leza J.C. Stress-induced neuroinflammation: Mechanisms and new pharmacological targets. Rev. Bras. Pesqui. Med. Biol. 2008 41 12 1037 1046
    [Google Scholar]
  37. Jeon S.W. Kim Y.K. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness? World J. Psychiatry 2016 6 3 283 293 10.5498/wjp.v6.i3.283 27679767
    [Google Scholar]
  38. Ali T. Hao Q. Ullah N. Rahman S.U. Shah F.A. He K. Zheng C. Li W. Murtaza I. Li Y. Jiang Y. Tan Z. Li S. Melatonin act as an antidepressant via attenuation of neuroinflammation by targeting Sirt1/Nrf2/HO-1 signaling. Front. Mol. Neurosci. 2020 13 96 10.3389/fnmol.2020.00096 32595452
    [Google Scholar]
  39. Alcendor R.R. Gao S. Zhai P. Zablocki D. Holle E. Yu X. Tian B. Wagner T. Vatner S.F. Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res. 2007 100 10 1512 1521 10.1161/01.RES.0000267723.65696.4a 17446436
    [Google Scholar]
  40. Salminen A. Kauppinen A. Suuronen T. Kaarniranta K. SIRT1 longevity factor suppresses NF‐κB ‐driven immune responses: Regulation of aging via NF‐κB acetylation? BioEssays 2008 30 10 939 942 10.1002/bies.20799 18800364
    [Google Scholar]
  41. Mohseni G Ostadhadi S Imran-Khan M Norouzi-Javidan A Zolfaghari S Haddadi NS Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway. Biomed. pharmaco. 88 931 938 2017 10.1016/j.biopha.2017.01.119
    [Google Scholar]
  42. Skolnick P. Antidepressants for the new millennium. Eur. J. Pharmacol. 1999 375 1-3 31 40 10.1016/S0014‑2999(99)00330‑1 10443562
    [Google Scholar]
  43. Dias Elpo Zomkowski A. Oscar Rosa A. Lin J. Santos A.R.S. Batista Calixto J. Lúcia Severo Rodrigues A. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res. 2004 1023 2 253 263 10.1016/j.brainres.2004.07.041 15374751
    [Google Scholar]
  44. Neis V.B. Moretti M. Manosso L.M. Lopes M.W. Leal R.B. Rodrigues A.L.S. Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice. Pharmacol. Biochem. Behav. 2015 130 9 14 10.1016/j.pbb.2014.12.009 25553821
    [Google Scholar]
  45. Taksande B.G. Kotagale N.R. Tripathi S.J. Ugale R.R. Chopde C.T. Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology 2009 57 4 415 424 10.1016/j.neuropharm.2009.06.035 19589348
    [Google Scholar]
  46. Bhagwagar Z. Wylezinska M. Jezzard P. Evans J. Boorman E. M Matthews P. J Cowen P. Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int. J. Neuropsychopharmacol. 2008 11 2 255 260 10.1017/S1461145707007924 17625025
    [Google Scholar]
  47. Neis V.B. Rosado A.F. Olescowicz G. Moretti M. Rosa P.B. Platt N. Rodrigues A.L.S. The involvement of GABAergic system in the antidepressant-like effect of agmatine. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 10 1931 1939 10.1007/s00210‑020‑01910‑5 32447465
    [Google Scholar]
  48. Freitas A.E. Egea J. Buendia I. Gómez-Rangel V. Parada E. Navarro E. Casas A.I. Wojnicz A. Ortiz J.A. Cuadrado A. Ruiz-Nuño A. Rodrigues A.L.S. Lopez M.G. Agmatine, by improving neuroplasticity markers and inducing Nrf2, prevents corticosterone-induced depressive-like behavior in mice. Mol. Neurobiol. 2016 53 5 3030 3045 10.1007/s12035‑015‑9182‑6 25966970
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249347833250307041355
Loading
/content/journals/cnsamc/10.2174/0118715249347833250307041355
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test