Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

In an alternative medicinal system, Cuprum metallicum (CM) is used for the management of seizure-like conditions. However, there is a lack of scientific evidence regarding its effect.

Objective

The present study aimed to evaluate the effect of CM against Pentylenetetrazole-induced seizures in zebrafish and mice.

Methods

Zebrafish were exposed to CM-6C, CM-30C, and valproic acid for 1 Hr then fish were exposed to pentylenetetrazole to record seizure score and locomotor pattern using ANY maze video tracking software. Mice were pretreated with CM-6C, CM-30C, and valproic acid for 10 days. After 30 min of the last dose, pentylenetetrazole was administered intraperitoneally. Observations during the next 30 min were recorded to detect latency to first myoclonic jerk (FMJ), tonic-clonic seizures, and the severity of seizure and survival protection after 24 Hrs.

Results

PTZ exposure significantly decreased the latency from score-1 to score-5, which CM-6C and 30C significantly increased. Furthermore, CM-6C and 30C normalized the locomotor activity affected by PTZ exposure. Among the animals treated with the CM-6C and 30C, significantly increased latency to FMJ, tonic-clonic seizures, and survival protection compared to the PTZ group of Cuprum met.

Conclusion

The results of the study indicate that CM 6C and 30C have the potential to work against seizures as they attenuated the PTZ-induced seizures in Zebrafish and BALB/c mice. It could be presumed that CM-6C and 30C could be a beneficial alternative drug candidate for the treatment of epilepsy.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249345785250114222749
2025-02-06
2025-09-27
Loading full text...

Full text loading...

References

  1. FisherR.S. HardingG. ErbaG. BarkleyG.L. WilkinsA. Photic- and pattern-induced seizures: A review for the epilepsy foundation of america working group.Epilepsia20054691426144110.1111/j.1528‑1167.2005.31405.x 16146439
    [Google Scholar]
  2. MussuliniB.H.M. LeiteC.E. ZenkiK.C. MoroL. BaggioS. RicoE.P. RosembergD.B. DiasR.D. SouzaT.M. CalcagnottoM.E. CamposM.M. BattastiniA.M. de OliveiraD.L. Seizures induced by pentylenetetrazole in the adult zebrafish: A detailed behavioral characterization.PLoS One201381e5451510.1371/journal.pone.0054515 23349914
    [Google Scholar]
  3. SurgesR. ThijsR.D. TanH.L. SanderJ.W. Sudden unexpected death in epilepsy: Risk factors and potential pathomechanisms.Nat. Rev. Neurol.20095949250410.1038/nrneurol.2009.118 19668244
    [Google Scholar]
  4. AfrikanovaT. SerruysA.S.K. BuenafeO.E.M. ClinckersR. SmoldersI. de WitteP.A.M. CrawfordA.D. EsguerraC.V. Validation of the zebrafish pentylenetetrazol seizure model: Locomotor versus electrographic responses to antiepileptic drugs.PLoS One201381e5416610.1371/journal.pone.0054166 23342097
    [Google Scholar]
  5. BegleyC.E. FamulariM. AnnegersJ.F. LairsonD.R. ReynoldsT.F. CoanS. DubinskyS. NewmarkM.E. LeibsonC. SoE.L. RoccaW.A. The cost of epilepsy in the United States: An estimate from population-based clinical and survey data.Epilepsia200041334235110.1111/j.1528‑1157.2000.tb00166.x 10714408
    [Google Scholar]
  6. HeronS.E. SchefferI.E. BerkovicS.F. DibbensL.M. MulleyJ.C. Channelopathies in idiopathic epilepsy.Neurotherapeutics20074229530410.1016/j.nurt.2007.01.009 17395140
    [Google Scholar]
  7. HolmesG.L. Cognitive impairment in epilepsy: The role of network abnormalities.Epileptic Disord.201517210111610.1684/epd.2015.0739 25905906
    [Google Scholar]
  8. MohsinR.A.Z.A. 2000
  9. GolechhaM. BhatiaJ. AryaD.S. Hydroalcoholic extract of Emblica officinalis Gaertn. affords protection against PTZ-induced seizures, oxidative stress and cognitive impairment in rats.Indian J. Exp. Biol.2010485474478 20795364
    [Google Scholar]
  10. SucherN.J. CarlesM.C. A pharmacological basis of herbal medicines for epilepsy.Epilepsy Behav.201552Pt B30831810.1016/j.yebeh.2015.05.01226074183
    [Google Scholar]
  11. PreuxP.M. TiemagniF. FodzoL. KandemP. NgouafongP. NdonkoF. MachariaW. DongmoL. DumasM. Antiepileptic therapies in the Mifi province in cameroon.Epilepsia200041443243910.1111/j.1528‑1157.2000.tb00185.x 10756409
    [Google Scholar]
  12. MadsenE. GitlinJ.D. Copper and iron disorders of the brain.Annu. Rev. Neurosci.200730131733710.1146/annurev.neuro.30.051606.094232 17367269
    [Google Scholar]
  13. AzimiS. RaukA. On the involvement of copper binding to the N-terminus of the amyloid Beta Peptide of Alzheimer’s disease: A computational study on model systems.Int. J. Alzheimers Dis.20112011153976210.4061/2011/539762 22191059
    [Google Scholar]
  14. AdamsP.C. Epidemiology and diagnostic testing for hemochromatosis and iron overload.Int. J. Lab. Hematol.201537S1Suppl. 1253010.1111/ijlh.12347 25976957
    [Google Scholar]
  15. SinghR. GautamN. MishraA. GuptaR. Heavy metals and living systems: An overview.Indian J. Pharmacol.201143324625310.4103/0253‑7613.81505 21713085
    [Google Scholar]
  16. Aguilar-MartinezP. GrandchampB. CunatS. CadetE. BlancF. NourritM. LassouedK. SchvedJ.F. RochetteJ. Iron overload in HFE C282Y heterozygotes at first genetic testing: A strategy for identifying rare HFE variants.Haematologica201196450751410.3324/haematol.2010.029751 21228038
    [Google Scholar]
  17. BisagliaM. BubaccoL. Copper ions and parkinson’s disease: Why is homeostasis so relevant?Biomolecules202010219510.3390/biom10020195 32013126
    [Google Scholar]
  18. BushA.I. The metallobiology of alzheimer’s disease.Trends Neurosci.200326420721410.1016/S0166‑2236(03)00067‑5 12689772
    [Google Scholar]
  19. SparksD.L. SchreursB.G. Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of alzheimer’s disease.Proc. Natl. Acad. Sci. USA200310019110651106910.1073/pnas.1832769100 12920183
    [Google Scholar]
  20. StysP.K. YouH. ZamponiG.W. Copper‐dependent regulation of NMDA receptors by cellular prion protein: Implications for neurodegenerative disorders.J. Physiol.201259061357136810.1113/jphysiol.2011.225276 22310309
    [Google Scholar]
  21. GaierE.D. EipperB.A. MainsR.E. Copper signaling in the mammalian nervous system: Synaptic effects.J. Neurosci. Res.201391121910.1002/jnr.23143 23115049
    [Google Scholar]
  22. leva Rojas; Infante, C. Administration of coopper reduced the hyper-excitability of neurons in CA1 hippocampal slices from epileptic rats.Arch. Ital. Biol.2016154161310.12871//00039829201612 27548095
    [Google Scholar]
  23. SahinD. IlbayG. AtesN. Changes in the blood–brain barrier permeability and in the brain tissue trace element concentrations after single and repeated pentylenetetrazole-induced seizures in rats.Pharmacol. Res.2003481697310.1016/S1043‑6618(03)00056‑2 12770517
    [Google Scholar]
  24. BurtW.H. Physiological materia medica : Containing all that is known of the physiological action of our remedies : Together with their characteristic indications and pharmacology.3rd edJain Publishing Co.1994
    [Google Scholar]
  25. Hodiamont, GTreatise on Homeopathic Pharmacology - Remedies from the Plant and Animal Kingdom
    [Google Scholar]
  26. RicottiV. DelantyN. Use of complementary and alternative medicine in epilepsy.Curr. Neurol. Neurosci. Rep.20066434735310.1007/s11910‑006‑0029‑4 16822357
    [Google Scholar]
  27. BoerickeW. Boericke’s new manual of homoeopathic materia medica with reportory. Third revised & augmented edition based on.9th edB Jain Publisher Pvt Ltd.2020218219
    [Google Scholar]
  28. BerghmansS. HuntJ. RoachA. GoldsmithP. Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants.Epilepsy Res.2007751182810.1016/j.eplepsyres.2007.03.015 17485198
    [Google Scholar]
  29. WesterfieldM. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio).University of Oregon Press2007
    [Google Scholar]
  30. AlfaroJ.M. Ripoll-GómezJ. BurgosJ.S. Kainate administered to adult zebrafish causes seizures similar to those in rodent models.Eur. J. Neurosci.20113371252125510.1111/j.1460‑9568.2011.07622.x 21375600
    [Google Scholar]
  31. SamokhinaE. SamokhinA. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model.Int. J. Neurosci.2018128111086109610.1080/00207454.2018.1481064 29792126
    [Google Scholar]
  32. ShimadaT. YamagataK. Pentylenetetrazole-induced kindling mouse model.J. Vis. Exp.201813611010.3791/56573 29985308
    [Google Scholar]
  33. Van ErumJ. Van DamD. De DeynP.P. PTZ-induced seizures in mice require a revised Racine scale.Epilepsy Behav.201995515510.1016/j.yebeh.2019.02.029 31026782
    [Google Scholar]
  34. AdikayS. GovinduS. Evaluation of antiepileptic activity of chloroform extract of Acalypha fruticosa in mice.Pharmacognosy Res.20146210811210.4103/0974‑8490.128970 24761113
    [Google Scholar]
  35. KentJ.T. Cuprum metallicum.1905
    [Google Scholar]
  36. BlaserR.E. RosembergD.B. Measures of anxiety in zebrafish (Danio rerio): Dissociation of black/white preference and novel tank test.PLoS One201275e3693110.1371/journal.pone.0036931 22615849
    [Google Scholar]
  37. AnissianD Ghasemi-KasmanM Khalili-FomeshiM AkbariA HashemianM KazemiS Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy.Int. J. Biol. Macromol.2018107PtA97398310.1016/j.ijbiomac.2017.09.073
    [Google Scholar]
  38. SharmaM. KumarG.V.N. GuptaP. Pharmacological investigation of anticonvulsant effect of artemisia vulgaris on pentylenetetrazole-induced epileptic seizures in zebrafish experimental model.Curr. Drug Ther.2024191910.2174/0115748855268042231130041958
    [Google Scholar]
  39. CunliffeV.T. Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures.J. Neurosci. Methods2016260919510.1016/j.jneumeth.2015.07.015 26219659
    [Google Scholar]
  40. KundapU.P. ChooB.K.M. KumariY. AhmedN. OthmanI.B. ShaikhM.F. Embelin protects against acute pentylenetetrazole-induced seizures and positively modulates cognitive function in adult zebrafish.Front. Pharmacol.201910124910.3389/fphar.2019.01249 31708779
    [Google Scholar]
  41. CanzianJ FranscesconF MüllerTE StefanelloFV SouzaTP RosaLV Stress increases susceptibility to pentylenetetrazole-induced seizures in adult zebrafish. Epilepsy Behav.2021114PtA10755710.1016/j.yebeh.2020.107557
    [Google Scholar]
  42. LeeV.L.L. NorazitA. NoorS.M. ShaikhM.F. Channa striatus protects against PTZ-induced seizures in LPS pre-conditioned zebrafish model.Front. Pharmacol.20221382161810.3389/fphar.2022.821618 35444543
    [Google Scholar]
  43. BarabanS.C. TaylorM.R. CastroP.A. BaierH. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression.Neuroscience2005131375976810.1016/j.neuroscience.2004.11.031 15730879
    [Google Scholar]
  44. BanoteR.K. KoutarapuS. ChennubhotlaK.S. ChattiK. KulkarniP. Oral gabapentin suppresses pentylenetetrazole-induced seizure-like behavior and cephalic field potential in adult zebrafish.Epilepsy Behav.201327121221910.1016/j.yebeh.2013.01.018 23466252
    [Google Scholar]
  45. FontanaB.D. ZianiP.R. CanzianJ. MezzomoN.J. MüllerT.E. dos SantosM.M. LoroV.L. BarbosaN.V. MelloC.F. RosembergD.B. Taurine protects from pentylenetetrazole-induced behavioral and neurochemical changes in zebrafish.Mol. Neurobiol.201956158359410.1007/s12035‑018‑1107‑8 29748917
    [Google Scholar]
  46. ChungY.S. ChooB.K.M. AhmedP.K. OthmanI. ShaikhM.F. Orthosiphon stamineus proteins alleviate pentylenetetrazol-induced seizures in zebrafish.Biomedicines20208719110.3390/biomedicines8070191 32630817
    [Google Scholar]
  47. ChooB.K.M. KundapU.P. Johan AriefM.F. KumariY. YapJ.L. WongC.P. OthmanI. ShaikhM.F. Effect of newer anti-epileptic drugs (AEDs) on the cognitive status in pentylenetetrazol induced seizures in a zebrafish model.Prog. Neuropsychopharmacol. Biol. Psychiatry20199248349310.1016/j.pnpbp.2019.02.014 30844417
    [Google Scholar]
  48. EissaM.A. AbdulghaniK.O. NadaM.A. ElkhawasH.M. ShoumanA.E. AhmedN.S. Serum zinc and copper levels in a sample of Egyptian epileptic children.Egypt. J. Neurol. Psychiat. Neurosurg.20205617910.1186/s41983‑020‑00210‑2
    [Google Scholar]
  49. HorningM.S. TrombleyP.Q. Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms.J. Neurophysiol.20018641652166010.1152/jn.2001.86.4.1652 11600628
    [Google Scholar]
  50. CastelliL. TanziF. TagliettiV. MagistrettiJ. Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons.J. Membr. Biol.2003195312113610.1007/s00232‑003‑0614‑2 14724759
    [Google Scholar]
  51. MarchettiC. Baranowska-BosiackaI. GavazzoP. Multiple effects of copper on NMDA receptor currents.Brain Res.20141542203110.1016/j.brainres.2013.10.029 24161827
    [Google Scholar]
  52. WeiserT. WienrichM. The effects of copper ions on glutamate receptors in cultured rat cortical neurons.Brain Res.19967421-221121810.1016/S0006‑8993(96)01009‑8 9117397
    [Google Scholar]
  53. PunthambakerS. HumeR.I. Potent and long-lasting inhibition of human P2X2 receptors by copper.Neuropharmacology20147716717610.1016/j.neuropharm.2013.09.001 24067922
    [Google Scholar]
  54. McGeeT.P. HoustonC.M. BrickleyS.G. Copper block of extrasynaptic GABAA receptors in the mature cerebellum and striatum.J. Neurosci.20133333134311343510.1523/JNEUROSCI.1908‑13.2013 23946400
    [Google Scholar]
  55. SharonovaI.N. VorobjevV.S. HaasH.L. Interaction between copper and zinc at GABA A receptors in acutely isolated cerebellar Purkinje cells of the rat.Br. J. Pharmacol.2000130485185610.1038/sj.bjp.0703392 10864892
    [Google Scholar]
  56. RefatM.S. GaberA. AlthobaitiY.S. AlyamiH. AlsanieW.F. ShakyaS. AdamA.M.A. KobeasyM.I. AslaK.A. Spectroscopic and molecular docking studies of Cu(II), Ni(II), Co(II), and Mn(II) complexes with anticonvulsant therapeutic agent gabapentin.Molecules20222713431110.3390/molecules27134311 35807555
    [Google Scholar]
  57. KaleagasiH. OksuzN. OzalS. YilmazA. DoguO. Increased seizure frequency due to the copper deficiency in Wilson’s disease.J. Neurol. Sci.2013333e5910.1016/j.jns.2013.07.209
    [Google Scholar]
  58. IbrahimW. Coexistence of seizure with Wilson’s disease: A systematic review.Prog. Neurol. Psychiatry2020241243010.1002/pnp.559
    [Google Scholar]
  59. NandyP. GayenA.L. MondalD. BeraD. BiswasP. PaulB.K. BharD.S. DasS. NarulaR. KhuranaA.K. ManchandaR.K. Effect of Cuprum metallicum potentised through both serial dilution and succussion in comparison to succussion alone on Escherichia coli bacterial system and electrical properties of poly (vinylidene fluoride-co-hexafluoropropylene) polymer.Indian J. Res. Homoeopathy201913420910.4103/ijrh.ijrh_60_19
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249345785250114222749
Loading
/content/journals/cnsamc/10.2174/0118715249345785250114222749
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): alternative medicine; danio rerio; drugs; Epilepsy; homeopathy; seizure
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test