Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Background

has an extensive variety of pharmacological properties, including neuroprotection, photo-aging resistance, stress resistance, antioxidant, anti-tumour, hypoglycemic, antibacterial, and antiviral effects tracing a good potential in addressing illness and preventing disease. Challenges with conventional dosage forms include patient incompatibility, improper dosing, the inclusion of microplastics, .

Objective

The present work aims to deliver a novel formulation devoid of microplastics and with improved consumer compliance.

Methods

Wet granulation was used to formulate 500 mg effervescent tablets, with improved effervescent time and rapid release. Citric acid and sodium bicarbonate's impacts on disintegration time and pH were examined using a factorial design. Pre-compression variables were assessed for the granule mixture. Post-compression criteria were employed to assess effervescent tablets. The optimum formulation was selected using a central composite response surface and assessment criteria.

Results

The physicochemical characteristics of the developed formulations were significantly influenced by the independent factors. Low concentrations of sodium bicarbonate have positive impact on pH whereas high concentrations of sodium bicarbonate as well as citric acid enhance disintegration time. The design outcomes showed that the optimized effervescent tablets (F10) prepared with 697.5 mg and 448.38 mg of citric acid and sodium bicarbonate respectively had good physicochemical properties.

Conclusion

In compliance with present quality standards, factorial design was efficiently utilized for the development of effervescent tablets. It was concluded that green tea effervescent tablet (F10) would function as a substitute for conventional green tea powder along with green tea bags as a means of administration.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249333134250116112001
2025-02-06
2025-09-27
Loading full text...

Full text loading...

References

  1. VanhereK.G. DerleD.V. KhataleS.B. NangudeS.L. A comprehensive review on effervescent tablets.J. Drug Deliv. Ther.202313714115010.22270/jddt.v13i7.6120
    [Google Scholar]
  2. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as regulators of genes involved in synucleinopathies.Biomolecules202111562410.3390/biom11050624 33922207
    [Google Scholar]
  3. PatelS.G. SiddaiahM. Formulation and evaluation of effervescent tablets: A review.J. Drug Deliv. Ther.20188629630310.22270/jddt.v8i6.2021
    [Google Scholar]
  4. Juarez-EnriquezE. OlivasG.I. Zamudio-FloresP.B. Ortega-RivasE. Perez-VegaS. SepulvedaD.R. Effect of water content on the flowability of hygroscopic powders.J. Food Eng.2017205121710.1016/j.jfoodeng.2017.02.024
    [Google Scholar]
  5. İpciK. ÖktemerT. BirdaneL. AltıntoprakN. MulukN.B. PassaliD. LopatinA. BellussiL. MladinaR. PawankarR. Cingi, C Effervescent tablets: A safe and practical delivery system for drug administration.ENT Updates201661465010.2399/jmu.2016001009
    [Google Scholar]
  6. ManciniE. BeglingerC. DreweJ. ZanchiD. LangU.E. BorgwardtS. Green tea effects on cognition, mood and human brain function: A systematic review.Phytomedicine201734263710.1016/j.phymed.2017.07.008 28899506
    [Google Scholar]
  7. KaurP. GandhiS. SharmaR. KaurL. PalM. DeswalG. ChopraB. GrewalA.S. DhingraA.K. Extraction, phytochemistry & pharmacological potential of Camellia sinensis: A comprehensive review.Nat. Prod. J.2024146e16012422569510.2174/0122103155278901231122130727
    [Google Scholar]
  8. CardosoR.R. NetoR.O. dos Santos D’AlmeidaC.T. do NascimentoT.P. PresseteC.G. AzevedoL. MartinoH.S.D. CameronL.C. FerreiraM.S.L. BarrosF.A.R. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities.Food Res. Int.202012810878210.1016/j.foodres.2019.108782 31955755
    [Google Scholar]
  9. PrasanthM.I. SivamaruthiB.S. ChaiyasutC. TencomnaoT. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy.Nutrients201911247410.3390/nu11020474 30813433
    [Google Scholar]
  10. RietveldA. WisemanS. Antioxidant effects of tea: Evidence from human clinical trials.J. Nutr.2003133103285S3292S10.1093/jn/133.10.3285S 14519827
    [Google Scholar]
  11. XuL. XiaG. LuoZ. LiuS. UHPLC analysis of major functional components in six types of Chinese teas: Constituent profile and origin consideration.Lebensm. Wiss. Technol.2019102525710.1016/j.lwt.2018.12.008
    [Google Scholar]
  12. OsadaK. TakahashiM. HoshinaS. NakamuraM. NakamuraS. SuganoM. Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2001128215316410.1016/S1532‑0456(00)00192‑7 11239828
    [Google Scholar]
  13. TadanoN. DuC.K. YumotoF. MorimotoS. OhtaM. XieM.F. NagataK. ZhanD.Y. LuQ.W. MiwaY. Takahashi-YanagaF. TanokuraM. OhtsukiI. SasaguriT. Biological actions of green tea catechins on cardiac troponin C.Br. J. Pharmacol.201016151034104310.1111/j.1476‑5381.2010.00942.x 20977454
    [Google Scholar]
  14. SinghB.N. ShankarS. SrivastavaR.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications.Biochem. Pharmacol.201182121807182110.1016/j.bcp.2011.07.093 21827739
    [Google Scholar]
  15. FerraraL. MontesanoD. SenatoreA. The distribution of minerals and flavonoids in the tea plant (Camellia sinensis).Farmaco2001565-739740110.1016/S0014‑827X(01)01104‑1 11482766
    [Google Scholar]
  16. ChackoS.M. ThambiP.T. KuttanR. NishigakiI. Beneficial effects of green tea: A literature review.Chin. Med.2010511310.1186/1749‑8546‑5‑13 20370896
    [Google Scholar]
  17. XuY.Q. ZhangY.N. ChenJ.X. WangF. DuQ.Z. YinJ.F. Quantitative analyses of the bitterness and astringency of catechins from green tea.Food Chem.2018258162410.1016/j.foodchem.2018.03.042 29655718
    [Google Scholar]
  18. ZhaoT. LiC. WangS. SongX. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology.Molecules20222712390910.3390/molecules27123909 35745040
    [Google Scholar]
  19. GrahamH.N. Green tea composition, consumption, and polyphenol chemistry.Prev. Med.199221333435010.1016/0091‑7435(92)90041‑F 1614995
    [Google Scholar]
  20. HuJ. WebsterD. CaoJ. ShaoA. The safety of green tea and green tea extract consumption in adults – Results of a systematic review.Regul. Toxicol. Pharmacol.20189541243310.1016/j.yrtph.2018.03.019 29580974
    [Google Scholar]
  21. XingD. HuY. SunB. SongF. PanY. LiuS. ZhengP. Behavior, characteristics and sources of microplastics in tea.Horticulturae20239217410.3390/horticulturae9020174
    [Google Scholar]
  22. BhatiaV. DhingraA.K. DassR. ChopraB. GuarveK. Formulation development and in-vitro evaluation of fast dissolving tablets of escitalopram using co-processed excipients.Cent. Nerv. Syst. Agents Med. Chem.202222319821310.2174/1871524922666220624113719 35748551
    [Google Scholar]
  23. AtomssaT. GholapA.V. Characterization and determination of catechins in green tea leaves using UV- visible spectrometer.J. Eng. Technol. Res.201571223110.5897/JETR.9000018
    [Google Scholar]
  24. KriplaniP. GuarveK. BaghelU.S. Novel herbal topical patch containing Curcumin and Arnica Montana for the treatment of osteoarthritis.Curr. Rheumatol. Rev.2020161436010.2174/1573397115666190214164407 30767746
    [Google Scholar]
  25. FaisalA. AbsiA.L. AlagbarriS. Mofeed Al-NowihiA.M. Formulation by design approach for effervescent granules of vitamin C using statistical optimization methodologies.J. Appl. Pharm. Res.202084626910.18231/j.joapr.2020.v.8.i.4.62.69
    [Google Scholar]
  26. AslaniA. FattahiF. Formulation, characterization and physicochemical evaluation of potassium citrate effervescent tablets.Adv. Pharm. Bull.20133121722510.5681/apb.2013.036 24312839
    [Google Scholar]
  27. ShahD.S. MoravkarK.K. JhaD.K. LonkarV. AminP.D. ChalikwarS.S. A concise summary of powder processing methodologies for flow enhancement.Heliyon202396e1649810.1016/j.heliyon.2023.e16498 37292344
    [Google Scholar]
  28. BankerG.S. AndersonN.R. The Theory and Practice of Industrial Pharmacy.3rd edMumbaiVarghese publishing house1990296302
    [Google Scholar]
  29. PatilM.G. KakadeS.M. PathadeS.G. Formulation and evaluation of orally disintegrating tablet containing tramadol HCL by mass extrusion technique.J. Appl. Pharm. Sci.201116178181
    [Google Scholar]
  30. Adi-DakoO. KumadohD. EgbiG. OkyemS. AddoP.Y. NyarkoA. Osei-AsareC. OppongE.E. AdaseE. Strategies for formulation of effervescent granules of an herbal product for the management of typhoid fever.Heliyon2021710e0814710.1016/j.heliyon.2021.e08147
    [Google Scholar]
  31. MutaharR.K.M. RameshR. NageshC. OmerS. Formulation, development and in vitro evaluation of effervescent tablets of niacin for dyslipidemia.Biomed. Pharmacol. J.200811244
    [Google Scholar]
  32. GonzálezR. PeñaM.Á. TorresN.S. TorradoG. Design, development, and characterization of amorphous rosuvastatin calcium tablets.PLoS One2022173e026526310.1371/journal.pone.0265263 35312730
    [Google Scholar]
  33. AdvankarA. MaheshwariR. TambeV. TodkeP. RavalN. KapoorD. TekadeR.K. Specialized tablets: Ancient history to modern developments.In: Advances in Pharmaceutical Product Development and Research.Academic Press201961566410.1016/B978‑0‑12‑814487‑9.00013‑2
    [Google Scholar]
  34. TaymouriS. MostafaviA. ZaretaghiabadiS. Design, formulation and evaluation of physicochemical properties of valacyclovir effervescent tablet.Trends Pharmacol. Sci.20228313514610.30476/TIPS.2022.95385.1145
    [Google Scholar]
  35. SawatdeeS. AtipairinA. Sae YoonA. SrichanaT. ChangsanN. SuwandechaT. Formulation development of albendazole-loaded self-microemulsifying chewable tablets to enhance dissolution and bioavailability.Pharmaceutics201911313410.3390/pharmaceutics11030134 30897738
    [Google Scholar]
  36. TyagiT. GarlapatiP.K. YadavP. NaikaM. MallyaA. Kandangath RaghavanA. Development of nano‐encapsulated green tea catechins: Studies on optimization, characterization, release dynamics, and in‐vitro toxicity.J. Food Biochem.20214511e1395110.1111/jfbc.13951 34569069
    [Google Scholar]
  37. González-GonzálezO. RamirezI.O. RamirezB.I. O’ConnellP. BallesterosM.P. TorradoJ.J. SerranoD.R. Drug stability: ICH versus accelerated predictive stability studies.Pharmaceutics20221411232410.3390/pharmaceutics14112324 36365143
    [Google Scholar]
  38. DaniD.H. NaqviS.B. AkramM. KhaliqS.A. NasiriM.I. Design, formulation, optimization and stability studies of paracetamol effervescent tablets.Pak. J. Pharm. Sci.202336110.36721/PJPS.2023.36.1.SP.247‑254.1
    [Google Scholar]
  39. DzulhiS AnwarE NurhayatiT Formulation, characterization and in vitro skin penetration of green tea (Camellia sinensis L.) leaves extract-loaded solid lipid nanoparticles.J. Appl. Pharm. Sci.,2018Aug 31;8(8), 057-06210.7324/JAPS.2018.8809
    [Google Scholar]
  40. FreemanR. Measuring the flow properties of consolidated, conditioned and aerated powders — A comparative study using a powder rheometer and a rotational shear cell.Powder Technol.20071741-2253310.1016/j.powtec.2006.10.016
    [Google Scholar]
  41. SunH. WangX. WangJ. ShiG. ChenL. Influence of the formula on the properties of a fast dispersible fruit tablet made from mango, Chlorella, and cactus powder.Food Sci. Nutr.20208147948810.1002/fsn3.1330 31993172
    [Google Scholar]
  42. KusumaS.A.F. AbdassahM. AritrixsoA. Simple design of miniaturized cabinet for compounding vitamin c effervescent tablet in laboratory scale.Int. J. Appl. Pharm.201810315716110.22159/ijap.2018v10i3.25541
    [Google Scholar]
  43. AslaniA. JahangiriH. Formulation, characterization and physicochemical evaluation of ranitidine effervescent tablets.Adv. Pharm. Bull.20133231532210.5681/apb.2013.051 24312854
    [Google Scholar]
  44. MohammedK.A.B. IbrahimH.K. GhorabM.M. Effervescent tablet formulation for enhanced patient compliance and the therapeutic effect of risperidone.Drug Deliv.201623129730610.3109/10717544.2014.912693 24833273
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249333134250116112001
Loading
/content/journals/cnsamc/10.2174/0118715249333134250116112001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test