Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Flavonoids have a wide range of neuroprotective effects on the brain, including the capacity to reduce neuroinflammation, shield neurons from harm caused by neurotoxins, and maybe improve memory, learning, and cognitive function. These functions are most likely a result of two similar mechanisms. Inhibiting neurotoxic substance-induced apoptosis and promoting synaptic plasticity and neuronal survival are achieved by first interacting with key protein and lipid kinase signaling pathways in the brain. Second, they have positive effects on the vascular system that alter cerebrovascular blood flow and can result in angiogenesis, neurogenesis, and morphological alterations in neurons. Through these pathways, eating foods high in flavonoids has the potential to avoid or delay age-related impairments in cognitive abilities as well as neurodegeneration. Due to the high level of interest in creating new pharmaceuticals that might improve the cognitive function of the brain, Flavonoids could be important preparatory substances in the development of a new class of brain-improving drugs.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249344284241112184703
2024-12-03
2025-09-28
Loading full text...

Full text loading...

References

  1. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms23031851 35163773
    [Google Scholar]
  2. FeiginV.L. VosT. NicholsE. OwolabiM.O. CarrollW.M. DichgansM. DeuschlG. ParmarP. BraininM. MurrayC. The global burden of neurological disorders: Translating evidence into policy.Lancet Neurol.202019325526510.1016/S1474‑4422(19)30411‑9 31813850
    [Google Scholar]
  3. YoudimK.A. JosephJ.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects.Free Radic. Biol. Med.200130658359410.1016/S0891‑5849(00)00510‑4 11295356
    [Google Scholar]
  4. MaanG. SikdarB. KumarA. ShuklaR. MishraA. Role of flavonoids in neurodegenerative diseases: Limitations and future perspectives.Curr. Top. Med. Chem.202020131169119410.2174/1568026620666200416085330 32297582
    [Google Scholar]
  5. AiroldiC. La FerlaB. D’OrazioG. CiaramelliC. PalmioliA. Flavonoids in the treatment of alzheimer’s and other neurodegenerative diseases.Curr. Med. Chem.201825273228324610.2174/0929867325666180209132125 29424298
    [Google Scholar]
  6. MaherP. The potential of flavonoids for the treatment of neurodegenerative diseases.Int. J. Mol. Sci.20192012305610.3390/ijms20123056 31234550
    [Google Scholar]
  7. RehmanM.U. WaliA.F. AhmadA. ShakeelS. RasoolS. AliR. RashidS.M. MadkhaliH. GanaieM.A. KhanR. Neuroprotective strategies for neurological disorders by natural products: An update.Curr. Neuropharmacol.201917324726710.2174/1570159X16666180911124605 30207234
    [Google Scholar]
  8. LuoY. SmithJ.V. ParamasivamV. BurdickA. CurryK.J. BufordJ.P. KhanI. NetzerW.J. XuH. ButkoP. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761.Proc. Natl. Acad. Sci. USA20029919121971220210.1073/pnas.182425199 12213959
    [Google Scholar]
  9. BastianettoS. ZhengW.H. QuirionR. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: Involvement of its flavonoid constituents and protein kinase C.J. Neurochem.20007462268227710.1046/j.1471‑4159.2000.0742268.x 10820186
    [Google Scholar]
  10. DatlaK.P. ChristidouM. WidmerW.W. RoopraiH.K. DexterD.T. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease.Neuroreport200112173871387510.1097/00001756‑200112040‑00053 11726811
    [Google Scholar]
  11. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  12. Waheed JanabiA.H. KambohA.A. SaeedM. XiaoyuL. BiBi, J.; Majeed, F.; Naveed, M.; Mughal, M.J.; Korejo, N.A.; Kamboh, R.; Alagawany, M.; Lv, H. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases.Iran. J. Basic Med. Sci.202023214015310.22038/IJBMS.2019.35125.8353 32405356
    [Google Scholar]
  13. GuvenH. AriciA. SimsekO. Flavonoids in our foods: A short review.J Basic Clin Health Sci.2019329610610.30621/jbachs.2019.555
    [Google Scholar]
  14. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.ScientificWorldJournal20132013116275010.1155/2013/162750 24470791
    [Google Scholar]
  15. SunZ.G. LiZ.N. ZhangJ.M. HouX.Y. YehS.M. MingX. Recent developments of flavonoids with various activities.Curr. Top. Med. Chem.202222430532910.2174/1568026622666220117111858 35040404
    [Google Scholar]
  16. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu2121231 22254006
    [Google Scholar]
  17. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.41 28620474
    [Google Scholar]
  18. DajasF. Juan AndresA-C. FlorenciaA. CarolinaE. FeliciaR.M. Neuroprotective actions of flavones and flavonols: Mechanisms and relationship to flavonoid structural features.Cent. Nerv. Syst. Agents Med. Chem.2013131303510.2174/1871524911313010005 23092407
    [Google Scholar]
  19. CalisZ. MogulkocR. BaltaciA.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation.Mini Rev. Med. Chem.202020151475148810.2174/1389557519666190617150051 31288717
    [Google Scholar]
  20. ManachC. DonovanJ.L. Pharmacokinetics and metabolism of dietary flavonoids in humans.Free Radic. Res.200438877178510.1080/10715760410001727858 15493450
    [Google Scholar]
  21. WalleT. Absorption and metabolism of flavonoids.Free Radic. Biol. Med.200436782983710.1016/j.freeradbiomed.2004.01.002 15019968
    [Google Scholar]
  22. VeitchN.C. GrayerR.J. Flavonoids and their glycosides, including anthocyanins.Nat. Prod. Rep.200825355561110.1039/b718040n 18497898
    [Google Scholar]
  23. ChenL. CaoH. HuangQ. XiaoJ. TengH. Absorption, metabolism and bioavailability of flavonoids: A review.Crit. Rev. Food Sci. Nutr.202262287730774210.1080/10408398.2021.1917508 34078189
    [Google Scholar]
  24. GonzalesG.B. SmaggheG. GrootaertC. ZottiM. RaesK. CampJ.V. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity.Drug Metab. Rev.201547217519010.3109/03602532.2014.1003649 25633078
    [Google Scholar]
  25. YoudimK.A. DobbieM.S. KuhnleG. ProteggenteA.R. AbbottN.J. Rice-EvansC. Interaction between flavonoids and the blood–brain barrier: In vitro studies.J. Neurochem.200385118019210.1046/j.1471‑4159.2003.01652.x 12641740
    [Google Scholar]
  26. ThilakarathnaS. RupasingheH. Flavonoid bioavailability and attempts for bioavailability enhancement.Nutrients2013593367338710.3390/nu5093367 23989753
    [Google Scholar]
  27. FangJ. Bioavailability of anthocyanins.Drug Metab. Rev.201446450852010.3109/03602532.2014.978080 25347327
    [Google Scholar]
  28. SpencerJ.P.E. The impact of flavonoids on memory: Physiological and molecular considerations.Chem. Soc. Rev.20093841152116110.1039/b800422f 19421586
    [Google Scholar]
  29. VauzourD. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology.J. Sci. Food Agric.20149461042105610.1002/jsfa.6473 24338740
    [Google Scholar]
  30. RendeiroC. RhodesJ.S. SpencerJ.P.E. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects.Neurochem. Int.20158912613910.1016/j.neuint.2015.08.002 26260546
    [Google Scholar]
  31. RoohbakhshA. ParhizH. SoltaniF. RezaeeR. IranshahiM. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin — A mini-review.Life Sci.20141131-21610.1016/j.lfs.2014.07.029 25109791
    [Google Scholar]
  32. ScodittiE. Neuroinflammation and neurodegeneration: The promising protective role of the citrus flavanone hesperetin.Nutrients2020128233610.3390/nu12082336 32764233
    [Google Scholar]
  33. BabaeiF. MirzababaeiM. Nassiri-AslM. Quercetin in food: Possible mechanisms of its effect on memory.J. Food Sci.20188392280228710.1111/1750‑3841.14317 30103275
    [Google Scholar]
  34. SuganthyN. DeviK.P. NabaviS.F. BraidyN. NabaviS.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions.Biomed. Pharmacother.20168489290810.1016/j.biopha.2016.10.011
    [Google Scholar]
  35. NouriZ. FakhriS. El-SendunyF.F. SanadgolN. Abd-ElGhaniG.E. FarzaeiM.H. ChenJ.T. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective.Biomolecules201991169010.3390/biom9110690 31684142
    [Google Scholar]
  36. FuloriaS. YusriM.A.A. SekarM. GanS.H. RaniN.N.I.M. LumP.T. RaviS. SubramaniyanV. AzadA.K. JeyabalanS. WuY.S. MeenakshiD.U. SathasivamK.V. FuloriaN.K. Genistein: A potential natural lead molecule for new drug design and development for treating memory impairment.Molecules202227126510.3390/molecules27010265 35011497
    [Google Scholar]
  37. LiJ. XiangH. HuangC. LuJ. Pharmacological actions of myricetin in the nervous system: A comprehensive review of preclinical studies in animals and cell models.Front. Pharmacol.20211279729810.3389/fphar.2021.797298 34975495
    [Google Scholar]
  38. FarzaeiM.H. RahimiR. NikfarS. AbdollahiM. Effect of resveratrol on cognitive and memory performance and mood: A meta-analysis of 225 patients.Pharmacol. Res.201812833834410.1016/j.phrs.2017.08.009 28844841
    [Google Scholar]
  39. ZhouD.D. LuoM. HuangS.Y. SaimaitiA. ShangA. GanR.Y. LiH.B. Effects and mechanisms of resveratrol on aging and age‐related diseases.Oxid. Med. Cell. Longev.202120211993221810.1155/2021/9932218 34336123
    [Google Scholar]
  40. ChoJ. KangJ.S. LongP.H. JingJ. BackY. ChungK.S. Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and cordyceps mushroom extract.Arch. Pharm. Res.2003261082182510.1007/BF02980027 14609130
    [Google Scholar]
  41. XuB. LiX.X. HeG.R. HuJ.J. MuX. TianS. DuG.H. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats.Eur. J. Pharmacol.20106271-39910510.1016/j.ejphar.2009.10.038 19857483
    [Google Scholar]
  42. DongX. ZhouS. NaoJ. Kaempferol as a therapeutic agent in Alzheimer’s disease: Evidence from preclinical studies.Ageing Res. Rev.20238710191010.1016/j.arr.2023.101910 36924572
    [Google Scholar]
  43. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE.B. NovellinoE. AntolakH. AzziniE. SetzerW.N. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms20061305 30875872
    [Google Scholar]
  44. WangY. WangQ. BaoX. DingY. ShentuJ. CuiW. ChenX. WeiX. XuS. Taxifolin prevents β-amyloid-induced impairments of synaptic formation and deficits of memory via the inhibition of cytosolic phospholipase A2/prostaglandin E2 content.Metab. Brain Dis.20183341069107910.1007/s11011‑018‑0207‑5 29542038
    [Google Scholar]
  45. BaranwalA. AggarwalP. RaiA. KumarN. Pharmacological actions and underlying mechanisms of catechin: A review.Mini Rev. Med. Chem.202222582183310.2174/1389557521666210902162120 34477517
    [Google Scholar]
  46. JinG. BaiD. YinS. YangZ. ZouD. ZhangZ. LiX. SunY. ZhuQ. Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMP8 mice.Neurosci. Lett.201662925626110.1016/j.neulet.2016.06.008 27276653
    [Google Scholar]
  47. GuX.H. XuL.J. LiuZ.Q. WeiB. YangY.J. XuG.G. YinX.P. WangW. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease.Behav. Brain Res.201631130932110.1016/j.bbr.2016.05.052 27233830
    [Google Scholar]
  48. MansuriM.L. PariharP. SolankiI. PariharM.S. Flavonoids in modulation of cell survival signalling pathways.Genes Nutr.20149340010.1007/s12263‑014‑0400‑z 24682883
    [Google Scholar]
  49. YoudimK.A. SpencerJ.P.E. SchroeterH. Rice-EvansC. Dietary flavonoids as potential neuroprotectants.Biol. Chem.20023833-450351910.1515/BC.2002.052 12033439
    [Google Scholar]
  50. WilliamsR.J. SpencerJ.P.E. Rice-EvansC. Flavonoids: Antioxidants or signalling molecules?Free Radic. Biol. Med.200436783884910.1016/j.freeradbiomed.2004.01.001 15019969
    [Google Scholar]
  51. ErkkinenM.G. KimM.O. GeschwindM.D. Clinical neurology and epidemiology of the major neurodegenerative diseases.Cold Spring Harb. Perspect. Biol.2018104a03311810.1101/cshperspect.a033118 28716886
    [Google Scholar]
  52. Gutierrez-MerinoC. Lopez-SanchezC. LagoaR. Samhan-AriasA.K. BuenoC. Garcia-MartinezV. Neuroprotective actions of flavonoids.Curr. Med. Chem.20111881195121210.2174/092986711795029735 21291366
    [Google Scholar]
  53. Di PaoloM. PapiL. GoriF. TurillazziE. Natural products in neurodegenerative diseases: A great promise but an ethical challenge.Int. J. Mol. Sci.20192020517010.3390/ijms20205170 31635296
    [Google Scholar]
  54. MinochaT. BirlaH. ObaidA.A. RaiV. SushmaP. ShivamalluC. MoustafaM. Al-ShehriM. Al-EmamA. TikhonovaM.A. YadavS.K. PoeggelerB. SinghD. SinghS.K. Flavonoids as promising neuroprotectants and their therapeutic potential against alzheimer’s disease.Oxid. Med. Cell. Longev.2022202211310.1155/2022/6038996 36071869
    [Google Scholar]
  55. UddinM.S. KabirM.T. NiazK. JeandetP. ClémentC. MathewB. RaufA. RengasamyK.R.R. Sobarzo-SánchezE. AshrafG.M. AleyaL. Molecular insight into the therapeutic promise of flavonoids against alzheimer’s disease.Molecules2020256126710.3390/molecules25061267 32168835
    [Google Scholar]
  56. BakhtiariM. PanahiY. AmeliJ. DarvishiB. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions.Biomed. Pharmacother.20179321822910.1016/j.biopha.2017.06.010
    [Google Scholar]
  57. DeviL. OhnoM. 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease.Neuropsychopharmacology201237243444410.1038/npp.2011.191
    [Google Scholar]
  58. ZhangZ. LiuX. SchroederJ.P. ChanC.B. SongM. YuS.P. WeinshenkerD. YeK. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease.Neuropsychopharmacology201439363865010.1038/npp.2013.243
    [Google Scholar]
  59. ZhaoL. WangJ.L. LiuR. LiX.X. LiJ.F. ZhangL. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model.Molecules20131889949996510.3390/molecules18089949 23966081
    [Google Scholar]
  60. ZhangS.Q. ObregonD. EhrhartJ. DengJ. TianJ. HouH. GiuntaB. SawmillerD. TanJ. Baicalein reduces β‐amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model.J. Neurosci. Res.20139191239124610.1002/jnr.23244 23686791
    [Google Scholar]
  61. CurraisA. PriorM. DarguschR. ArmandoA. EhrenJ. SchubertD. QuehenbergerO. MaherP. Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in A lzheimer’s disease transgenic mice.Aging Cell201413237939010.1111/acel.12185 24341874
    [Google Scholar]
  62. AhmadA. AliT. ParkH.Y. BadshahH. RehmanS.U. KimM.O. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice.Mol. Neurobiol.20175432269228510.1007/s12035‑016‑9795‑4 26944285
    [Google Scholar]
  63. ZaplaticE. BuleM. ShahS.Z.A. UddinM.S. NiazK. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease.Life Sci.201922410911910.1016/j.lfs.2019.03.055 30914316
    [Google Scholar]
  64. Sabogal-GuáquetaA.M. Muñoz-MancoJ.I. Ramírez-PinedaJ.R. Lamprea-RodriguezM. OsorioE. Cardona-GómezG.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice.Neuropharmacology20159313414510.1016/j.neuropharm.2015.01.027 25666032
    [Google Scholar]
  65. IdeK. MatsuokaN. YamadaH. FurushimaD. KawakamiK. Effects of tea catechins on alzheimer’s disease: Recent updates and perspectives.Molecules2018239235710.3390/molecules23092357 30223480
    [Google Scholar]
  66. LiC. ZugC. QuH. SchluesenerH. ZhangZ. Hesperidin ameliorates behavioral impairments and neuropathology of transgenic APP/PS1 mice.Behav. Brain Res.2015281324210.1016/j.bbr.2014.12.012 25510196
    [Google Scholar]
  67. NejabatiH.R. RoshangarL. Kaempferol as a potential neuroprotector in Alzheimer’s disease.J. Food Biochem.20224612e1437510.1111/jfbc.14375 35929364
    [Google Scholar]
  68. MohammadiN. Asle-RoustaM. RahnemaM. AminiR. Morin attenuates memory deficits in a rat model of Alzheimer’s disease by ameliorating oxidative stress and neuroinflammation.Eur. J. Pharmacol.202191017450610.1016/j.ejphar.2021.174506 34534533
    [Google Scholar]
  69. DhaliwalN. DhaliwalJ. ChopraK. 7, 8-dihydroxyflavone ameliorates cholinergic dysfunction, inflammation, oxidative stress, and apoptosis in a rat model of vascular dementia.Neurochem. Res.20244951137114910.1007/s11064‑023‑04090‑9 38300457
    [Google Scholar]
  70. GuoJ. CaoY. ZhangT. XuC. LiuZ. LiW. WangQ. Multisensory fusion training and 7, 8-dihydroxyflavone improve amyloid-β-induced cognitive impairment, anxiety, and depression-like behavior in mice through multiple mechanisms.Neuropsychiatr. Dis. Treat.2024201247127010.2147/NDT.S459891 38883414
    [Google Scholar]
  71. XuM. XiaL. LiJ. DuY. DongZ. 7,8-Dihydroxyflavone ameliorates cognitive impairment induced by repeated neonatal sevoflurane exposures in mice through increasing tau O-GlcNAcylation.Neurosci. Lett.202481813755910.1016/j.neulet.2023.137559 37984484
    [Google Scholar]
  72. ChiuY.J. TengY.S. ChenC.M. SunY.C. Hsieh-LiH.M. ChangK.H. Lee-ChenG.J. A neuroprotective action of quercetin and apigenin through inhibiting aggregation of aβ and activation of trkb signaling in a cellular experiment.Biomol. Ther.202331328529710.4062/biomolther.2022.136 36646447
    [Google Scholar]
  73. GongQ. WangY. WangX. PanH. YanC. Baicalein promotes the microglia M2 polarization and suppresses apoptosis by targeting HMOX1/PDE4D to alleviate Alzheimer’s disease.Immunobiology2023228615276110.1016/j.imbio.2023.152761 38006681
    [Google Scholar]
  74. JadhavR. KulkarniY.A. The combination of baicalein and memantine reduces oxidative stress and protects against β-amyloid-induced alzheimer’s disease in rat model.Antioxidants202312370710.3390/antiox12030707 36978955
    [Google Scholar]
  75. WangY. WuX. RenW. LiuY. DaiX. WangS. HuoQ. SunY. Protective effects of fisetin in an Aβ1-42-induced rat model of Alzheimer’s disease.Folia Neuropathol.202361219620810.5114/fn.2023.126893 37587894
    [Google Scholar]
  76. KuşiM. BecerE. VatanseverH.S. YücecanS. Neuroprotective effects of hesperidin and naringin in SK-N-AS cell as an in vitro model for alzheimer’s disease.J. Am. Nutr. Assoc.202342441842610.1080/07315724.2022.2062488 35776430
    [Google Scholar]
  77. YilmazerU.T. PehlivanB. GuneyS. Yar-SaglamA.S. BalabanliB. KaltaliogluK. Coskun-CevherS. The combined effect of morin and hesperidin on memory ability and oxidative/nitrosative stress in a streptozotocin-induced rat model of Alzheimer’s disease.Behav. Brain Res.202447111513110.1016/j.bbr.2024.115131 38942085
    [Google Scholar]
  78. AlexanderC. ParsaeeA. VasefiM. Polyherbal and multimodal treatments: Kaempferol- and quercetin-rich herbs alleviate symptoms of alzheimer’s disease.Biology20231211145310.3390/biology12111453 37998052
    [Google Scholar]
  79. JinS. ZhangL. WangL. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine.Biomed. Pharmacother.202316511521510.1016/j.biopha.2023.115215
    [Google Scholar]
  80. SimonD.K. TannerC.M. BrundinP. Parkinson disease epidemiology, pathology, genetics, and pathophysiology.Clin. Geriatr. Med.202036111210.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  81. JungU.J. KimS.R. Beneficial effects of flavonoids against parkinson’s disease.J. Med. Food201821542143210.1089/jmf.2017.4078 29412767
    [Google Scholar]
  82. CostaS.L. SilvaV.D.A. dos Santos SouzaC. SantosC.C. ParisI. MuñozP. Segura-AguilarJ. Impact of plant-derived flavonoids on neurodegenerative diseases.Neurotox. Res.2016301415210.1007/s12640‑016‑9600‑1 26951456
    [Google Scholar]
  83. HuangJ. ZhangX. YangX. YvQ. YeF. ChenS. CuiY. GuL. ZhuM. LiW. Baicalin exerts neuroprotective actions by regulating the Nrf2-NLRP3 axis in toxin-induced models of Parkinson’s disease.Chem. Biol. Interact.202438711082010.1016/j.cbi.2023.110820 38016618
    [Google Scholar]
  84. LiX. DengQ. KuangY. MaoH. YaoM. LinC. LuoX. XuP. Identifying NFKB1, STAT3, and CDKN1A as baicalein’s potential hub targets in parkinson’s disease-related α-synuclein-mediated pathways by integrated bioinformatics strategies.Curr. Pharm. Des.202329302426243710.2174/0113816128259065231011114116 37859325
    [Google Scholar]
  85. HaoS.H. JiaR.F. WangJ.R. GaoL. QinX.M. Exploring the mechanism of anti-hereditary Parkinson’s disease of baicalein based on PINK1 RNAi Drosophila model.Acta Pharmaceutica Sinica202367267810.16438/j.0513‑4870.2022‑0949
    [Google Scholar]
  86. AhmedY.R. Aboul NaserA.F. ElbatanonyM.M. El-FekyA.M. KhalilW.K.B. HamedM.A.A. Gene expression, oxidative stress, and neurotransmitters in rotenone-induced parkinson’s disease in rats: Role of naringin from citrus aurantium via blocking adenosine A2A receptor.Curr. Bioact. Compd.2024205e10102322198410.2174/0115734072268296231002060839
    [Google Scholar]
  87. MadihaS. BatoolZ. ShahzadS. TabassumS. LiaquatL. AfzalA. SadirS. SajidI. MehdiB.J. AhmadS. HaiderS. Naringenin, a functional food component, improves motor and non-motor symptoms in animal model of parkinsonism induced by rotenone.Plant Foods Hum. Nutr.202378465466110.1007/s11130‑023‑01103‑4 37796415
    [Google Scholar]
  88. QinP. LiuM. WangX. MaJ. Kaempferol ameliorated levodopa-induced dyskinesia in experimental rats: A role of brain monoamines, cFOS, FosB, Parkin, Pdyn, TH, and p-JNK.Biocell202448351352310.32604/biocell.2023.045640
    [Google Scholar]
  89. LiuZ. ZhuangW. CaiM. LvE. WangY. WuZ. WangH. FuW. Kaemperfol protects dopaminergic neurons by promoting mtor-mediated autophagy in parkinson’s disease models.Neurochem. Res.20224851395141110.1007/s11064‑022‑03819‑2 36469163
    [Google Scholar]
  90. LinH. WangX. ZhaoJ. LinZ. Protective effect of kaempferol against cognitive and neurological disturbances induced by d-galactose and aluminum chloride in mice.J. Funct. Foods202310010538510.1016/j.jff.2022.105385
    [Google Scholar]
  91. McColganP. TabriziS.J. Huntington’s disease: A clinical review.Eur. J. Neurol.2018251243410.1111/ene.13413 28817209
    [Google Scholar]
  92. TabriziS.J. Estevez-FragaC. van Roon-MomW.M.C. FlowerM.D. ScahillR.I. WildE.J. Muñoz-SanjuanI. SampaioC. RosserA.E. LeavittB.R. Potential disease-modifying therapies for Huntington’s disease: Lessons learned and future opportunities.Lancet Neurol.202221764565810.1016/S1474‑4422(22)00121‑1 35716694
    [Google Scholar]
  93. KhanH. UllahH. TundisR. BelwalT. DevkotaH.P. DagliaM. CetinZ. SaygiliE.I. CamposM.G. CapanogluE. DuM. DarP. XiaoJ. Dietary flavonoids in the management of huntington’s disease: Mechanism and clinical perspective.eFood202011385210.2991/efood.k.200203.001
    [Google Scholar]
  94. FeldmanE.L. GoutmanS.A. PetriS. MazziniL. SavelieffM.G. ShawP.J. SobueG. Amyotrophic lateral sclerosis.Lancet2022400103601363138010.1016/S0140‑6736(22)01272‑7 36116464
    [Google Scholar]
  95. RokadeA.V. YelneP. GiriA. Riluzole and Edavarone: The hope against amyotrophic lateral sclerosis.Cureus20221410e3003510.7759/cureus.30035 36381733
    [Google Scholar]
  96. KorkmazO.T. AytanN. CarrerasI. ChoiJ.K. KowallN.W. JenkinsB.G. DedeogluA. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis.Neurosci. Lett.201456628629110.1016/j.neulet.2014.02.058 24637017
    [Google Scholar]
  97. MaherP. Preventing and treating neurological disorders with the flavonol fisetin.Brain Plast.20216215516610.3233/BPL‑200104
    [Google Scholar]
  98. UedaT. IndenM. ShiraiK. SekineS. MasakiY. KuritaH. IchiharaK. InuzukaT. HozumiI. The effects of Brazilian green propolis that contains flavonols against mutant copper-zinc superoxide dismutase-mediated toxicity.Sci. Rep.201771288210.1038/s41598‑017‑03115‑y 28588226
    [Google Scholar]
  99. BhatiaN.K. ModiP. SharmaS. DeepS. Quercetin and baicalein act as potent antiamyloidogenic and fibril destabilizing agents for SOD1 fibrils.ACS Chem. Neurosci.20201181129113810.1021/acschemneuro.9b00677 32208672
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249344284241112184703
Loading
/content/journals/cnsamc/10.2174/0118715249344284241112184703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test