Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

Many disorders, including heart, bone, cancer, liver, and brain disease, have been treated using stem cell therapy as a viable alternative. The somatosensory system is affected by a lesion, which leads to neuropathic pain (NP), and just a relatively tiny fraction of patients now receive effective care from existing pharmacological medications. There have been studies to show the effectiveness of various stem cells in reducing or treating experimental neurological pain, although these studies are uncommon in number. In this review, we will summarize the preclinical and clinical research that has been conducted on the effectiveness of several stem cell types, such as mesenchymal stem cells, bone-derived stem cells, and neural stem cells, in reducing neurological pain in this study.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249328823241111101137
2024-12-03
2025-10-08
Loading full text...

Full text loading...

References

  1. BeiranvandS. Hasanzadeh-KiabiF. BeiranvandS. Hasanzadeh-KiabiF. Application of Bone Morphogenetic Protein in Spinal Fusion Surgery.Minimally Invasive Spine Surgery - Advances and Innovations.IntechOpen2021
    [Google Scholar]
  2. CaretteS. Chronic pain syndromes.Ann. Rheum. Dis.199655497501
    [Google Scholar]
  3. AkhavanO. GhaderiE. The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation.J. Mater. Chem. B Mater. Biol. Med.201423456025611
    [Google Scholar]
  4. AkhavanO. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system.J. Mater. Chem. B Mater. Biol. Med.20164193169319010.1039/C6TB00152A
    [Google Scholar]
  5. WangY. LeeW.C. MangaK.K. AngP.K. LuJ. LiuY.P. LimC.T. LohK.P. Fluorinated graphene for promoting neuro‐induction of stem cells.Adv. Mater.201224314285429010.1002/adma.201200846
    [Google Scholar]
  6. AkhavanO. GhaderiE. ShirazianS.A. RahighiR. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells.Carbon2016977177
    [Google Scholar]
  7. TangM. SongQ. LiN. JiangZ. HuangR. ChengG. Enhancement of electrical signaling in neural networks on graphene films.Biomaterials201334276402641110.1016/j.biomaterials.2013.05.024
    [Google Scholar]
  8. AkhavanO. GhaderiE. Differentiation of human neural stem cells into neural networks on graphene nanogrids.J. Mater. Chem. B Mater. Biol. Med.20131456291630110.1039/c3tb21085e
    [Google Scholar]
  9. AkhavanO. GhaderiE. ShahsavarM. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells.Carbon20135920021110.1016/j.carbon.2013.03.010
    [Google Scholar]
  10. JalilinejadN. RabieeM. BaheiraeiN. GhahremanzadehR. SalarianR. RabieeN. AkhavanO. ZarrintajP. HejnaA. SaebM.R. ZarrabiA. SharifiE. YousefiaslS. ZareE.N. Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering.Bioeng. Transl. Med.202381e1034710.1002/btm2.10347
    [Google Scholar]
  11. AmaniH. MostafaviE. ArzaghiH. DavaranS. AkbarzadehA. AkhavanO. Pazoki-ToroudiH. WebsterT.J. Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering.ACS Biomater. Sci. Eng.20195119321410.1021/acsbiomaterials.8b00658
    [Google Scholar]
  12. RahimnejadM. BoroujeniN. JahangiriS. RabieeN. RabieeM. MakvandiP. AkhavanO. VarmaR.S. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering.Nano-Micro Lett.202113118210.1007/s40820‑021‑00697‑1
    [Google Scholar]
  13. BeiranvandS. New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.Nanoscale Res. Lett.20161130710.1186/s11671‑016‑1520‑8
    [Google Scholar]
  14. LukatsI.W. Anticonvulsants for neuropathic pain syndromes.Drugs2000601029105210.2165/00003495‑200060050‑00005
    [Google Scholar]
  15. BeiranvandS. KarimiA. Effect of Encapsulated Artemisia aucheri. L Magnetic Nanogel Extract on Shoulder Block in Rat.Drug Res. (Stuttg.)2018682657110.1055/s‑0043‑117180
    [Google Scholar]
  16. ChenL. DongS.W. LiuJ.P. TaoX. TangK.L. XuJ.Z. Synergy of tendon stem cells and platelet‐rich plasma in tendon healing.J. Orthop. Res.201230699199710.1002/jor.22033
    [Google Scholar]
  17. ThanasasC. PapadimitriouG. CharalambidisC. ParaskevopoulosI. PapanikolaouA. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis.Am. J. Sports Med.201139102130213410.1177/0363546511417113
    [Google Scholar]
  18. MayhallE.A. LugassyN. ZonL.I. The clinical potential of stem cells.Curr. Opin. Cell Biol.200416671372010.1016/j.ceb.2004.09.007
    [Google Scholar]
  19. LodiD. IannittiT. PalmieriB. Stem cells in clinical practice: applications and warnings.J. Exp. Clin. Cancer Res.2011301910.1186/1756‑9966‑30‑9
    [Google Scholar]
  20. RezaeeM.M. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism.Daru2014221810.1186/2008‑2231‑22‑8
    [Google Scholar]
  21. WangQ. Mesenchymal stem cells transplantation for neuropathic pain induced by peripheral nerve injury in animal models: A systematic review.Stem Cells Dev.202029221420142810.1089/scd.2020.0131
    [Google Scholar]
  22. ShiranM.R. Gharooee AhangarS. RostamkolaeeS.H. SefidgarA.A. BaradaranM. HashemiM. BaleghiM. MoghadamniaA.A. Phenotyping of CYP3A by Oral Midazolam in Healthy Mazandarani Volunteers (Iran).Majallah-i Danishgah-i Ulum-i Pizishki-i Babul2011131925
    [Google Scholar]
  23. BeiranvandS. MoradkhaniM. Bupivacaine versus liposomal bupivacaine for pain control.Drug Res. (Stuttg.)201868736536910.1055/s‑0043‑121142
    [Google Scholar]
  24. PakJ. Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads.Pain Physician2012115758510.36076/ppj.2012/15/75
    [Google Scholar]
  25. WangX. LuoE. LiY. HuJ. Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination.Brain Res.20111383718010.1016/j.brainres.2011.01.098
    [Google Scholar]
  26. WangY. JiaH. LiW.Y. TongX.J. LiuG.B. KangS.W. Synergistic effects of bone mesenchymal stem cells and chondroitinase ABC on nerve regeneration after acellular nerve allograft in rats.Cell. Mol. Neurobiol.201232336137110.1007/s10571‑011‑9764‑4
    [Google Scholar]
  27. LadakA. OlsonJ. TredgetE.E. GordonT. Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model.Exp. Neurol.2011228224225210.1016/j.expneurol.2011.01.013
    [Google Scholar]
  28. HernándezJ. Torres-EspínA. NavarroX. Adult Stem Cell Transplants for Spinal Cord Injury Repair: Current State in Preclinical Research.Curr. Stem Cell Res. Ther.20116327328710.2174/157488811796575323
    [Google Scholar]
  29. HibnerM. CastellanosM.E. DrachmanD. BalducciJ. Repeat Operation for Treatment of Persistent Pudendal Nerve Entrapment After Pudendal Neurolysis.J. Minim. Invasive Gynecol.201219332533010.1016/j.jmig.2011.12.022
    [Google Scholar]
  30. AndiaI. SánchezM. MaffulliN. Platelet rich plasma therapies for sports muscle injuries: any evidence behind clinical practice?Expert Opin. Biol. Ther.201111450951810.1517/14712598.2011.554813
    [Google Scholar]
  31. PittengerM.F. MackayA.M. BeckS.C. JaiswalR.K. DouglasR. MoscaJ.D. MoormanM.A. SimonettiD.W. CraigS. MarshakD.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells.Science1999284541114314710.1126/science.284.5411.143
    [Google Scholar]
  32. FarahaniP.K. Nanotechnology approaches in abdominal wall reconstruction about scaffold and meshes: A Narrative Review.JPRAS Open202410.1016/j.jpra.2024.06.009
    [Google Scholar]
  33. FarahaniP.K. Application of tissue engineering and biomaterials in nose surgery.JPRAS Open2023
    [Google Scholar]
  34. AktasM. BuchheiserA. HoubenA. ReimannV. RadkeT. JeltschK. MaierP. ZellerW.J. KoglerG. Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood.Cytotherapy201012333834810.3109/14653241003695034
    [Google Scholar]
  35. NazarovI. LeeJ.W. SoupeneE. EtemadS. KnapikD. GreenW. BashkirovaE. FangX. MatthayM.A. KuypersF.A. SerikovV.B. Multipotent Stromal Stem Cells from Human Placenta Demonstrate High Therapeutic Potential.Stem Cells Transl. Med.20121535937210.5966/sctm.2011‑0021
    [Google Scholar]
  36. GongX. SunZ. CuiD. XuX. ZhuH. WangL. QianW. HanX. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells.Cell Biol. Int.201438440541110.1002/cbin.10240
    [Google Scholar]
  37. MusolinoP.L. CoronelM.F. HökfeltT. VillarM.J. Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction.Neurosci. Lett.200741819710110.1016/j.neulet.2007.03.001
    [Google Scholar]
  38. SaeidiborojeniH. AslM.F. ShabrandyA. AhangarS.G. Dynamic control and timely correction of blood glucose levels in diabetic patients undergoing traumatic spinal vertebral fracture surgery to reduce surgery site infection.Int. J. Surg. Open20235410061810.1016/j.ijso.2023.100618
    [Google Scholar]
  39. ShibataT. NaruseK. KamiyaH. KozakaeM. KondoM. YasudaY. NakamuraN. OtaK. TosakiT. MatsukiT. NakashimaE. HamadaY. OisoY. NakamuraJ. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats.Diabetes200857113099310710.2337/db08‑0031
    [Google Scholar]
  40. SiniscalcoD. GiordanoC. GalderisiU. LuongoL. AlessioN. Di BernardoG. de NovellisV. RossiF. MaioneS. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice.Cell. Mol. Life Sci.201067465566910.1007/s00018‑009‑0202‑4
    [Google Scholar]
  41. SiniscalcoD. GiordanoC. GalderisiU. LuongoL. de NovellisV. RossiF. MaioneS. Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice.Front. Integr. Nuerosci.2011510.3389/fnint.2011.00079
    [Google Scholar]
  42. Jean-ToussaintR. TianY. ChaudhuriA.D. HaugheyN.J. SacanA. AjitS.K. Proteome characterization of small extracellular vesicles from spared nerve injury model of neuropathic pain.J. Proteomics202021110354010.1016/j.jprot.2019.103540
    [Google Scholar]
  43. ShiueS.J. RauR.H. ShiueH.S. HungY.W. LiZ.X. YangK.D. ChengJ.K. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury–induced pain in rats.Pain2019160121022310.1097/j.pain.0000000000001395
    [Google Scholar]
  44. HsuJ.M. ShiueS.J. YangK.D. ShiueH.S. HungY.W. PannuruP. PoongodiR. LinH.Y. ChengJ.K. Locally applied stem cell exosome-scaffold attenuates nerve injury-induced pain in rats.J. Pain Res.2020133257326810.2147/JPR.S286771
    [Google Scholar]
  45. D’AgnelliS. GerraM.C. BignamiE. Arendt-NielsenL. Exosomes as a new pain biomarker opportunity.Mol. Pain202016174480692095780010.1177/1744806920957800
    [Google Scholar]
  46. TakamuraH. TerashimaT. MoriK. KatagiM. OkanoJ. SuzukiY. ImaiS. KojimaH. Bone-marrow-derived mononuclear cells relieve neuropathic pain after spinal nerve injury in mice.Mol. Ther. Methods Clin. Dev.20201765766510.1016/j.omtm.2020.03.020
    [Google Scholar]
  47. KlassM. GavrikovV. DruryD. StewartB. HunterS. DensonD.D. HordA. CseteM. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy.Anesth. Analg.2007104494494810.1213/01.ane.0000258021.03211.d0
    [Google Scholar]
  48. UsachV. MaletM. LópezM. LavalleL. PiñeroG. SaccolitiM. CuetoA. BrumovskyP. BruscoA. Setton-AvrujP. Systemic transplantation of bone marrow mononuclear cells promotes axonal regeneration and analgesia in a model of wallerian degeneration.Transplantation201710171573158610.1097/TP.0000000000001478
    [Google Scholar]
  49. NaruseK. SatoJ. FunakuboM. HataM. NakamuraN. KobayashiY. KamiyaH. ShibataT. KondoM. HimenoT. MatsubaraT. OisoY. NakamuraJ. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy.PLoS One2011611e2745810.1371/journal.pone.0027458
    [Google Scholar]
  50. ViejoM. MenendezY. GelazM.A. GutierrezA. RodriguezM.A. GalaJ. HernandezJ. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy.Transplant Proc.20134543443910.1016/j.transproceed.2012.05.091
    [Google Scholar]
  51. VickersR. KarstenE. LilischkisR. FloodJ. A preliminary report on stem cell therapy for neuropathic pain in humans.J. Pain Res.2014201425526310.2147/JPR.S63361
    [Google Scholar]
  52. MaccarioR. PodestàM. MorettaA. CometaA. ComoliP. MontagnaD. DaudtL. IbaticiA. PiaggioG. PozziS. FrassoniF. LocatelliF. Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4 + T-cell subsets expressing a regulatory/suppressive phenotype.Haematologica200590516525
    [Google Scholar]
  53. DoetschF. CailléI. LimD.A. García-VerdugoJ.M. Alvarez-BuyllaA. Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain.Cell199997670371610.1016/S0092‑8674(00)80783‑7
    [Google Scholar]
  54. ReynoldsB.A. WeissS. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science.1992255170710.1126/science.1553558
    [Google Scholar]
  55. Neural stem cells of the subventricular zone: from neurogenesis to glioblastoma origin.Available from: https://www.frontiersin.org/articles/10.3389/fonc.2021.750116/(accessed on 23-10-2024)
  56. FranchiS. ValsecchiA.E. BorsaniE. ProcacciP. FerrariD. ZaffaC. SartoriP. RodellaL.F. VescoviA. MaioneS. RossiF. SacerdoteP. ColleoniM. PaneraiA.E. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy.Pain2012153485086110.1016/j.pain.2012.01.008
    [Google Scholar]
  57. FerrariD. BindaE. FilippisL.D. VescoviA.L. Isolation of neural stem cells from neural tissues using the neurosphere technique.Curr. Protoc. Stem Cell Biol.201015110.1002/9780470151808.sc02d06s15
    [Google Scholar]
  58. BeiranvandS. Pain management using nanotechnology approaches.Artif. Cells, Nanomed. Biotechnol.201947146246810.1080/21691401.2018.1553885
    [Google Scholar]
  59. XuQ. ZhangM. LiuJ. LiW. Intrathecal transplantation of neural stem cells appears to alleviate neuropathic pain in rats through release of GDNF.Ann. Clin. Lab. Sci.201343154162
    [Google Scholar]
  60. WangD. AllccaA.E.L. ChungT.F. KildishevA.V. ChenY.P. BoltassevaA. ShalaevV.M. Enhancing the graphene photocurrent using surface plasmons and a p-n junction.Light Sci. Appl.20209112610.1038/s41377‑020‑00344‑1
    [Google Scholar]
  61. RohD.H. SeoM.S. ChoiH.S. ParkS.B. HanH.J. BeitzA.J. KangK.S. LeeJ.H. Transplantation of Human Umbilical Cord Blood or Amniotic Epithelial Stem Cells Alleviates Mechanical Allodynia after Spinal Cord Injury in Rats.Cell Transplant.20132291577159010.3727/096368912X659907
    [Google Scholar]
  62. YangC.C. ShihY.H. KoM.H. HsuS.Y. ChengH. FuY.S. Transplantation of human umbilical mesenchymal stem cells from wharton’s jelly after complete transection of the rat spinal cord.PLoS One2008310e333610.1371/journal.pone.0003336
    [Google Scholar]
  63. Hassanzadeh-kiabiF. Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat.Artif. Cells Nanomed. Biotechnol.2017465994100010.1080/21691401.2017.1354303
    [Google Scholar]
  64. FranchiS. CastelliM. AmodeoG. NiadaS. FerrariD. VescoviA. BriniA.T. PaneraiA.E. SacerdoteP. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment.BioMed Res. Int.2014201411010.1155/2014/470983
    [Google Scholar]
  65. MendonçaM.V.P. LaroccaT.F. de Freitas SouzaB.S. VillarrealC.F. SilvaL.F.M. MatosA.C. NovaesM.A. BahiaC.M.P. de Oliveira Melo MartinezA.C. KanetoC.M. FurtadoS.B.C. SampaioG.P. SoaresM.B.P. dos SantosR.R. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury.Stem Cell Res. Ther.20145612610.1186/scrt516
    [Google Scholar]
  66. VaqueroJ. ZuritaM. RicoM.A. AguayoC. BonillaC. MarinE. TapiadorN. SevillaM. VazquezD. CarballidoJ. FernandezC. Rodriguez-BotoG. OvejeroM. VaqueroJ. ZuritaM. BonillaC. RicoM.A. AguayoC. RodríguezA. MartínezP. de la CalleS. FernándezM.V. FernándezC. Rodríguez-BotoG. de ReinaL. SaabA. CotuaC. SantanderX.A. GutiérrezR. SaldañaC. HassanR. OrtegaC. MadridA. MariscalM. MarínE. LópezL.F. PérezA. EbratE.E. VaqueroM. MartínM. MayoralI. CanalesD. CarballidoJ. VazquezD. SerranoR. SaucedoG. TapiadorN. SevillaM. CabreraR. Begoña Pérez de CaminoM.E.M. AlarcónA. NayaD. AlonsoR. AlamoJ.R. RomeraI. MourelleI. SánchezC. SegoviaR. GutiérrezA. GuilloV. del ValleS. ReyP. MucientesJ. RodríguezB. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline.Cytotherapy201820680681910.1016/j.jcyt.2018.03.032
    [Google Scholar]
  67. HelenM.B. Stem cells in the treatment of disease.N. Engl. J. Med.20193801748176010.1056/NEJMra1716145
    [Google Scholar]
  68. SaadatiM. AkhavanO. FazliH. NematiS. BaharvandH. Controlled differentiation of human neural progenitor cells on molybdenum disulfide/graphene oxide heterojunction scaffolds by photostimulation.ACS Appl. Mater. Interfaces20231533713373010.1021/acsami.2c15431
    [Google Scholar]
  69. AndrewsP.J. PoirrierA.L. LundV.J. ChoiD. Safety of human olfactory mucosal biopsy for the purpose of olfactory ensheathing cell harvest and nerve repair: a prospective controlled study in patients undergoing endoscopic sinus surgery.Rhinology201654218319110.4193/Rhino15.365
    [Google Scholar]
  70. ZhangJ. WangB. XiaoZ. ZhaoY. ChenB. HanJ. GaoY. DingW. ZhangH. DaiJ. Olfactory ensheathing cells promote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling.Neuroscience2008153240641310.1016/j.neuroscience.2008.02.067
    [Google Scholar]
  71. LangB.C. ZhangZ. LvL.Y. LiuJ. WangT.Y. YangL.H. LiaoD.Q. ZhangW.S. WangT.H. OECs transplantation results in neuropathic pain associated with BDNF regulating ERK activity in rats following cord hemisection.BMC Neurosci.20131418010.1186/1471‑2202‑14‑80
    [Google Scholar]
  72. CaoT. MatyasJ.J. RennC.L. FadenA.I. DorseyS.G. WuJ. Function and mechanisms of truncated BDNF receptor TrkB. T1 in neuropathic pain.Cells202095119410.3390/cells9051194
    [Google Scholar]
  73. FéronF. PerryC. CochraneJ. LicinaP. NowitzkeA. UrquhartS. GeraghtyT. Mackay-SimA. Autologous olfactory ensheathing cell transplantation in human spinal cord injury.Brain2005128122951296010.1093/brain/awh657
    [Google Scholar]
  74. TabakowP. JarmundowiczW. CzapigaB. FortunaW. MiedzybrodzkiR. CzyzM. HuberJ. SzarekD. OkurowskiS. SzewczykP. GorskiA. RaismanG. Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury.Cell Transplant.20132291591161210.3727/096368912X663532
    [Google Scholar]
  75. DuganE.A. JergovaS. SagenJ. Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury.Exp. Neurol.202032711320810.1016/j.expneurol.2020.113208
    [Google Scholar]
  76. MasonB.J. QuelloS. ShadanF. Gabapentin for the treatment of alcohol use disorder.Expert Opin. Investig. Drugs201827111312410.1080/13543784.2018.1417383
    [Google Scholar]
  77. HwangI. HahmS.C. ChoiK.A. ParkS.H. JeongH. YeaJ.H. KimJ. HongS. Intrathecal transplantation of embryonic stem cell-derived spinal GABAergic neural precursor cells attenuates neuropathic pain in a spinal cord injury rat model.Cell Transplant.201625359360710.3727/096368915X689460
    [Google Scholar]
  78. ManionJ. KhuongT. HarneyD. LittleboyJ.B. RuanT. LooL. CostiganM. LaranceM. CaronL. NeelyG.G. Human induced pluripotent stem cell-derived GABAergic interneuron transplants attenuate neuropathic pain.Pain2020161237938710.1097/j.pain.0000000000001733
    [Google Scholar]
  79. Askarian-AmiriS. MalekiS.N. AlaviS.N.R. NeishabooriA.M. TolouiA. GubariM.I.M. SarveazadA. HosseiniM. YousefifardM. The efficacy of GABAergic precursor cells transplantation in alleviating neuropathic pain in animal models: a systematic review and meta-analysis.Korean J. Pain2022351435810.3344/kjp.2022.35.1.43
    [Google Scholar]
  80. BertaT. QadriY. TanP.H. JiR.R. Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain.Expert Opin. Ther. Targets201721769570310.1080/14728222.2017.1328057
    [Google Scholar]
  81. FernandesV. SharmaD. VaidyaS. PA S, Guan Y, Kalia K, Tiwari V. Cellular and molecular mechanisms driving neuropathic pain: recent advancements and challenges.Expert Opin. Ther. Targets201822213114210.1080/14728222.2018.1420781
    [Google Scholar]
  82. ZhangW. ZhuZ. LiuZ. The role and pharmacological properties of the P2X7 receptor in neuropathic pain.Brain Res. Bull.2020155192810.1016/j.brainresbull.2019.11.006
    [Google Scholar]
  83. ZhongZ. ChenA. FaZ. DingZ. XiaoL. WuG. WangQ. ZhangR. Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-κB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats.Neurobiol. Dis.202014310494510.1016/j.nbd.2020.104945
    [Google Scholar]
  84. WatanabeS. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.Stem Cells20203361902191410.1002/stem.2006
    [Google Scholar]
  85. LuoY. ZouY. YangL. LiuJ. LiuS. LiuJ. ZhouX. ZhangW. WangT. Transplantation of NSCs with OECs alleviates neuropathic pain associated with NGF downregulation in rats following spinal cord injury.Neurosci. Lett.201354910310810.1016/j.neulet.2013.06.005
    [Google Scholar]
  86. Karimi-AbdolrezaeeS. EftekharpourE. WangJ. SchutD. FehlingsM.G. Synergistic Effects of Transplanted Adult Neural Stem/Progenitor Cells, Chondroitinase, and Growth Factors Promote Functional Repair and Plasticity of the Chronically Injured Spinal Cord.J. Neurosci.20103051657167610.1523/JNEUROSCI.3111‑09.2010
    [Google Scholar]
  87. HofstetterC.P. HolmströmN.A.V. LiljaJ.A. SchweinhardtP. HaoJ. SpengerC. Wiesenfeld-HallinZ. KurpadS.N. FrisénJ. OlsonL. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome.Nat. Neurosci.20058334635310.1038/nn1405
    [Google Scholar]
  88. MaciasM. SyringM. PizziM. CroweM. AlexanianA. KurpadS. Pain with no gain: Allodynia following neural stem cell transplantation in spinal cord injury.Exp. Neurol.2006201233534810.1016/j.expneurol.2006.04.035
    [Google Scholar]
  89. WatermanR.S. MorgenweckJ. NossamanB.D. ScandurroA.E. ScandurroS.A. BetancourtA.M. Anti-Inflammatory Mesenchymal Stem Cells ( MSC2 ) Attenuate Symptoms of Painful Diabetic Peripheral Neuropathy.Stem Cells Transl. Med.20121755756510.5966/sctm.2012‑0025
    [Google Scholar]
  90. SacerdoteP. NiadaS. FranchiS. ArrigoniE. RossiA. YenagiV. de GirolamoL. PaneraiA.E. BriniA.T. Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy.Stem Cells Dev.20132281252126310.1089/scd.2012.0398
    [Google Scholar]
  91. In ChoiJ. Tae ChoH. Ki JeeM. Kyung KangS. Core-shell nanoparticle controlled hATSCs neurogenesis for neuropathic pain therapy.Biomaterials201334214956497010.1016/j.biomaterials.2013.02.037
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249328823241111101137
Loading
/content/journals/cnsamc/10.2174/0118715249328823241111101137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test