Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1871-5249
  • E-ISSN: 1875-6166

Abstract

The microbiota that inhabits the gastrointestinal tract has been linked to various gastrointestinal and non-gastrointestinal disorders. Scientists have been studying how the bacteria in our intestines have an effect on our brain and nervous system. This connection is called the “microbiota-gut-brain axis”. Given the capacity of probiotics, which are live non-pathogenic microorganisms, to reinstate the normal microbial population within the host and confer advantages, their potential impact has been subjected to scrutiny with regard to neurological and mental conditions. Material sourced for this review included peer-reviewed literature annotated in the PubMed, Web of Science, Scopus, and Google Scholar databases. The result has indicated the integration of probiotics into a child's diet to enhance the neuro-behavioral symptoms. Notwithstanding this, the current data set has been found to be insufficient and inconclusive. The potential utility of probiotics for the prevention or treatment of neurologic and mental disorders has become a subject of substantial interest.

Loading

Article metrics loading...

/content/journals/cnsamc/10.2174/0118715249315760240905043415
2024-09-20
2025-10-18
Loading full text...

Full text loading...

References

  1. TabriziA. KhaliliL. Homayouni-RadA. PourjafarH. DehghanP. AnsariF. Prebiotics, as promising functional food to patients with psychological disorders: A review on mood disorders, sleep, and cognition.Neuroquantology201917610.14704/nq.2019.17.6.2189
    [Google Scholar]
  2. ZuckoJ. StarcevicA. DiminicJ. OrosD. MortazavianA.M. PutnikP. Probiotic – friend or foe?Curr. Opin. Food Sci.202032454910.1016/j.cofs.2020.01.007
    [Google Scholar]
  3. GasbarriniG. BonviciniF. GramenziA. Probiotics History.J. Clin. Gastroenterol.201650Suppl. 2S116S11910.1097/MCG.000000000000069727741152
    [Google Scholar]
  4. ZangT. HanL. LuZ. TanL. LiangD. ShenX. LiaoX. LiuY. RenH. SunJ. The history and prediction of prebiotics and postbiotics: a patent analysis.Nutrients202416338010.3390/nu1603038038337666
    [Google Scholar]
  5. KianiA. NamiY. HedayatiS. JaymandM. SamadianH. HaghshenasB. Tarkhineh as a new microencapsulation matrix improves the quality and sensory characteristics of probiotic Lactococcus lactis KUMS-T18 enriched potato chips.Sci. Rep.20211111259910.1038/s41598‑021‑92095‑134131254
    [Google Scholar]
  6. DinanT.G. StantonC. CryanJ.F. Psychobiotics: a novel class of psychotropic.Biol. Psychiatry2013741072072610.1016/j.biopsych.2013.05.00123759244
    [Google Scholar]
  7. KimY.K. Frontiers in psychiatry: Artificial intelligence, precision medicine, and other paradigm shifts.Springer201910.1007/978‑981‑32‑9721‑0
    [Google Scholar]
  8. IslamS.U. Clinical uses of probiotics.Medicine (Baltimore)2016955e265810.1097/MD.000000000000265826844491
    [Google Scholar]
  9. KerryR.G. PatraJ.K. GoudaS. ParkY. ShinH.S. DasG. Benefaction of probiotics for human health: A review.Yao Wu Shi Pin Fen Xi201826392793929976412
    [Google Scholar]
  10. KristensenN.B. BryrupT. AllinK.H. NielsenT. HansenT.H. PedersenO. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials.Genome Med.2016815210.1186/s13073‑016‑0300‑527159972
    [Google Scholar]
  11. OoiS.L. CorreaD. PakS.C. Probiotics, prebiotics, and low FODMAP diet for irritable bowel syndrome – What is the current evidence?Complement. Ther. Med.201943738010.1016/j.ctim.2019.01.01030935559
    [Google Scholar]
  12. Białecka-DębekA. GrandaD. SzmidtM.K. ZielińskaD. Gut microbiota, probiotic interventions, and cognitive function in the elderly: a review of current knowledge.Nutrients2021138251410.3390/nu1308251434444674
    [Google Scholar]
  13. da SilvaT.F. GlóriaR.A. AmericoM.F. FreitasA.S. de JesusL.C.L. BarrosoF.A.L. LagunaJ.G. Coelho-RochaN.D. TavaresL.M. le LoirY. JanG. GuédonÉ. AzevedoV.A.C. Unlocking the potential of probiotics: a comprehensive review on research, production, and regulation of probiotics.Probiotics Antimicrob. Proteins202413710.1007/s12602‑024‑10247‑x38539008
    [Google Scholar]
  14. TimmermanH.M. KoningC.J.M. MulderL. RomboutsF.M. BeynenA.C. Monostrain, multistrain and multispecies probiotics—A comparison of functionality and efficacy.Int. J. Food Microbiol.200496321923310.1016/j.ijfoodmicro.2004.05.01215454313
    [Google Scholar]
  15. ThirumalaiA. GirigoswamiK. HariniK. PallaviP. GowthamP. GirigoswamiA. A review of the current state of probiotic nanoencapsulation and its future prospects in biomedical applications.Biocatal. Agric. Biotechnol.20245710310110.1016/j.bcab.2024.103101
    [Google Scholar]
  16. ChapmanC.M.C. GibsonG.R. RowlandI. Health benefits of probiotics: are mixtures more effective than single strains?Eur. J. Nutr.201150111710.1007/s00394‑010‑0166‑z21229254
    [Google Scholar]
  17. WangH. LeeI.S. BraunC. EnckP. Effect of probiotics on central nervous system functions in animals and humans: a systematic review.J. Neurogastroenterol. Motil.201622458960510.5056/jnm1601827413138
    [Google Scholar]
  18. AbiriR. AliabadiM. KadivarianS. BorjiS. MoradiJ. AlvandiA. Potentially probiotic bacteria isolated from preparation stages of Kermanshahi traditional fat.Iran. J. Med. Microbiol.202115335236010.30699/ijmm.15.3.352
    [Google Scholar]
  19. MirandaR.F. de PaulaM.M. da CostaG.M. BarãoC.E. da SilvaA.C.R. RaicesR.S.L. GomesR.G. PimentelT.C. Orange juice added with L. casei: is there an impact of the probiotic addition methodology on the quality parameters?Lebensm. Wiss. Technol.201910618619310.1016/j.lwt.2019.02.047
    [Google Scholar]
  20. ChenZ. ZhangL. ZengL. YangX. JiangL. GuiG. ZhangZ. Probiotics supplementation therapy for pathological neonatal jaundice: a systematic review and meta-analysis.Front. Pharmacol.2017843210.3389/fphar.2017.0043228713275
    [Google Scholar]
  21. WangJ. TangH. ZhangC. ZhaoY. DerrienM. RocherE. van-Hylckama VliegJ.E.T. StrisselK. ZhaoL. ObinM. ShenJ. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice.ISME J.20159111510.1038/ismej.2014.9924936764
    [Google Scholar]
  22. NamiY. TavallaeiO. KianiA. MoazamiN. SamariM. DerakhshankhahH. JaymandM. HaghshenasB. Anti-oral cancer properties of potential probiotic lactobacilli isolated from traditional milk, cheese, and yogurt.Sci. Rep.2024141639810.1038/s41598‑024‑57024‑y38493249
    [Google Scholar]
  23. HemarajataP. VersalovicJ. Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation.Therap. Adv. Gastroenterol.201361395110.1177/1756283X1245929423320049
    [Google Scholar]
  24. ParasharA. UdayabanuM. Gut microbiota: Implications in Parkinson’s disease.Parkinsonism Relat. Disord.2017381710.1016/j.parkreldis.2017.02.00228202372
    [Google Scholar]
  25. ClarkeG. CryanJ.F. DinanT.G. QuigleyE.M. Review article: probiotics for the treatment of irritable bowel syndrome – focus on lactic acid bacteria.Aliment. Pharmacol. Ther.201235440341310.1111/j.1365‑2036.2011.04965.x22225517
    [Google Scholar]
  26. GomesA.M.P. MalcataF.X. Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics.Trends Food Sci. Technol.1999104-513915710.1016/S0924‑2244(99)00033‑3
    [Google Scholar]
  27. Plaza-DiazJ. Ruiz-OjedaF.J. Gil-CamposM. GilA. Mechanisms of action of probiotics.Adv. Nutr.201910Suppl. 1S49S6610.1093/advances/nmy06330721959
    [Google Scholar]
  28. VerschuereL. RombautG. SorgeloosP. VerstraeteW. Probiotic bacteria as biological control agents in aquaculture.Microbiol. Mol. Biol. Rev.200064465567110.1128/MMBR.64.4.655‑671.200011104813
    [Google Scholar]
  29. MaysZ.J.S. ChappellT.C. NairN.U. Quantifying and engineering mucus adhesion of probiotics.ACS Synth. Biol.20209235636710.1021/acssynbio.9b0035631909976
    [Google Scholar]
  30. YousefiB. EslamiM. GhasemianA. KokhaeiP. Salek FarrokhiA. DarabiN. Probiotics importance and their immunomodulatory properties.J. Cell. Physiol.201923468008801810.1002/jcp.2755930317594
    [Google Scholar]
  31. Maldonado GaldeanoC. CazorlaS.I. Lemme DumitJ.M. VélezE. PerdigónG. Beneficial effects of probiotic consumption on the immune system.Ann. Nutr. Metab.201974211512410.1159/00049642630673668
    [Google Scholar]
  32. NazariZ. AbiriR. Heidary MoghadamR. ChehriG. AlvandiA. MohajeraniH. Metabolic Parameters and Oral Microbiota in Patients with Atherosclerosis.Iran. J. Med. Microbiol.202317330130810.30699/ijmm.17.3.301
    [Google Scholar]
  33. KraehenbuhlJ.P. NeutraM.R. Molecular and cellular basis of immune protection of mucosal surfaces.Physiol. Rev.199272485387910.1152/physrev.1992.72.4.8531438580
    [Google Scholar]
  34. Al OmranY. AzizQ. The brain-gut axis in health and disease.Adv Exp Med Biol.201481713515310.1007/978‑1‑4939‑0897‑4_6
    [Google Scholar]
  35. MulakA. BonazB. Irritable bowel syndrome: a model of the brain-gut interactions.Med. Sci. Monit.2004104RA55RA6215260348
    [Google Scholar]
  36. HesampourF. BernsteinC.N. GhiaJ.E. Brain-Gut Axis: Invasive and Noninvasive Vagus Nerve Stimulation, Limitations, and Potential Therapeutic Approaches.Inflamm. Bowel Dis.202430348249510.1093/ibd/izad21137738641
    [Google Scholar]
  37. TrombleyH. The Gut-Brain Axis and Autism. Nutritional Perspectives.Journal of the Council on Nutrition2018414
    [Google Scholar]
  38. ChenL. ChenJ. WuM. YanP. ZhouX. Analyzing the bibliometrics of brain-gut axis and Parkinson’s disease.Front. Neurol.202415134330310.3389/fneur.2024.134330338515447
    [Google Scholar]
  39. BercikP. ParkA.J. SinclairD. KhoshdelA. LuJ. HuangX. DengY. BlennerhassettP.A. FahnestockM. MoineD. BergerB. HuizingaJ.D. KunzeW. McLeanP.G. BergonzelliG.E. CollinsS.M. VerduE.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.Neurogastroenterol. Motil.201123121132113910.1111/j.1365‑2982.2011.01796.x21988661
    [Google Scholar]
  40. BercikP. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.Gastroenterology201013962102211210.1053/j.gastro.2010.06.063
    [Google Scholar]
  41. TyagiA.M. Mechanism of action of gut microbiota and probiotic Lactobacillus rhamnosus GG on skeletal remodeling in mice.Endocrinol. Diabetes Metab.202471e44010.1002/edm2.44037505196
    [Google Scholar]
  42. DissanayakaD.M.S. JayasenaV. Rainey-SmithS.R. MartinsR.N. FernandoW.M.A.D.B. The role of diet and gut microbiota in Alzheimer’s disease.Nutrients202416341210.3390/nu1603041238337696
    [Google Scholar]
  43. DhamiM. RajK. SinghS. Relevance of gut microbiota to Alzheimer's Disease (AD): Potential effects of probiotic in management of AD.Aging Heal. Res.202331100128
    [Google Scholar]
  44. AngelucciF. CechovaK. AmlerovaJ. HortJ. Antibiotics, gut microbiota, and Alzheimer’s disease.J. Neuroinflammation201916110810.1186/s12974‑019‑1494‑431118068
    [Google Scholar]
  45. LinB. YeZ. YeZ. WangM. CaoZ. GaoR. ZhangY. Gut microbiota in brain tumors: An emerging crucial player.CNS Neurosci. Ther.202329S1Suppl. 1849710.1111/cns.1408136627748
    [Google Scholar]
  46. GhezziL. CantoniC. RotondoE. GalimbertiD. The Gut Microbiome–Brain Crosstalk in Neurodegenerative Diseases.Biomedicines2022107148610.3390/biomedicines1007148635884791
    [Google Scholar]
  47. Ochoa-RepárazJ. KasperL.H. Gut microbiome and the risk factors in central nervous system autoimmunity.FEBS Lett.2014588224214422210.1016/j.febslet.2014.09.02425286403
    [Google Scholar]
  48. LohJ.S. MakW.Q. TanL.K.S. NgC.X. ChanH.H. YeowS.H. FooJ.B. OngY.S. HowC.W. KhawK.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases.Signal Transduct. Target. Ther.2024913710.1038/s41392‑024‑01743‑138360862
    [Google Scholar]
  49. O’DonovanS.M. CrowleyE.K. BrownJ.R.M. O’SullivanO. O’LearyO.F. TimmonsS. NolanY.M. ClarkeD.J. HylandN.P. JoyceS.A. SullivanA.M. O’NeillC. Nigral overexpression of α‐synuclein in a rat Parkinson’s disease model indicates alterations in the enteric nervous system and the gut microbiome.Neurogastroenterol. Motil.2020321e1372610.1111/nmo.1372631576631
    [Google Scholar]
  50. GuoW. XiongW. From gut microbiota to brain: implications on binge eating disorders.Gut Microbes2024161235717710.1080/19490976.2024.235717738781112
    [Google Scholar]
  51. LaiY. Multi-Omics to Illuminate Signaling Molecules of the Gut Microbiota-Brain Axis.ProQuest Dissertations & Theses, The University of North Carolina at Chapel Hill, 2021.
    [Google Scholar]
  52. WangY. KasperL.H. The role of microbiome in central nervous system disorders.Brain Behav. Immun.20143811210.1016/j.bbi.2013.12.01524370461
    [Google Scholar]
  53. FeketeM. LehoczkiA. MajorD. Fazekas-PongorV. CsípőT. TarantiniS. CsizmadiaZ. VargaJ.T. Exploring the Influence of Gut–Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics.Nutrients202416678910.3390/nu1606078938542700
    [Google Scholar]
  54. ChandraS. SisodiaS.S. VassarR.J. The gut microbiome in Alzheimer’s disease: what we know and what remains to be explored.Mol. Neurodegener.2023181910.1186/s13024‑023‑00595‑736721148
    [Google Scholar]
  55. NguyenN.M. ChoJ. LeeC. Gut Microbiota and Alzheimer’s Disease: How to Study and Apply Their Relationship.Int. J. Mol. Sci.2023244404710.3390/ijms2404404736835459
    [Google Scholar]
  56. D’ArgenioV. SarnataroD. Probiotics, prebiotics and their role in Alzheimer’s disease.Neural Regen. Res.20211691768176910.4103/1673‑5374.30607233510069
    [Google Scholar]
  57. DhapolaR. BeuraS.K. SharmaP. SinghS.K. HariKrishnaReddyD. Oxidative stress in Alzheimer’s disease: current knowledge of signaling pathways and therapeutics.Mol. Biol. Rep.20245114810.1007/s11033‑023‑09021‑z38165499
    [Google Scholar]
  58. GaoH. ChenJ. HuangY. ZhaoR. Advances in targeted tracking and detection of soluble amyloid-β aggregates as a biomarker of Alzheimer’s disease.Talanta2024268Pt 112531110.1016/j.talanta.2023.12531137857110
    [Google Scholar]
  59. IchimataS. YoshidaK. LiJ. RogaevaE. LangA.E. KovacsG.G. The molecular spectrum of amyloid‐beta (Aβ) in neurodegenerative diseases beyond Alzheimer’s disease.Brain Pathol.2024341e1321010.1111/bpa.1321037652560
    [Google Scholar]
  60. LiQ. HanY. DyA.B.C. HagermanR.J. The gut microbiota and autism spectrum disorders.Front. Cell. Neurosci.20171112010.3389/fncel.2017.0012028503135
    [Google Scholar]
  61. HsiaoE.Y. The microbiota modulates gut physiology and behavioral abnormalities associated with autism.Cell20131557145110.1016/j.cell.2013.11.02424315484
    [Google Scholar]
  62. FrancoisF. RoperJ. JosephN. PeiZ. ChhadaA. ShakJ.R. de PerezA.Z.O. Perez-PerezG.I. BlaserM.J. The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin.BMC Gastroenterol.20111113710.1186/1471‑230X‑11‑3721489301
    [Google Scholar]
  63. LiuS. LiE. SunZ. FuD. DuanG. JiangM. YuY. MeiL. YangP. TangY. ZhengP. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder.Sci. Rep.20199128710.1038/s41598‑018‑36430‑z30670726
    [Google Scholar]
  64. ZhengP. ZengB. LiuM. ChenJ. PanJ. HanY. LiuY. ChengK. ZhouC. WangH. ZhouX. GuiS. PerryS.W. WongM.L. LicinioJ. WeiH. XieP. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice.Sci. Adv.201952eaau831710.1126/sciadv.aau831730775438
    [Google Scholar]
  65. Al-LahhamS.H. PeppelenboschM.P. RoelofsenH. VonkR.J. VenemaK. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20101801111175118310.1016/j.bbalip.2010.07.007
    [Google Scholar]
  66. GuidettiC. SalviniE. ViriM. DeiddaF. AmorusoA. ViscigliaA. DragoL. CalgaroM. VituloN. PaneM. CaucinoA.C. Randomized Double-Blind Crossover Study for Evaluating a Probiotic Mixture on Gastrointestinal and Behavioral Symptoms of Autistic Children.J. Clin. Med.20221118526310.3390/jcm1118526336142909
    [Google Scholar]
  67. CannonM. Salivary transcriptome and mitochondrial analysis of autism spectrum disorder children compared to healthy controls.NeuroSci20245327629010.20944/preprints202405.0863.v1
    [Google Scholar]
  68. SantocchiE. GuiducciL. ProsperiM. CalderoniS. GagginiM. ApicellaF. TancrediR. BilleciL. MastromarinoP. GrossiE. GastaldelliA. MoralesM.A. MuratoriF. Effects of Probiotic Supplementation on Gastrointestinal, Sensory and Core Symptoms in Autism Spectrum Disorders: A Randomized Controlled Trial.Front. Psychiatry20201155059310.3389/fpsyt.2020.55059333101079
    [Google Scholar]
  69. WangY. LiN. YangJ.J. ZhaoD.M. ChenB. ZhangG.Q. ChenS. CaoR.F. YuH. ZhaoC.Y. ZhaoL. GeY.S. LiuY. ZhangL.H. HuW. ZhangL. GaiZ.T. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder.Pharmacol. Res.202015710478410.1016/j.phrs.2020.10478432305492
    [Google Scholar]
  70. ArnoldL.E. LunaR.A. WilliamsK. ChanJ. ParkerR.A. WuQ. HollwayJ.A. JeffsA. LuF. CouryD.L. HayesC. SavidgeT. Probiotics for Gastrointestinal Symptoms and Quality of Life in Autism: A Placebo-Controlled Pilot Trial.J. Child Adolesc. Psychopharmacol.201929965966910.1089/cap.2018.015631478755
    [Google Scholar]
  71. ZengP. ZhangC. FanZ. YangC. CaiW. HuangY. XiangZ. WuJ. ZhangJ. YangJ. Effect of probiotics on children with autism spectrum disorders: a meta-analysis.Ital. J. Pediatr.202450112010.1186/s13052‑024‑01692‑z38902804
    [Google Scholar]
  72. HouY. DanX. BabbarM. WeiY. HasselbalchS.G. CroteauD.L. BohrV.A. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑731501588
    [Google Scholar]
  73. LeblhuberF. SteinerK. SchuetzB. FuchsD. GostnerJ.M. Probiotic supplementation in patients with Alzheimer’s dementia-an explorative intervention study.Curr. Alzheimer Res.201815121106111310.2174/138920021966618081314483430101706
    [Google Scholar]
  74. YangX. LiangQ. ChenY. WangB. Alteration of methanogenic archaeon by ethanol contribute to the enhancement of biogenic methane production of lignite.Front. Microbiol.201910232310.3389/fmicb.2019.0232331649654
    [Google Scholar]
  75. MagistrelliL. AmorusoA. MognaL. GrazianoT. CantelloR. PaneM. ComiC. Probiotics may have beneficial effects in Parkinson’s disease: in vitro evidence.Front. Immunol.20191096910.3389/fimmu.2019.0096931134068
    [Google Scholar]
  76. ShannonK.M. KeshavarzianA. DodiyaH.B. JakateS. KordowerJ.H. Is alpha‐synuclein in the colon a biomarker for premotor Parkinson’s Disease? Evidence from 3 cases.Mov. Disord.201227671671910.1002/mds.2502022550057
    [Google Scholar]
  77. MorshediM. HashemiR. MoazzenS. SahebkarA. HosseinifardE.S. Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a systematic review.J. Neuroinflammation201916123110.1186/s12974‑019‑1611‑431752913
    [Google Scholar]
  78. KouchakiE. TamtajiO.R. SalamiM. BahmaniF. Daneshvar KakhakiR. AkbariE. Tajabadi-EbrahimiM. JafariP. AsemiZ. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial.Clin. Nutr.20173651245124910.1016/j.clnu.2016.08.01527669638
    [Google Scholar]
  79. TankouS.K. RegevK. HealyB.C. CoxL.M. TjonE. KivisakkP. VanandeI.P. CookS. GandhiR. GlanzB. StankiewiczJ. WeinerH.L. Investigation of probiotics in multiple sclerosis.Mult. Scler.2018241586310.1177/135245851773739029307299
    [Google Scholar]
  80. BorzabadiS. OryanS. EidiA. AghadavodE. Daneshvar KakhakiR. TamtajiO.R. TaghizadehM. AsemiZ. The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin and Lipid in Patients with Parkinson’s Disease: A Randomized, Double-blind, PlaceboControlled Trial.Arch. Iran Med.201821728929530041526
    [Google Scholar]
  81. HasanianiN. Mostafa RahimiS. AkbariM. SadatiF. PournajafA. Rostami-MansoorS. The Role of Intestinal Microbiota and Probiotics Supplementation in Multiple Sclerosis Management.Neuroscience2024551314210.1016/j.neuroscience.2024.05.01338777135
    [Google Scholar]
  82. SalmonK. KiernanM.C. KimS.H. AndersenP.M. ChioA. van den BergL.H. Van DammeP. Al-ChalabiA. LilloP. AndrewsJ.A. GengeA. The importance of offering early genetic testing in everyone with amyotrophic lateral sclerosis.Brain202214541207121010.1093/brain/awab47235020823
    [Google Scholar]
  83. HongD. ZhangC. WuW. LuX. ZhangL. Modulation of the gut–brain axis via the gut microbiota: a new era in treatment of amyotrophic lateral sclerosis.Front. Neurol.202314113354610.3389/fneur.2023.113354637153665
    [Google Scholar]
  84. ZhangY. XiaY. SunJ. Probiotics and microbial metabolites maintain barrier and neuromuscular functions and clean protein aggregation to delay disease progression in TDP43 mutation mice.Gut Microbes2024161236388010.1080/19490976.2024.236388038860943
    [Google Scholar]
  85. McCombeP.A. LeeJ.D. WoodruffT.M. HendersonR.D. The peripheral immune system and amyotrophic lateral sclerosis.Front. Neurol.20201127910.3389/fneur.2020.0027932373052
    [Google Scholar]
  86. YangL. ChengY. ZhuY. CuiL. LiX. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence.Cell. Mol. Neurobiol.20234362387241410.1007/s10571‑023‑01320‑036729314
    [Google Scholar]
  87. WrightM.L. FournierC. HouserM.C. TanseyM. GlassJ. HertzbergV.S. Potential role of the gut microbiome in ALS: a systematic review.Biol. Res. Nurs.201820551352110.1177/109980041878420229925252
    [Google Scholar]
  88. Di GioiaD. Bozzi CionciN. BaffoniL. AmorusoA. PaneM. MognaL. GaggìaF. LucentiM.A. BersanoE. CantelloR. De MarchiF. MazziniL. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis.BMC Med.202018115310.1186/s12916‑020‑01607‑932546239
    [Google Scholar]
  89. WasserC.I. MerciecaE.C. KongG. HannanA.J. McKeownS.J. Glikmann-JohnstonY. StoutJ.C. Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes.Brain Commun.202022fcaa11010.1093/braincomms/fcaa11033005892
    [Google Scholar]
  90. MacDonaldM. The Huntington’s Disease Collaborative Research Group A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes.Cell199372697198310.1016/0092‑8674(93)90585‑E8458085
    [Google Scholar]
  91. WasserC.I. A Randomized Controlled Trial of Probiotics Targeting Gut Dysbiosis in Huntington's Disease.J Huntingtons Dis.2023121435510.3233/JHD‑220556
    [Google Scholar]
  92. EkwudoM.N. GubertC. HannanA.J. The microbiota–gut–brain axis in Huntington’s disease: pathogenic mechanisms and therapeutic targets.FEBS J.2024febs.1710210.1111/febs.1710238426291
    [Google Scholar]
  93. SydnorV.J. Rivas-GrajalesA.M. LyallA.E. ZhangF. BouixS. KarmacharyaS. ShentonM.E. WestinC.F. MakrisN. WassermannD. O’DonnellL.J. KubickiM. A comparison of three fiber tract delineation methods and their impact on white matter analysis.Neuroimage201817831833110.1016/j.neuroimage.2018.05.04429787865
    [Google Scholar]
  94. TeoR.T.Y. Ferrari BardileC. TayY.L. YusofN.A.B.M. KreidyC.A. TanL.J. PouladiM.A. Impaired remyelination in a mouse model of Huntington disease.Mol. Neurobiol.201956106873688210.1007/s12035‑019‑1579‑130937636
    [Google Scholar]
  95. van der BurgJ.M.M. WinqvistA. AzizN.A. Maat-SchiemanM.L.C. RoosR.A.C. BatesG.P. BrundinP. BjörkqvistM. WierupN. Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice.Neurobiol. Dis.20114411810.1016/j.nbd.2011.05.00621624468
    [Google Scholar]
  96. KongG. CaoK.A.L. JuddL.M. LiS. RenoirT. HannanA.J. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease.Neurobiol. Dis.202013510426810.1016/j.nbd.2018.09.00130194046
    [Google Scholar]
  97. AbouelelaM.E. HelmyY.A. Next-generation probiotics as novel therapeutics for improving human health: current trends and future perspectives.Microorganisms202412343010.3390/microorganisms1203043038543481
    [Google Scholar]
  98. SharmaD. RashidG. SharmaL. Probiotics: Conclusion and Future Perspective.Probiotics.CRC Press325343
    [Google Scholar]
  99. TaniguchiK. IkedaY. NagaseN. TsujiA. KitagishiY. MatsudaS. Implications of Gut-Brain axis in the pathogenesis of Psychiatric disorders.AIMS Bioeng.20218424325610.3934/bioeng.2021021
    [Google Scholar]
  100. GaoJ. ZhaoL. ChengY. LeiW. WangY. LiuX. ZhengN. ShaoL. ChenX. SunY. LingZ. XuW. Probiotics for the treatment of depression and its comorbidities: A systemic review.Front. Cell. Infect. Microbiol.202313116711610.3389/fcimb.2023.116711637139495
    [Google Scholar]
/content/journals/cnsamc/10.2174/0118715249315760240905043415
Loading
/content/journals/cnsamc/10.2174/0118715249315760240905043415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test