Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Aim

The study aimed to develop and optimize itraconazole nanocrystal-loaded hydrogel by central composite design.

Background

Itraconazole is a broad spectrum antifungal drug classified as a BCS Class II drug with poor water solubility that limits its dermal availability and serves as a rate-limiting barrier in topical formulations. Thus, it was aimed at developing and optimizing itraconazole nanocrystal-loaded hydrogel to improve its skin penetration by solving its solubility issue.

Methods

Nanocrystals were prepared using the solvent anti-solvent precipitation method followed by ultrasonication. The solvent-antisolvent and stabilizer were selected based on a screening study. Optimizations of nanocrystal formulation were carried out using Central Composite Design (CCD). The Optimized formulation(D14) was characterized for % drug release, saturation solubility, particle size, zeta potential, PDI, and DSC analysis. The optimized formulation D14 was incorporated into hydrogel using HPMC K15M at three different concentrations (1%, 1.5%, and 2% ). The gels that were developed underwent assessment for their physical appearance, pH determination, rheological study, spread ability study, drug release study, and permeation study.

Results

The optimized nanocrystal formulation (D14) presented that the observed values of drug release in 10 min was 93.532 ± 0.263% and Saturation solubility of 624.12 ± 0.76 µg/ml. The mean particle size of the optimized nanocrystal formulation was 253.7nm, with a PDI value of 0.202 and zeta potential of 26.4 mv ± 0.7mv possesses good physical stability. There is approximately a 37.76-fold increase in saturation solubility compared to the saturation solubility of the pure drug. Among the developed nanocrystal-loaded gel formulations, the D15 formulation (containing 1% HPMC) demonstrated maximum drug release up to 87.948 ± 0.298% within 24 hours compared to the control gel that showed 19.792 ± 0.046% and desirable rheological characteristics. The permeation study of D15 gel revealed 4.6 times enhanced permeation compared to the control gel.

Conclusion

In conclusion, the present study successfully demonstrated the formulation of itraconazole nanocrystal-loaded hydrogel for topical delivery with improved drug release and permeation characteristics. The release kinetics of the drug best fitted the Higuchi model (2 =0.9837), suggesting the sustained release of the drug from the gel matrix.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873324231240815093901
2024-08-20
2025-10-11
Loading full text...

Full text loading...

References

  1. KimH. JungS. YeoS. Characteristics of skin deposition of itraconazole solubilized in cream formulation.Pharmaceutics201911419510.3390/pharmaceutics11040195 31013633
    [Google Scholar]
  2. HoH.N. LeT.G. DaoT.T.T. Development of Itraconazole-Loaded Polymeric Nanoparticle Dermal Gel for Enhanced Antifungal Efficacy.J. Nanomater.2020202011110.1155/2020/8894541
    [Google Scholar]
  3. PermanaA.D. ParedesA.J. Volpe-ZanuttoF. AnjaniQ.K. UtomoE. DonnellyR.F. Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis.Eur. J. Pharm. Biopharm.2020154506110.1016/j.ejpb.2020.06.025 32649991
    [Google Scholar]
  4. AlhowyanA.A. AltamimiM.A. KalamM.A. Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies.J. Microbiol. Methods2019161879510.1016/j.mimet.2019.01.020 30738109
    [Google Scholar]
  5. AlamS. IqbalZ. AliA. Microemulsion as a potential transdermal carrier for poorly water soluble antifungal drug itraconazole.J. Dispers. Sci. Technol.2009311849410.1080/01932690903107265
    [Google Scholar]
  6. GuptaA.K. NoltingS. de ProstY. The use of itraconazole to treat cutaneous fungal infections in children.Dermatology1999199324825210.1159/000018256 10592406
    [Google Scholar]
  7. AlyahyaE.M. AlwabsiK. AljohaniA.E. Preparation and optimization of itraconazole transferosomes-loaded HPMC hydrogel for enhancing its antifungal activity: 23 full factorial design.Polymers2023154995
    [Google Scholar]
  8. KumarN. GoindiS. Development and optimization of itraconazole-loaded solid lipid nanoparticles for topical administration using high shear homogenization process by design of experiments: in vitro, ex vivo and in vivo evaluation.AAPS PharmSciTech202122724810.1208/s12249‑021‑02118‑3 34647162
    [Google Scholar]
  9. LamieC. ElmowafyE. RagaieM.H. AttiaD.A. MortadaN.D. Assessment of antifungal efficacy of itraconazole loaded aspasomal cream: comparative clinical study.Drug Deliv.20222911345135710.1080/10717544.2022.2067601 35506466
    [Google Scholar]
  10. BerbenP. MolsR. BrouwersJ. TackJ. AugustijnsP. Gastrointestinal behavior of itraconazole in humans – Part 2: The effect of intraluminal dilution on the performance of a cyclodextrin-based solution.Int. J. Pharm.20175261-223524310.1016/j.ijpharm.2017.04.057 28450167
    [Google Scholar]
  11. KumarM. ShanthiN. MahatoA.K. SoniS. RajnikanthP.S. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity.Heliyon201955e0168810.1016/j.heliyon.2019.e01688 31193099
    [Google Scholar]
  12. MundstockA. LeeG. Saturation solubility of nicotine, scopolamine and paracetamol in model stratum corneum lipid matrices.Int. J. Pharm.20144731-223223810.1016/j.ijpharm.2014.06.057 24992320
    [Google Scholar]
  13. MalamatariM. TaylorK.M.G. MalamatarisS. DouroumisD. KachrimanisK. Pharmaceutical nanocrystals: production by wet milling and applications.Drug Discov. Today201823353454710.1016/j.drudis.2018.01.016 29326082
    [Google Scholar]
  14. MüllerR.H. GohlaS. KeckC.M. State of the art of nanocrystals – Special features, production, nanotoxicology aspects and intracellular delivery.Eur. J. Pharm. Biopharm.20117811910.1016/j.ejpb.2011.01.007 21266197
    [Google Scholar]
  15. IgeP.P. BariaR.K. GattaniS.G. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability.Colloids Surf. B Biointerfaces201310836637310.1016/j.colsurfb.2013.02.043 23602990
    [Google Scholar]
  16. HatahetT. MorilleM. HommossA. DorandeuC. MüllerR.H. BéguS. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.Eur. J. Pharm. Biopharm.2016102516310.1016/j.ejpb.2016.03.004 26948977
    [Google Scholar]
  17. Al ShaalL. ShegokarR. MüllerR.H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation.Int. J. Pharm.2011420113314010.1016/j.ijpharm.2011.08.018 21871547
    [Google Scholar]
  18. SinghB. UpadhyayP.K. KumarM. Nanocrystal for Dermatological Application: A Comprehensive Review.Curr. Nanosci.2022181486010.2174/1573413717666210121143038
    [Google Scholar]
  19. Fathi-KarkanS. HeidarzadehM. NarmiM.T. Exosome-loaded microneedle patches: Promising factor delivery route.Int. J. Biol. Macromol.202324312523210.1016/j.ijbiomac.2023.125232 37302628
    [Google Scholar]
  20. HoareT.R. KohaneD.S. Hydrogels in drug delivery: Progress and challenges.Polymer (Guildf.)20084981993200710.1016/j.polymer.2008.01.027
    [Google Scholar]
  21. LaffleurF. Evaluation of chemical modified hydrogel formulation for topical suitability.Int. J. Biol. Macromol.2017105Pt 11310131410.1016/j.ijbiomac.2017.07.152 28757424
    [Google Scholar]
  22. LiuW. HuM. LiuW. XueC. XuH. YangX. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate.Int. J. Pharm.2008364113514110.1016/j.ijpharm.2008.08.013 18778760
    [Google Scholar]
  23. PatilA.S. HegdeR. GadadA.P. DandagiP.M. MasareddyR. BolmalU. Exploring the solvent-anti-solvent method of nanosuspension for enhanced oral bioavailability of lovastatin.Turk. J. Pharm. Sci.202118551454910.4274/tjps.galenos.2020.65047 34708645
    [Google Scholar]
  24. BakaE. ComerJ.E.A. Takács-NovákK. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound.J. Pharm. Biomed. Anal.200846233534110.1016/j.jpba.2007.10.030 18055153
    [Google Scholar]
  25. XiaX.R. BaynesR.E. Monteiro-RiviereN.A. RiviereJ.E. Determination of the partition coefficients and absorption kinetic parameters of chemicals in a lipophilic membrane/water system by using a membrane-coated fiber technique.Eur. J. Pharm. Sci.2005241152310.1016/j.ejps.2004.09.004 15626574
    [Google Scholar]
  26. ShahS. ParmarB. SoniwalaM. ChavdaJ. Design, Optimization, and Evaluation of Lurasidone Hydrochloride Nanocrystals.AAPS PharmSciTech20161751150115810.1208/s12249‑015‑0449‑z 26586537
    [Google Scholar]
  27. SinghA.K. PathakK. Colon specific CODES based Piroxicam tablet for colon targeting: statistical optimization, in vivo roentgenography and stability assessment.Pharm. Dev. Technol.201520223724510.3109/10837450.2013.860549 24266719
    [Google Scholar]
  28. GadhiyaD.T. PatelJ.K. BagadaA.A. An impact of nanocrystals on dissolution rate of Lercanidipine: Supersaturation and crystallization by addition of solvent to antisolvent.Future J. Pharm. Sci.20217112810.1186/s43094‑021‑00271‑x
    [Google Scholar]
  29. KotianV. KolandM. MutalikS. Nanocrystal-Based Topical Gels for Improving Wound Healing Efficacy of Curcumin.Crystals (Basel)20221211156510.3390/cryst12111565
    [Google Scholar]
  30. RajasekarA. DevasenaT. Facile synthesis of Curcumin nanocrystals and validation of its antioxidant activity against circulatory toxicity in wistar rats.J. Nanosci. Nanotechnol.20151564119412510.1166/jnn.2015.9600 26369020
    [Google Scholar]
  31. LouisD. Formulation and Evaluation of Nanocrystals of a Lipid Lowering Agent.Iran. J. Pharm. Res.20161517182 27610148
    [Google Scholar]
  32. ChaudharyS. GargT. RathG. MurthyR.R. GoyalA.K. Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis.Artif. Cells Nanomed. Biotechnol.2016443937942 25783855
    [Google Scholar]
  33. PourmadadiM. OstovarS. Ruiz-PulidoG. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery.Inorg. Chem. Commun.202315511099910.1016/j.inoche.2023.110999
    [Google Scholar]
  34. KhanM. AkhtarN. SharmaV. PathakK. Product development studies on sonocrystallized curcumin for the treatment of gastric cancer.Pharmaceutics201572436310.3390/pharmaceutics7020043 25923809
    [Google Scholar]
  35. SharmaP. TailangM. Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy.Future J. Pharm. Sci.2020612610.1186/s43094‑020‑00035‑z
    [Google Scholar]
  36. Ballell-HosaL. González-MiraE. SantanaH. DELOS Nanovesicles-Based Hydrogels: An Advanced Formulation for Topical Use.Pharmaceutics202214119910.3390/pharmaceutics14010199 35057095
    [Google Scholar]
  37. PourmadadiM. GeramiS.E. AjalliN. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells.Hybrid Advances2024610021010.1016/j.hybadv.2024.100210
    [Google Scholar]
  38. VidyaK. LakshmiP.K. Cytotoxic effect of transdermal invasomal anastrozole gel on MCF-7 breast cancer cell line.J. Appl. Pharm. Sci.201993505810.7324/JAPS.2019.90308
    [Google Scholar]
  39. BachhavY. PatravaleV. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation.Int. J. Pharm.20093651-217517910.1016/j.ijpharm.2008.08.021 18790032
    [Google Scholar]
  40. KumariN. PathakK. Dual controlled release, in situ gelling periodontal sol of metronidazole benzoate and serratiopeptidase: statistical optimization and mechanistic evaluation.Curr. Drug Deliv.201291748410.2174/156720112798375998 22023207
    [Google Scholar]
  41. ElmataeeshyM.E. SokarM.S. Bahey-El-DinM. ShakerD.S. Enhanced transdermal permeability of Terbinafine through novel nanoemulgel formulation; Development, in vitro and in vivo characterization.Future J. Pharm. Sci.201841182810.1016/j.fjps.2017.07.003
    [Google Scholar]
  42. DashS. MurthyP.N. NathL. ChowdhuryP. Kinetic modeling on drug release from controlled drug delivery systems.Acta Pol. Pharm.2010673217223 20524422
    [Google Scholar]
  43. QadriG.R. AhadA. AqilM. ImamS.S. AliA. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study.Artif. Cells Nanomed. Biotechnol.201745113914510.3109/21691401.2016.1138486 26829018
    [Google Scholar]
  44. AhmadN. AhmadR. Mohammed BuheazahaT. Salman AlHomoudH. Al-NasifH.A. SarafrozM. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin.Saudi J. Biol. Sci.20202741024104010.1016/j.sjbs.2020.02.014 32256163
    [Google Scholar]
  45. NawazA. FaridA. SafdarM. Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers.Gels20228638410.3390/gels8060384 35735728
    [Google Scholar]
  46. KhanM.F.A. Hydrogel containing solid lipid nanoparticles loaded with argan oil and simvastatin: preparation, in vitro and ex vivo assessment.Gels20228577
    [Google Scholar]
  47. ShahS. Effect of various penetration enhancers on permeation kinetics of Itraconazole for the topical drug delivery system.Int J Res Pharm Sci20123296300
    [Google Scholar]
  48. SawantK.K. PatelM.H. PatelK. Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro–in vivo evaluations.Drug Dev. Ind. Pharm.201642575876810.3109/03639045.2015.1104344 26548349
    [Google Scholar]
  49. LiJ. WangZ. ZhangH. GaoJ. ZhengA. Progress in the development of stabilization strategies for nanocrystal preparations.Drug Deliv.2021281193610.1080/10717544.2020.1856224 33336609
    [Google Scholar]
  50. ParmarK. PatelJ. ShethN. Formulation and optimization of Embelin nanosuspensions using central composite design for dissolution enhancement.J. Drug Deliv. Sci. Technol.2015291710.1016/j.jddst.2015.05.011
    [Google Scholar]
  51. ShahS.M.H. UllahF. KhanS. ShahS.M.M. IsrebM. Fabrication and Evaluation of Smart Nanocrystals of Artemisinin for Antimalarial and Antibacterial Efficacy.Afr. J. Tradit. Complement. Altern. Med.201614125126210.21010/ajtcam.v14i1.27 28480403
    [Google Scholar]
  52. AbouSamraM.M. BashaM. AwadG.E.A. MansyS.S. A promising nystatin nanocapsular hydrogel as an antifungal polymeric carrier for the treatment of topical candidiasis.J. Drug Deliv. Sci. Technol.20194936537410.1016/j.jddst.2018.12.014
    [Google Scholar]
  53. FatimaI. ZeinalilathoriS. QindeelM. Advances in targeted nano-delivery of bevacizumab using nanoparticles: Current insights, innovations, and future perspectives.J. Drug Deliv. Sci. Technol.20249810585010.1016/j.jddst.2024.105850
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873324231240815093901
Loading
/content/journals/cnanom/10.2174/0124681873324231240815093901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test