Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Peptides represent a rapidly expanding class of novel treatments with distinct pharmacokinetic properties when compared to macromolecular proteins or small-molecule medications. Peptides are polymers with a molecular mass of less than 10 kDa. Protein-protein interactions have been the primary goal of oral delivery of peptide drugs for the last two decades. Recent trends suggest the possibility of mechanistically targeting challenging binding interfaces with the right binding affinity and specificity for molecules like peptides that bring conformational flexibility. Over 80 peptide medications have received regulatory approval to treat a range of conditions, from human immunodeficiency infection caused by viruses to fatal diseases like cancer. This review covers the need for peptide delivery the oral route and offers insights to overcome the challenges. For successful translation to the clinic, oral delivery of therapeutic peptides coupled with nanoformulation strategies has gained increased attention in recent years. The role of permeation boosters, and digestive enzyme inhibitors to overcome major hurdles such as degradation in the gastrointestinal tract and low intestinal permeability are presented here. Alteration of physicochemical characteristics of peptide molecules, the addition of functional excipients to specifically designed drug delivery systems, nanoformulation approaches, amongst other recent methodologies, to increase the oral bioavailability of peptide medications, are also presented herein. Numerous peptide candidates, both approved and under clinical trials, are included in this review.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873309964240521074809
2024-05-30
2025-10-11
Loading full text...

Full text loading...

References

  1. KingT.A. KandemirM.J. WalshS.J. SpringD.R. Photocatalytic methods for amino acid modification.Chem. Soc. Rev.2021501395710.1039/D0CS00344A33174541
    [Google Scholar]
  2. DruckerD.J. Advances in oral peptide therapeutics.Nat. Rev. Drug Discov.202019427728910.1038/s41573‑019‑0053‑031848464
    [Google Scholar]
  3. BadgujarD. ParitalaS.T. MatreS. SharmaN. Enantiomeric purity of synthetic therapeutic peptides: A review.Chirality2024363chir.2365210.1002/chir.2365238448043
    [Google Scholar]
  4. DasK. BalaramH. SanyalK. Amino Acid Chirality: Stereospecific Conversion and Physiological Implications.ACS Omega2024955084509910.1021/acsomega.3c0830538343938
    [Google Scholar]
  5. MarconeG.L. RosiniE. CrespiE. PollegioniL. D-amino acids in foods.Appl. Microbiol. Biotechnol.2020104255557410.1007/s00253‑019‑10264‑931832715
    [Google Scholar]
  6. SharmaS. SahooB.M. BanikB.K. Synthesis and Biological Properties of D-Amino Acids.Lett. Org. Chem.202320111016102410.2174/1570178620666230518145740
    [Google Scholar]
  7. BraydenD.J. HillT.A. FairlieD.P. MaherS. MrsnyR.J. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches.Adv. Drug Deliv. Rev.202015723610.1016/j.addr.2020.05.00732479930
    [Google Scholar]
  8. Peptide Therapeutics Market SizeTrends and Forecast to 2030.Available from: https://www.coherentmarketinsights.com/market-insight/peptide-therapeutics-market-1837 (Accessed on: August 7, 2023).
  9. DavenportA.P. ScullyC.C.G. de GraafC. BrownA.J.H. MaguireJ.J. Advances in therapeutic peptides targeting G protein-coupled receptors.Nat. Rev. Drug Discov.202019638941310.1038/s41573‑020‑0062‑z32494050
    [Google Scholar]
  10. CastroT.G. FrancoM.M. SousaC.E.A. PauloC.A. MarcosJ.C. Non- Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications.Biomolecules202313698110.3390/biom1306098137371561
    [Google Scholar]
  11. MahmoodI. PettinatoM. Impact of Intrinsic and Extrinsic Factors on the Pharmacokinetics of Peptides: When Is the Assessment of Certain Factors Warranted?Antibodies2021111110.3390/antib1101000135076485
    [Google Scholar]
  12. ZhangH. ChenS. Cyclic peptide drugs approved in the last two decades (2001–2021).RSC Chemical Biology202231183110.1039/D1CB00154J35128405
    [Google Scholar]
  13. FríasJ.P. DaviesM.J. RosenstockJ. Pérez ManghiF.C. LandóF.L. BergmanB.K. LiuB. CuiX. BrownK. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes.N. Engl. J. Med.2021385650351510.1056/NEJMoa210751934170647
    [Google Scholar]
  14. ThomasM.K. NikooienejadA. BrayR. CuiX. WilsonJ. DuffinK. MilicevicZ. HauptA. RobinsD.A. Dual GIP and GLP-1 Receptor Agonist Tirzepatide Improves Beta-cell Function and Insulin Sensitivity in Type 2 Diabetes.J. Clin. Endocrinol. Metab.2021106238839610.1210/clinem/dgaa86333236115
    [Google Scholar]
  15. RovinB.H. TengY.K.O. GinzlerE.M. ArriensC. CasterD.J. DiazR.J. GibsonK. KaplanJ. LiskL. NavarraS. ParikhS.V. RandhawaS. SolomonsN. HuizingaR.B. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial.Lancet2021397102892070208010.1016/S0140‑6736(21)00578‑X33971155
    [Google Scholar]
  16. SavarirayanR. ToftsL. IrvingM. WilcoxW. BacinoC.A. FongH.J. FontU.R. HarmatzP. RutschF. BoberM.B. PolgreenL.E. GinebredaI. MohnikeK. CharrowJ. HoernschemeyerD. OzonoK. AlanayY. ArundelP. KagamiS. YasuiN. WhiteK.K. SaalH.M. GeaL.A. GonzálezL.F. MochizukiH. BaselD. PorcoD.M. JayaramK. FishelevaE. LabedH.A. DayJ. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: A randomised, double-blind, phase 3, placebo-controlled, multicentre trial.Lancet20203961025268469210.1016/S0140‑6736(20)31541‑532891212
    [Google Scholar]
  17. ChanM.L. QiY. LarimoreK. CherukuriA. SeidL. JayaramK. JehaG. FishelevaE. DayJ. LabedH.A. SavarirayanR. IrvingM. BacinoC.A. FongH.J. OzonoK. MohnikeK. WilcoxW.R. HortonW.A. HenshawJ. Pharmacokinetics and Exposure–Response of Vosoritide in Children with Achondroplasia.Clin. Pharmacokinet.202261226328010.1007/s40262‑021‑01059‑134431071
    [Google Scholar]
  18. DugganS. Vosoritide: First Approval.Drugs202181172057206210.1007/s40265‑021‑01623‑w34694597
    [Google Scholar]
  19. FallsB.A. ZhangY. Insights into the Allosteric Mechanism of Setmelanotide (RM-493) as a Potent and First-in-Class Melanocortin-4 Receptor (MC4R) Agonist To Treat Rare Genetic Disorders of Obesity through an in silico Approach.ACS Chem. Neurosci.20191031055106510.1021/acschemneuro.8b0034630048591
    [Google Scholar]
  20. DhillonS. KeamS.J. Bremelanotide: First Approval.Drugs201979141599160610.1007/s40265‑019‑01187‑w31429064
    [Google Scholar]
  21. KingsbergS.A. ClaytonA.H. PortmanD. WilliamsL.A. KropJ. JordanR. LucasJ. SimonJ.A. Bremelanotide for the Treatment of Hypoactive Sexual Desire Disorder.Obstet. Gynecol.2019134589990810.1097/AOG.000000000000350031599840
    [Google Scholar]
  22. ClaytonA.H. LucasJ. DeRogatisL.R. JordanR. PhaseI. Phase I Randomized Placebo-controlled, Double-blind Study of the Safety and Tolerability of Bremelanotide Coadministered With Ethanol in Healthy Male and Female Participants.Clin. Ther.2017393514526.e1410.1016/j.clinthera.2017.01.01828189361
    [Google Scholar]
  23. LaneA McKayJ BonkovskyH Advances in the management of erythropoietic protoporphyria – role of afamelanotide.Appl Clin Genet201699179189
    [Google Scholar]
  24. SpichtyR. BalimannM. BarmanJ. MinderE.I. A bioassay for the detection of neutralizing antibodies against the α-melanocyte stimulating hormone analog afamelanotide in patients with erythropoietic protoporphyria.J. Pharm. Biomed. Anal.20137519219810.1016/j.jpba.2012.11.04023277150
    [Google Scholar]
  25. BakerD.E. Formulary Drug Review: Etelcalcetide.Hosp. Pharm.2017521066967410.1177/001857871773347829276237
    [Google Scholar]
  26. YuL. TomlinsonJ.E. AlexanderS.T. HensleyK. HanC.Y. DwyerD. StolinaM. DeanC.Jr GoodmanW.G. RichardsW.G. LiX. Etelcalcetide, A Novel Calcimimetic, Prevents Vascular Calcification in A Rat Model of Renal Insufficiency with Secondary Hyperparathyroidism.Calcif. Tissue Int.2017101664165310.1007/s00223‑017‑0319‑729038882
    [Google Scholar]
  27. LiX. YuL. AsuncionF. GrisantiM. AlexanderS. HensleyK. HanC.Y. NiuQ.T. DwyerD. VillasenorK. StolinaM. DeanC.Jr OminskyM.S. KeH.Z. TomlinsonJ.E. RichardsW.G. Etelcalcetide (AMG 416), a peptide agonist of the calcium-sensing receptor, preserved cortical bone structure and bone strength in subtotal nephrectomized rats with established secondary hyperparathyroidism.Bone201710516317210.1016/j.bone.2017.08.02628867373
    [Google Scholar]
  28. SalamaA.Z.T. SyedY.Y. Plecanatide: First Global Approval.Drugs201777559359810.1007/s40265‑017‑0718‑028255961
    [Google Scholar]
  29. OtvosL WadeJD Current challenges in peptide-based drug discovery.Front Chem.201426210.3389/fchem.2014.00062
    [Google Scholar]
  30. GaoW. KimJ. DaltonJ.T. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands.Pharm. Res.20062381641165810.1007/s11095‑006‑9024‑316841196
    [Google Scholar]
  31. GaoW. DaltonJ.T. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs).Drug Discov. Today2007125-624124810.1016/j.drudis.2007.01.00317331889
    [Google Scholar]
  32. DiaoL. MeibohmB. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides.Clin. Pharmacokinet.2013521085586810.1007/s40262‑013‑0079‑023719681
    [Google Scholar]
  33. DubeyS.K. ParabS. DabholkarN. AgrawalM. SinghviG. AlexanderA. BapatR.A. KesharwaniP. Oral peptide delivery: Challenges and the way ahead.Drug Discov. Today202126493195010.1016/j.drudis.2021.01.00133444788
    [Google Scholar]
  34. JonesR.G.J. The potential use of receptor-mediated endocytosis for oral drug delivery.Adv. Drug Deliv. Rev.1996201839710.1016/0169‑409X(95)00131‑P11259833
    [Google Scholar]
  35. HammanJ.H. EnslinG.M. KotzéA.F. Oral Delivery of Peptide Drugs Barriers and Developments.BioDrugs.200519316577
    [Google Scholar]
  36. WrightL BarnesTJ PrestidgeCA Oral delivery of protein-based therapeutics: Gastroprotective strategies, physiological barriers and in vitro permeability prediction.Int J Pharm.2020585119488
    [Google Scholar]
  37. ZhuQ. ChenZ. PaulP.K. LuY. WuW. QiJ. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives.Acta Pharm. Sin. B20211182416244810.1016/j.apsb.2021.04.00134522593
    [Google Scholar]
  38. MorishitaM. PeppasN.A. Is the oral route possible for peptide and protein drug delivery?Drug Discov. Today20061119-2090591010.1016/j.drudis.2006.08.00516997140
    [Google Scholar]
  39. KaleA. ShelkeV. LeiY. GaikwadA.B. AndersH.J. Voclosporin: Unique Chemistry, Pharmacology and Toxicity Profile, and Possible Options for Implementation into the Management of Lupus Nephritis.Cells20231220244010.3390/cells1220244037887284
    [Google Scholar]
  40. TanakaK. FujitaT. YamamotoY. MurakamiM. YamamotoA. MuranishiS. Enhancement of intestinal transport of thyrotropin-releasing hormone via a carrier-mediated transport system by chemical modification with lauric acid.Biochim. Biophys. Acta Biomembr.19961283111912610.1016/0005‑2736(96)00087‑98765103
    [Google Scholar]
  41. HashizumeM. DouenT. MurakamiM. YamamotoA. TakadaK. MuranishiS. Improvement of large intestinal absorption of insulin by chemical modification with palmitic acid in rats.J. Pharm. Pharmacol.201144755555910.1111/j.2042‑7158.1992.tb05463.x1357133
    [Google Scholar]
  42. MaherS. RyanB. DuffyA. BraydenD.J. Formulation strategies to improve oral peptide delivery.Pharm. Pat. Anal.20143331333610.4155/ppa.14.1524998290
    [Google Scholar]
  43. DünnhauptS. BarthelmesJ. IqbalJ. PereraG. ThurnerC.C. FriedlH. SchnürchB.A. in vivo evaluation of an oral drug delivery system for peptides based on S-protected thiolated chitosan.J. Control. Release2012160347748510.1016/j.jconrel.2012.04.02022542699
    [Google Scholar]
  44. TangY. WuS. LinJ. ChengL. ZhouJ. XieJ. HuangK. WangX. YuY. ChenZ. LiaoG. LiC. Nanoparticles Targeted against Cryptococcal Pneumonia by Interactions between Chitosan and Its Peptide Ligand.Nano Lett.201818106207621310.1021/acs.nanolett.8b0222930260652
    [Google Scholar]
  45. ÇilekA. ÇelebiN. TırnaksızF. TayA. A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats.Int. J. Pharm.2005298117618510.1016/j.ijpharm.2005.04.01615950411
    [Google Scholar]
  46. WerleM. TakeuchiH. Chitosan–aprotinin coated liposomes for oral peptide delivery: Development, characterisation and in vivo evaluation.Int. J. Pharm.20093701-2263210.1016/j.ijpharm.2008.11.01319073243
    [Google Scholar]
  47. LiP. TanA. PrestidgeC.A. NielsenH.M. MüllertzA. Self-nanoemulsifying drug delivery systems for oral insulin delivery: in vitro and in vivo evaluations of enteric coating and drug loading.Int. J. Pharm.20144771-239039810.1016/j.ijpharm.2014.10.03925455781
    [Google Scholar]
  48. LiuC. MaF. WangT. WangS. ChenW. XiaoJ. ShengJ. YangX. LiuW. Preparation of defatted walnut meal hydrolysate-loaded enteric-coated pellets with enhanced oral absorption efficiency.J. Drug Deliv. Sci. Technol.20184620721410.1016/j.jddst.2018.05.011
    [Google Scholar]
  49. WengH. HuL. HuL. ZhouY. WangA. WangN. LiW. ZhuC. GuoS. YuM. GanY. The complexation of insulin with sodium N-[8-(2-hydroxybenzoyl)amino]-caprylate for enhanced oral delivery: Effects of concentration, ratio, and pH.Chin. Chem. Lett.20223341889189410.1016/j.cclet.2021.10.023
    [Google Scholar]
  50. IbieC.O. KnottR.M. ThompsonC.J. Complexation of novel thiomers and insulin to protect against in vitro enzymatic degradation – towards oral insulin delivery.Drug Dev. Ind. Pharm.2019451677510.1080/03639045.2018.151777630252537
    [Google Scholar]
  51. EansS.O. GannoM.L. ReilleyK.J. PatkarK.A. SenadheeraS.N. AldrichJ.V. McLaughlinJ.P. The macrocyclic tetrapeptide [ D - T rp] CJ -15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration.Br. J. Pharmacol.2013169242643610.1111/bph.1213223425081
    [Google Scholar]
  52. FerracaneM.J. Brice-TuttA.C. ColemanJ.S. SimpsonG.G. WilsonL.L. EansS.O. StacyH.M. MurrayT.F. McLaughlinJ.P. AldrichJ.V. Design, Synthesis, and Characterization of the Macrocyclic Tetrapeptide cyclo [Pro-Sar-Phe- d -Phe]: A Mixed Opioid Receptor Agonist–Antagonist Following Oral Administration.ACS Chem. Neurosci.20201191324133610.1021/acschemneuro.0c0008632251585
    [Google Scholar]
  53. KimJ.C. ParkE.J. NaD.H. Gastrointestinal Permeation Enhancers for the Development of Oral Peptide Pharmaceuticals.Pharmaceuticals20221512158510.3390/ph1512158536559036
    [Google Scholar]
  54. McCartneyF. JanninV. ChevrierS. BoulghobraH. HristovD.R. RitterN. MiolaneC. ChavantY. DemarneF. BraydenD.J. Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: ex-vivo and in vivo rat studies.J. Control. Release201931011512610.1016/j.jconrel.2019.08.00831401199
    [Google Scholar]
  55. FattahS IsmaielM MurphyB RulikowskaA FriasJM WinterDC BraydenDJ Salcaprozate sodium (SNAC) enhances permeability of octreotide across isolated rat and human intestinal epithelial mucosae in Ussing chambers.Eur J Pharm Sci.2020154105509
    [Google Scholar]
  56. JørgensenJ.R. JepsenM.L. NielsenL.H. DufvaM. NielsenH.M. RadesT. BoisenA. MüllertzA. Microcontainers for oral insulin delivery – in vitro studies of permeation enhancement.Eur. J. Pharm. Biopharm.20191439810510.1016/j.ejpb.2019.08.01131425857
    [Google Scholar]
  57. Jacob Rune JørgensenFYRVLHNHMNABTR in vitro, ex-vivo and in vivo Evaluation of Microcontainers for Oral Delivery of Insulin.Pharmaceutics.202012148
    [Google Scholar]
  58. TsaiL.C. ChenC.H. LinC.W. HoY.C. MiF.L. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin.Int. J. Biol. Macromol.201912614115010.1016/j.ijbiomac.2018.12.18230586591
    [Google Scholar]
  59. GuoF. OuyangT. PengT. ZhangX. XieB. YangX. LiangD. ZhongH. Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides.Biomater. Sci.2019741493150610.1039/C8BM01485J30672923
    [Google Scholar]
  60. UkaiH. IwasaK. DeguchiT. MorishitaM. KatsumiH. YamamotoA. Enhanced intestinal absorption of insulin by capryol 90, a novel absorption enhancer in rats: Implications in oral insulin delivery.Pharmaceutics202012546210.3390/pharmaceutics1205046232443624
    [Google Scholar]
  61. WongC.Y. MartinezJ. CarnagarinR. DassC.R. in-vitro evaluation of enteric coated insulin tablets containing absorption enhancer and enzyme inhibitor.J. Pharm. Pharmacol.201769328529410.1111/jphp.1269428155991
    [Google Scholar]
  62. ChenH. LuY. ShiS. ZhangQ. CaoX. SunL. AnD. ZhangX. KongX. LiuJ. Design and Development of a New Glucagon-Like Peptide-1 Receptor Agonist to Obtain High Oral Bioavailability.Pharm. Res.20223981891190610.1007/s11095‑022‑03265‑335698011
    [Google Scholar]
  63. McCartneyF. RosaM. BraydenD.J. Evaluation of Sucrose Laurate as an Intestinal Permeation Enhancer for Macromolecules: ex- vivo and in vivo Studies.Pharmaceutics2019111156510.3390/pharmaceutics1111056531683652
    [Google Scholar]
  64. LamsonN.G. FeinK.C. GleesonJ.P. NewbyA.N. XianS. CochranK. ChaudharyN. MelamedJ.R. BallR.L. SuriK. AhujaV. ZhangA. BergerA. KolodieznyiD. SchmidtB.F. SilvaG.L. WhiteheadK.A. The strawberry-derived permeation enhancer pelargonidin enables oral protein delivery.Proc Natl Acad Sci202211933e220782911910.1073/pnas.2207829119
    [Google Scholar]
  65. DamgeC MichelC AprahamianM CouvreurP. New Approach for Oral Administration of Insulin With Polyalkylcyanoacrylate Nanocapsules as Drug Carrier.Diabetes.19883722465110.2337/diabetes.37.2.246
    [Google Scholar]
  66. RitaA LemosB Development of lipid nanocapsules encapsulating exenatide for oral delivery in the treatment of type 2 diabetes mellitus.Universidade de Lisboa2019161
    [Google Scholar]
  67. MuntoniE. MariniE. AhmadiN. MillaP. GhèC. BargoniA. CapucchioM.T. BiasibettiE. BattagliaL. Lipid nanoparticles as vehicles for oral delivery of insulin and insulin analogs: Preliminary ex-vivo and in vivo studies.Acta Diabetol.201956121283129210.1007/s00592‑019‑01403‑931407113
    [Google Scholar]
  68. MuntoniE. AnfossiL. MillaP. MariniE. FerrarisC. CapucchioM.T. ColombinoE. SegaleL. PortaM. BattagliaL. Glargine insulin loaded lipid nanoparticles: Oral delivery of liquid and solid oral dosage forms.Nutr. Metab. Cardiovasc. Dis.202131269169810.1016/j.numecd.2020.09.02033131992
    [Google Scholar]
  69. LópezM.A.L. NavarroG.C.J. VizmanosJ.L. IracheJ.M. Zein-based nanocarriers for the oral delivery of insulin. in vivo evaluation in Caenorhabditis elegans.Drug Deliv. Transl. Res.202111264765810.1007/s13346‑021‑00919‑433515186
    [Google Scholar]
  70. AndreaniT. MiziaraL. LorenzónE.N. de SouzaA.L.R. KiillC.P. FangueiroJ.F. GarciaM.L. GremiãoP.D. SilvaA.M. SoutoE.B. Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models.Eur. J. Pharm. Biopharm.20159311812610.1016/j.ejpb.2015.03.02725843239
    [Google Scholar]
  71. GrafA. RadesT. HookS.M. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: Optimisation and in vivo evaluation.Eur. J. Pharm. Sci.2009371536110.1016/j.ejps.2008.12.01719167488
    [Google Scholar]
  72. HuX. Bin, Tang TT, Li YJ, Wu JY, Wang JM, Liu XY, Xiang DX. Phospholipid complex based nanoemulsion system for oral insulin delivery: Preparation, in vitro, and in vivo evaluations.Int. J. Nanomedicine201914143055143067
    [Google Scholar]
  73. ZhangY. WeiW. LvP. WangL. MaG. Preparation and evaluation of alginate–chitosan microspheres for oral delivery of insulin.Eur. J. Pharm. Biopharm.2011771111910.1016/j.ejpb.2010.09.01620933083
    [Google Scholar]
  74. UbaidullaU. KharR.K. AhmedF.J. PandaA.K. Development and in-vivo evaluation of insulin-loaded chitosan phthalate microspheres for oral delivery.J. Pharm. Pharmacol.201059101345135110.1211/jpp.59.10.000317910808
    [Google Scholar]
  75. ÇelebiN. YetkinG. ÖzerÇ. CanA. GökçoraN. Evaluation of microemulsion and liposomes as carriers for oral delivery of transforming growth factor alpha in rats.J. Microencapsul.201229653954810.3109/02652048.2012.66509122375686
    [Google Scholar]
  76. MinamiK. KataokaM. TakagiT. AsaiT. OkuN. YamashitaS. Liposomal Formulation for Oral Delivery of Cyclosporine A: Usefulness as a Semisolid-Dispersion System.Pharm. Res.202239597798710.1007/s11095‑022‑03276‑035501532
    [Google Scholar]
  77. HeadeJ. McCartneyF. ChenloM. MarroO.M. SevericM. KentR. BleielS.B. AlvarezC.V. GriffinB.T. BraydenD.J. Synthesis and in vivo evaluation of insulin-loaded whey beads as an oral peptide delivery system.Pharmaceutics202113565610.3390/pharmaceutics1305065634064415
    [Google Scholar]
  78. LeeSH SongJG HanHK Development of pH-responsive organic-inorganic hybrid nanocomposites as an effective oral delivery system of protein drugs.J. Controlled Release2019311–312748410.1016/j.jconrel.2019.08.036
    [Google Scholar]
  79. SunL. LiuZ. TianH. LeZ. LiuL. LeongK.W. MaoH.Q. ChenY. Scalable Manufacturing of Enteric Encapsulation Systems for Site-Specific Oral Insulin Delivery.Biomacromolecules201920152853810.1021/acs.biomac.8b0153030537806
    [Google Scholar]
  80. SladekS. McCartneyF. EskanderM. DunneD.J. MartinezS.M.J. BenettiF. TajberL. BraydenD.J. An enteric-coated polyelectrolyte nanocomplex delivers insulin in rat intestinal instillations when combined with a permeation enhancer.Pharmaceutics202012325910.3390/pharmaceutics1203025932178442
    [Google Scholar]
  81. PallagiE. IsmailR. PaálT.L. CsókaI. Initial Risk Assessment as part of the Quality by Design in peptide drug containing formulation development.Eur. J. Pharm. Sci.201812216016910.1016/j.ejps.2018.07.00330008428
    [Google Scholar]
  82. ŠahinovićM. HassanA. KristóK. RegdonG.Jr VranićE. SoványT. Quality by Design-Based Development of Solid Self-Emulsifying Drug Delivery System (SEDDS) as a Potential Carrier for Oral Delivery of Lysozyme.Pharmaceutics202315399510.3390/pharmaceutics1503099536986855
    [Google Scholar]
  83. IsmailR. SoványT. GácsiA. AmbrusR. KatonaG. ImreN. CsókaI. Synthesis and Statistical Optimization of Poly (Lactic-Co-Glycolic Acid) Nanoparticles Encapsulating GLP1 Analog Designed for Oral Delivery.Pharm. Res.20193679910.1007/s11095‑019‑2620‑931087188
    [Google Scholar]
  84. SoványT. CsordásK. KelemenA. RegdonG.Jr HódiP.K. Development of pellets for oral lysozyme delivery by using a quality by design approach.Chem. Eng. Res. Des.20161069210010.1016/j.cherd.2015.11.022
    [Google Scholar]
  85. ChauhanM.K. BhattN. Bioavailability Enhancement of Polymyxin B With Novel Drug Delivery: Development and Optimization Using Quality-by-Design Approach.J. Pharm. Sci.201910841521152810.1016/j.xphs.2018.11.03230472265
    [Google Scholar]
  86. ChenG. KangW. LiW. ChenS. GaoY. Oral delivery of protein and peptide drugs: From non-specific formulation approaches to intestinal cell targeting strategies.Theranostics20221231419143910.7150/thno.6174735154498
    [Google Scholar]
  87. ThomasR.H. LuthinD.R. Current and emerging treatments for irritable bowel syndrome with constipation and chronic idiopathic constipation: Focus on prosecretory agents.Pharmacotherapy201535661363010.1002/phar.159426016701
    [Google Scholar]
  88. HamanoN. KomabaH. FukagawaM. Etelcalcetide for the treatment of secondary hyperparathyroidism.Expert Opin. Pharmacother.201718552953410.1080/14656566.2017.130348228277829
    [Google Scholar]
  89. TellaSH KommalapatiA CorreaR Profile of Abaloparatide and Its Potential in the Treatment of Postmenopausal Osteoporosis.Cureus.201795e130010.7759/cureus.1300
    [Google Scholar]
  90. YangL. MorrielloG. PanY. NargundR.P. BarakatK. PrendergastK. ChengK. ChanW.W.S. SmithR.G. PatchettA.A. Tripeptide growth hormone secretagogues.Bioorg. Med. Chem. Lett.19988775976410.1016/S0960‑894X(98)00103‑69871537
    [Google Scholar]
  91. LauJ. BlochP. SchäfferL. PetterssonI. SpetzlerJ. KofoedJ. MadsenK. KnudsenL.B. McGuireJ. SteensgaardD.B. StraussH.M. GramD.X. KnudsenS.M. NielsenF.S. ThygesenP. RungeR.S. KruseT. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide.J. Med. Chem.201558187370738010.1021/acs.jmedchem.5b0072626308095
    [Google Scholar]
  92. JensenL. HellebergH. RoffelA. van LierJ.J. BjørnsdottirI. PedersenP.J. RoweE. KarsbølD.J. PedersenM.L. Absorption, metabolism and excretion of the GLP-1 analogue semaglutide in humans and nonclinical species.Eur. J. Pharm. Sci.2017104314110.1016/j.ejps.2017.03.02028323117
    [Google Scholar]
  93. PratleyR.E. ArodaV.R. LingvayI. LüdemannJ. AndreassenC. NavarriaA. ViljoenA. Semaglutide versus dulaglutide once weekly in patients with type 2 diabetes (SUSTAIN 7): A randomised, open-label, phase 3b trial.Lancet Diabetes Endocrinol.20186427528610.1016/S2213‑8587(18)30024‑X29397376
    [Google Scholar]
  94. GarciaJ.M. SwerdloffR. WangC. KyleM. KipnesM. BillerB.M.K. CookD. YuenK.C.J. BonertV. DobsA. MolitchM.E. MerriamG.R. Macimorelin (AEZS-130)-stimulated growth hormone (GH) test: Validation of a novel oral stimulation test for the diagnosis of adult GH deficiency.J. Clin. Endocrinol. Metab.20139862422242910.1210/jc.2013‑115723559086
    [Google Scholar]
  95. KojimaM. HosodaH. MatsuoH. KangawaK. Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor.Trends Endocrinol. Metab.200112311812210.1016/S1043‑2760(00)00362‑311306336
    [Google Scholar]
  96. BassoN. TerragnoN.A. History about the discovery of the renin-angiotensin system.Hypertension20013861246124910.1161/hy1201.10121411751697
    [Google Scholar]
  97. BussardR BusseL. Angiotensin II: A new therapeutic option for vasodilatory shock.Ther Clin Risk Manag.2018141287129810.2147/TCRM.S150434
    [Google Scholar]
  98. GrahamM.M. GuX. GinaderT. BrehenyP. SunderlandJ.J. 68 Ga- DOTATOC Imaging of Neuroendocrine Tumors: A Systematic Review and Metaanalysis.J. Nucl. Med.20175891452145810.2967/jnumed.117.19119728280220
    [Google Scholar]
  99. LeVS 68Ga Generator Integrated System: Elution–Purification–Concentration Integration.Recent Results Cancer Res.20131944375
    [Google Scholar]
  100. PoeppelT.D. BinseI. PetersennS. LahnerH. SchottM. AntochG. BrandauW. BockischA. BoyC. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors.J. Nucl. Med.201152121864187010.2967/jnumed.111.09116522072704
    [Google Scholar]
  101. KhorL.K. LoiH.Y. SinhaA.K. TongK.T. GohB.C. LohK.S. LuS.J. 68 Ga-DOTA-peptide: A novel molecular biomarker for nasopharyngeal carcinoma.Head Neck2016384E76E8010.1002/hed.2416426275126
    [Google Scholar]
  102. SawyerT.K. SanfilippoP.J. HrubyV.J. EngelM.H. HewardC.B. BurnettJ.B. HadleyM.E. 4-Norleucine, 7-D-phenylalanine-alpha-melanocyte-stimulating hormone: A highly potent alpha-melanotropin with ultralong biological activity.Proc. Natl. Acad. Sci.198077105754575810.1073/pnas.77.10.57546777774
    [Google Scholar]
  103. MolinoffP.B. ShadiackA.M. EarleD. DiamondL.E. QuonC.Y. PT-141: A Melanocortin Agonist for the Treatment of Sexual Dysfunction.Ann. N. Y. Acad. Sci.200399419610210.1111/j.1749‑6632.2003.tb03167.x
    [Google Scholar]
  104. MillerM.K. SmithJ.R. NormanJ.J. ClaytonA.H. Expert opinion on existing and developing drugs to treat female sexual dysfunction.Expert Opin. Emerg. Drugs201823322323010.1080/14728214.2018.152790130251897
    [Google Scholar]
  105. BothS. Recent Developments in Psychopharmaceutical Approaches to Treating Female Sexual Interest and Arousal Disorder.Curr. Sex. Health Rep.20179419219910.1007/s11930‑017‑0124‑329225554
    [Google Scholar]
  106. ColletT.H. DubernB. MokrosinskiJ. ConnorsH. KeoghJ.M. de OliveiraM.E. HenningE. BernertP.C. OppertJ.M. TounianP. MarchelliF. AliliR. Le BeyecJ. PépinD. LacorteJ.M. GottesdienerA. BoundsR. SharmaS. FolsterC. HendersonB. O’RahillyS. StonerE. GottesdienerK. PanaroB.L. ConeR.D. ClémentK. FarooqiI.S. der PloegV.L.H.T. Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency.Mol. Metab.20176101321132910.1016/j.molmet.2017.06.01529031731
    [Google Scholar]
  107. Al ShaerD. Al MusaimiO. AlbericioF. de la TorreB.G. 2019 FDA TIDES (Peptides and Oligonucleotides) Harvest.Pharmaceuticals20201334010.3390/ph1303004032151051
    [Google Scholar]
  108. GutfilenB SouzaS ValentiniG. Copper-64: A real theranostic agent.Drug Des Devel Ther.2018123235324510.2147/DDDT.S170879
    [Google Scholar]
  109. GrassiI. NanniC. CicoriaG. BlasiC. BunkheilaF. LopciE. CollettiP.M. RubelloD. FantiS. Usefulness of 64Cu-ATSM in head and neck cancer: A preliminary prospective study.Clin. Nucl. Med.2014391e59e6310.1097/RLU.0b013e3182a756f024097008
    [Google Scholar]
  110. HandleyM.G. MedinaR.A. MariottiE. KennyG.D. ShawK.P. YanR. EykynT.R. BlowerP.J. SouthworthR. Cardiac hypoxia imaging: Second-generation analogues of 64Cu-ATSM.J. Nucl. Med.201455348849410.2967/jnumed.113.12901524421288
    [Google Scholar]
  111. EderM. SchäferM. WüstB.U. HullW.E. WänglerC. MierW. HaberkornU. EisenhutM. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging.Bioconjug. Chem.201223468869710.1021/bc200279b22369515
    [Google Scholar]
  112. voxzogo-epar-product-information_enAvailable from: https://www.ema.europa.eu/en/documents/product-information/voxzogo-epar-product-information_en.pdf
  113. KuglstatterA. MuellerF. KusznirE. GsellB. StihleM. ThomaR. BenzJ. AspesletL. FreitagD. HennigM. Structural basis for the cyclophilin A binding affinity and immunosuppressive potency of E -ISA247 (voclosporin).Acta Crystallogr. D Biol. Crystallogr.201167211912310.1107/S090744491005190521245533
    [Google Scholar]
  114. de CastroC. GrossiF. WeitzI.C. MaciejewskiJ. SharmaV. RomanE. BrodskyR.A. TanL. Di CasoliC. El MehdiD. DeschateletsP. FrancoisC. C3 inhibition with pegcetacoplan in subjects with paroxysmal nocturnal hemoglobinuria treated with eculizumab.Am. J. Hematol.202095111334134310.1002/ajh.2596033464651
    [Google Scholar]
  115. BhakR.H. PatelM.N. BaverS.B. KunzweilerC. YeeC.W. SundaresanS. SwartzN. DuhM.S. KrishnanS. SardaS.P. Comparative effectiveness of pegcetacoplan versus ravulizumab in patients with paroxysmal nocturnal hemoglobinuria previously treated with eculizumab: A matching-adjusted indirect comparison.Curr. Med. Res. Opin.202137111913192310.1080/03007995.2021.197118234445916
    [Google Scholar]
  116. EMPAVELI® (pegcetacoplan) injection, for subcutaneous use Initial U.S. ApprovalAvailable from: https://pi.apellis.com/files/PI_Empaveli.pdf 2021
  117. BakerDE Dasiglucagon.Hosp Pharm2021001857872110468
    [Google Scholar]
  118. XuB. TangG. ChenZ. Dasiglucagon: An effective medicine for severe hypoglycemia.Eur. J. Clin. Pharmacol.202177121783179010.1007/s00228‑021‑03183‑034223944
    [Google Scholar]
  119. ZEGALOGUE (dasiglucagon) injection, for subcutaneous use Initial U.S. ApprovalAvailable from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214231s000lbl.pdf 2021
  120. DeeksE.D. Difelikefalin: First Approval.Drugs202181161937194410.1007/s40265‑021‑01619‑634674115
    [Google Scholar]
  121. VartanianA.A. BoydM.R. HallA.L. MorgadoS.J. NguyenE. NguyenV.P.H. PatelS.P. RussoL.J. ShaoA.J. RaffaR.B. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential?J. Clin. Pharm. Ther.201641437138210.1111/jcpt.1240427245498
    [Google Scholar]
  122. DeeksE.D. Odevixibat: First Approval.Drugs202181151781178610.1007/s40265‑021‑01594‑y34499340
    [Google Scholar]
  123. BYLVAY (odevixibat) capsules, for oral use BYLVAY (odevixibat) oral pellets Initial U.S. ApprovalAvailable from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215498s000lbl.pdf 2021
  124. WahsnerJ. GaleE.M. RodríguezR.A. CaravanP. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers.Chem. Rev.20191192957105710.1021/acs.chemrev.8b0036330350585
    [Google Scholar]
  125. HaoJ. BourrinetP. DeschéP. Assessment of Pharmacokinetic, Pharmacodynamic Profile, and Tolerance of Gadopiclenol, A New High Relaxivity GBCA, in Healthy Subjects and Patients With Brain Lesions (Phase I/IIa Study).Invest. Radiol.201954739640210.1097/RLI.000000000000055630870257
    [Google Scholar]
  126. LoevnerL.A. KolumbanB. HutóczkiG. DziadziuszkoK. BereczkiD. BagoA. PichiecchioA. Efficacy and Safety of Gadopiclenol for Contrast-Enhanced MRI of the Central Nervous System.Invest. Radiol.202358530731310.1097/RLI.000000000000094436729404
    [Google Scholar]
  127. KeamS.J. Lutetium Lu 177 Vipivotide Tetraxetan: First Approval.Mol. Diagn. Ther.202226446747510.1007/s40291‑022‑00594‑235553387
    [Google Scholar]
  128. FallahJ. AgrawalS. GittlemanH. FieroM.H. SubramaniamS. JohnC. ChenW. RicksT.K. NiuG. FotenosA. WangM. ChiangK. PierceW.F. SuzmanD.L. TangS. PazdurR. KordestaniA.L. IbrahimA. KluetzP.G. FDA Approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for Patients with Metastatic Castration-Resistant Prostate Cancer.Clin. Cancer Res.20232991651165710.1158/1078‑0432.CCR‑22‑287536469000
    [Google Scholar]
  129. PLUVICTOTM (lutetium Lu 177 vipivotide tetraxetan) injection, for intravenous use Initial U.S. ApprovalAvailable from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/215833s000lbl.pdf 2022
  130. PesaturoA.B. JenningsH.R. VoilsS.A. Terlipressin: Vasopressin analog and novel drug for septic shock.Ann. Pharmacother.200640122170217710.1345/aph.1H37317148649
    [Google Scholar]
  131. IoannouG.N. DoustJ. RockeyD.C. Terlipressin in acute oesophageal variceal haemorrhage.Aliment. Pharmacol. Ther.2003171536410.1046/j.1365‑2036.2003.01356.x12492732
    [Google Scholar]
  132. FabriziF. DixitV. MartinP. Meta-analysis: Terlipressin therapy for the hepatorenal syndrome.Aliment. Pharmacol. Ther.200624693594410.1111/j.1365‑2036.2006.03086.x16948805
    [Google Scholar]
  133. FujitaT. FujitaT. MorikawaK. TanakaH. IemuraO. YamamotoA. MuranishiS. Improvement of intestinal absorption of human calcitonin by chemical modification with fatty acids: Synergistic effects of acylation and absorption enhancers.International J. Pharmaceutics19961341–24757
    [Google Scholar]
  134. AsadaH. Absorption Characteristics of Chemically Modified-Insulin Derivatives with Various Fatty Acids in the Small and Large Intestine.J. Pharmaceutical Sci.1996846682687
    [Google Scholar]
  135. FujitaT MorishitaY ItoH KuribayashiD YamamotoA MuranishiS. Enhancement of the small intestinal uptake of phenylalanylglycine via a H+/oligopeptide transport system by chemical modification with fatty acids.Life Sci.19976125245565
    [Google Scholar]
  136. AminM.K. BoatengJ.S. Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery.Mar. Drugs202220315610.3390/md2003015635323455
    [Google Scholar]
  137. ZhaoX. ShanC. ZuY. ZhangY. WangW. WangK. SuiX. LiR. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin.Int. J. Pharm.2013454127828410.1016/j.ijpharm.2013.06.05123830939
    [Google Scholar]
  138. LiY. ZhaoX. ZuY. WangL. WuW. DengY. ZuC. LiuY. Melatonin-loaded silica coated with hydroxypropyl methylcellulose phthalate for enhanced oral bioavailability: Preparation, and in vitro-in vivo evaluation.Eur. J. Pharm. Biopharm.2017112586610.1016/j.ejpb.2016.11.00327865856
    [Google Scholar]
  139. FanT. ChenC. GuoH. XuJ. ZhangJ. ZhuX. YangY. ZhouZ. LiL. HuangY. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs.Eur. J. Pharm. Biopharm.201488251852810.1016/j.ejpb.2014.06.01124968819
    [Google Scholar]
  140. WangC. SuL. WuC. WuJ. ZhuC. YuanG. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma.Drug Dev. Ind. Pharm.201642121938194410.1080/03639045.2016.118543527142812
    [Google Scholar]
  141. XuW.W. LiuD. CaoY. WangX. GE11 peptide-conjugated nanoliposomes to enhance the combinational therapeutic efficacy of docetaxel and siRNA in laryngeal cancers.Int. J. Nanomedicine2017126461647010.2147/IJN.S12994628919747
    [Google Scholar]
  142. KouL. SunR. XiaoS. CuiX. SunJ. GanapathyV. YaoQ. ChenR. OCTN2-targeted nanoparticles for oral delivery of paclitaxel: Differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo.Drug Deliv.202027117017910.1080/10717544.2019.171062331913724
    [Google Scholar]
  143. KaurI. NallamothuB. KucheK. KatiyarS.S. ChaudhariD. JainS. Exploring protein stabilized multiple emulsion with permeation enhancer for oral delivery of insulin.Int. J. Biol. Macromol.202116749150110.1016/j.ijbiomac.2020.11.19033279562
    [Google Scholar]
  144. ChuangE.Y. LinK.J. SuF.Y. ChenH.L. MaitiB. HoY.C. YenT.C. PandaN. SungH.W. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery.J. Control. Release2013169329630510.1016/j.jconrel.2012.11.01123195534
    [Google Scholar]
  145. LarionovaN V PonchelG DuchêneD LarionovaNI Biodegradable cross-linked starch/protein microcapsules containing proteinase inhibitor for oral protein administration.Int J Pharm.199918921718
    [Google Scholar]
  146. SuF.Y. LinK.J. SonajeK. WeyS.P. YenT.C. HoY.C. PandaN. ChuangE.Y. MaitiB. SungH.W. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery.Biomaterials20123392801281110.1016/j.biomaterials.2011.12.03822243802
    [Google Scholar]
  147. BurshteinG. ItinC. TangJ.C.Y. GalitzerH. FraserW.D. SchwartzP. The combined effect of permeation enhancement and proteolysis inhibition on the systemic exposure of orally administrated peptides: Salcaprozate sodium, soybean trypsin inhibitor, and teriparatide study in pigs.Int. J. Pharm. X2021310009710.1016/j.ijpx.2021.10009734704013
    [Google Scholar]
  148. CurtoD.M.D. MaroniA. PaluganL. ZemaL. GazzanigaA. SangalliM.E. Oral delivery system for two-pulse colonic release of protein drugs and protease inhibitor/absorption enhancer compounds.J. Pharm. Sci.201110083251325910.1002/jps.2256021465487
    [Google Scholar]
  149. AktasY. TekeliC.M. CelebiN. Development and characterization of exendin-4 loaded self-nanoemulsifying system and in vitro evaluation on Caco-2 cell line.J. Microencapsul.2020371415110.1080/02652048.2019.169294531714163
    [Google Scholar]
  150. ToorisakaE. HashidaM. KamiyaN. OnoH. KokazuY. GotoM. An enteric-coated dry emulsion formulation for oral insulin delivery.J. Control. Release20051071919610.1016/j.jconrel.2005.05.02216039746
    [Google Scholar]
  151. TrenktrogT. MullerB.W. SpechtF.M. SeifertJ. Enteric coated insulin pellets: Development, drug release and in vivo evaluation a a~ a.1996323329
    [Google Scholar]
  152. HoenyE. GhllzaK.L.N. Al-DhawalieH. Effective intestinal absorption of insulin in diabetic rats using enteric coated capsules containing sodium salicylate.Drug Develop. Industrial Pharma.1995211315831589
    [Google Scholar]
  153. MercierG.T. NeheteP.N. PasseriM.F. NeheteB.N. WeaverE.A. TempletonN.S. SchlunsK. BuchlS.S. SastryK.J. BarryM.A. Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules.Vaccine200725528687870110.1016/j.vaccine.2007.10.03018063450
    [Google Scholar]
  154. ArpaçB. GökberkD.B. KüçüktürkmenB. GündüzO.I. Palabıyıkİ.M. BozkırA. Design and in vitro/in vivo Evaluation of Polyelectrolyte Complex Nanoparticles Filled in Enteric-Coated Capsules for Oral Delivery of Insulin.J. Pharm. Sci.2023112371873010.1016/j.xphs.2022.09.01836150470
    [Google Scholar]
  155. DeutelB. GreindlM. ThaurerM. SchnürchB.A. Novel insulin thiomer nanoparticles: in vivo evaluation of an oral drug delivery system.Biomacromolecules20089127828510.1021/bm700916h18159930
    [Google Scholar]
  156. ConacherM AlexanderJ BrewerJM Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes).Vaccine.20011920-22296574
    [Google Scholar]
  157. TangY. ArbaughB. ParkH. ScherH.B. BaiL. MaoL. JeohT. Targeting enteric release of therapeutic peptides by encapsulation in complex coacervated matrix microparticles by spray drying.J. Drug Deliv. Sci. Technol.20237910406310.1016/j.jddst.2022.104063
    [Google Scholar]
  158. LyuS-Y KwonY-J JooH-J ParkW-B Preparation of Alginate/Chitosan Microcapsules and Enteric Coated Granules of Mistletoe Lectin.Arch Pharm Res.200427111826
    [Google Scholar]
  159. CuiF. TaoA. CunD. ZhangL. ShiK. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery.J. Pharm. Sci.200796242142710.1002/jps.2075017051590
    [Google Scholar]
  160. MaroniA. CurtoD.M.D. SalmasoS. ZemaL. MelocchiA. CalicetiP. GazzanigaA. in vitro and in vivo evaluation of an oral multiple-unit formulation for colonic delivery of insulin.Eur. J. Pharm. Biopharm.2016108768210.1016/j.ejpb.2016.08.00227519826
    [Google Scholar]
  161. AguirreT.A.S. AversaV. RosaM. GuterresS.S. PohlmannA.R. CoulterI. BraydenD.J. Coated minispheres of salmon calcitonin target rat intestinal regions to achieve systemic bioavailability: Comparison between intestinal instillation and oral gavage.J. Control. Release201623824225210.1016/j.jconrel.2016.07.04727480451
    [Google Scholar]
  162. YuF. LiY. LiuC.S. ChenQ. WangG.H. GuoW. WuX.E. LiD.H. WuW.D. ChenX.D. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin.Int. J. Pharm.20154841-218119110.1016/j.ijpharm.2015.02.05525724135
    [Google Scholar]
  163. NahaP.C. KanchanV. MannaP.K. PandaA.K. Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles.J. Microencapsul.200825424825610.1080/0265204080190384318465311
    [Google Scholar]
  164. ChaturvediK. GangulyK. KulkarniA.R. RudzinskiW.E. KraussL. NadagoudaM.N. AminabhaviT.M. Oral insulin delivery using deoxycholic acid conjugated PEGylated polyhydroxybutyrate co-polymeric nanoparticles.Nanomedicine201510101569158310.2217/nnm.15.3626008194
    [Google Scholar]
  165. BuildersP.F. KunleO.O. OkpakuL.C. BuildersM.I. AttamaA.A. AdikwuM.U. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin.Eur. J. Pharm. Biopharm.200870377778310.1016/j.ejpb.2008.06.02118644444
    [Google Scholar]
  166. SachdevaC. MishraN. SharmaS. Development and characterization of enteric-coated microparticles of biochanin A for their beneficial pharmacological potential in estrogen deficient-hypertension.Drug Deliv.20162362044205710.3109/10717544.2015.111404626599817
    [Google Scholar]
  167. MarettiE PavanB RustichelliC MontanariM DalpiazA IannuccelliV LeoE. Chitosan/heparin polyelectrolyte complexes as ion-paring approach to encapsulate heparin in orally administrable SLN: in vitro evaluation.Colloids Surf A Physicochem Eng Asp2021608125606
    [Google Scholar]
  168. KusumotoY. HayashiK. SatoS. YamadaT. KozonoI. NakataZ. AsadaN. MitsukiS. WatanabeA. MorimotoW.C. UemuraK. AritaS. MikiS. MizutareT. MikamiyamaH. Highly Potent and Oral Macrocyclic Peptides as a HIV-1 Protease Inhibitor: MRNA Display-Derived Hit-to-Lead Optimization.ACS Med. Chem. Lett.202213101634164110.1021/acsmedchemlett.2c0031036262395
    [Google Scholar]
  169. PoudwalS. MisraA. ShendeP. Enhancement of oral bioavailability of insulin using a combination of surface-modified inclusion complex and SNEDDS.J. Mol. Liq.202236812064110.1016/j.molliq.2022.120641
    [Google Scholar]
  170. TuckerT.J. EmbreyM.W. AlleyneC. AminR.P. BassA. BhattB. BianchiE. BrancaD. BuetersT. BuistN. HaS.N. HafeyM. HeH. HigginsJ. JohnsD.G. KerekesA.D. KoeplingerK.A. KuetheJ.T. LiN. MurphyB. OrthP. SaloweS. ShahripourA. TracyR. WangW. WuC. XiongY. ZokianH.J. WoodH.B. WaljiA. A Series of Novel, Highly Potent, and Orally Bioavailable Next-Generation Tricyclic Peptide PCSK9 Inhibitors.J. Med. Chem.20216422167701680010.1021/acs.jmedchem.1c0159934704436
    [Google Scholar]
  171. WeiZ. XuJ. PengX. YuanZ. ZhaoC. GuoK. ZhangX. HeY. ZhangZ. WuY. ShenG. QianK. Preparation and performance characteristics of spider venom peptide nanocapsules.Pest Manag. Sci.202278104261426710.1002/ps.704535716064
    [Google Scholar]
  172. AbedA.O.S. ChawC.S. WilliamsL. ElkordyA.A. PEGylated polymeric nanocapsules for oral delivery of trypsin targeted to the small intestines.Int. J. Pharm.202159212009410.1016/j.ijpharm.2020.12009433197565
    [Google Scholar]
  173. WatnasirichaikulS. RadesT. TuckerI.G. DaviesN.M. in-vitro release and oral bioactivity of insulin in diabetic rats using nanocapsules dispersed in biocompatible microemulsion.J. Pharm. Pharmacol.201054447348010.1211/002235702177873611999123
    [Google Scholar]
  174. ThwalaL.N. DelgadoD.P. LeoneK. MarigoI. BenettiF. ChenloM. AlvarezC.V. TovarS. DieguezC. CsabaN.S. AlonsoM.J. Protamine nanocapsules as carriers for oral peptide delivery.J. Control. Release201829115716810.1016/j.jconrel.2018.10.02230343137
    [Google Scholar]
  175. LolloG. ParedesG.A. FuentesG.M. CalvoP. TorresD. AlonsoM.J. Polyarginine Nanocapsules as a Potential Oral Peptide Delivery Carrier.J. Pharm. Sci.2017106261161810.1016/j.xphs.2016.09.02927855960
    [Google Scholar]
  176. NiuZ. TedescoE. BenettiF. MabondzoA. MontagnerI.M. MarigoI. ToucedaG.D. TovarS. DiéguezC. OrtegaS.M.J. AlonsoM.J. Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers.J. Control. Release201726341710.1016/j.jconrel.2017.02.02428235590
    [Google Scholar]
  177. ZhangY. ChiC. HuangX. ZouQ. LiX. ChenL. Starch-based nanocapsules fabricated through layer-by-layer assembly for oral delivery of protein to lower gastrointestinal tract.Carbohydr. Polym.201717124225110.1016/j.carbpol.2017.04.09028578960
    [Google Scholar]
  178. AnsariM.J. AnwerM.K. JamilS. Al-ShdefatR. AliB.E. AhmadM.M. AnsariM.N. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats.Drug Deliv.20162361972197926017100
    [Google Scholar]
  179. KumarM. SharmaG. SinglaD. SinghS. KakkarV. GulatiJ.S. KaurI.P. Enhanced Oral Absorption of All-trans Retinoic Acid upon Encapsulation in Solid Lipid Nanoparticles.Pharm. Nanotechnol.20208649551010.2174/221173850899920102722082533115399
    [Google Scholar]
  180. ZhengY-X. HeQ. XuM. HuangY. [Construction of Oral Insulin-Loaded Solid Lipid Nanoparticles and Their Intestinal Epithelial Cell Transcytosis Study].Sichuan Da Xue Xue Bao Yi Xue Ban202152457057634323033
    [Google Scholar]
  181. DumontC. BourgeoisS. FessiH. DugasP.Y. JanninV. in-vitro evaluation of solid lipid nanoparticles: Ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract.Int. J. Pharm.201956540941810.1016/j.ijpharm.2019.05.03731100381
    [Google Scholar]
  182. DanishK.M. GleesonJ.P. BraydenD.J. ByrneH.J. FríasJ.M. RyanS.M. Formulation, Characterisation and Evaluation of the Antihypertensive Peptides, Isoleucine-Proline-Proline and Leucine-Lysine-Proline in Chitosan Nanoparticles Coated with Zein for Oral Drug Delivery.Int. J. Mol. Sci.202223191116010.3390/ijms23191116036232463
    [Google Scholar]
  183. AgardanM.N.B. HanS. in vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery.Pharm. Dev. Technol.202126215716610.1080/10837450.2020.184928233183103
    [Google Scholar]
  184. JuèreE. CaillardR. MarkoD. FaveroD.G. KleitzF. Smart Protein-Based Formulation of Dendritic Mesoporous Silica Nanoparticles: Toward Oral Delivery of Insulin.Chem202026235195519910.1002/chem.20200077332057143
    [Google Scholar]
  185. WuH. GuoT. NanJ. YangL. LiaoG. ParkH.J. LiJ. Hyaluronic-Acid-Coated Chitosan Nanoparticles for Insulin Oral Delivery: Fabrication, Characterization, and Hypoglycemic Ability.Macromol. Biosci.2022227210049310.1002/mabi.20210049335182103
    [Google Scholar]
  186. AsfourM.H. SalamaA.A.A. MohsenA.M. Fabrication of All-Trans Retinoic Acid loaded Chitosan/Tripolyphosphate Lipid Hybrid Nanoparticles as a Novel Oral Delivery Approach for Management of Diabetic Nephropathy in Rats.J. Pharm. Sci.202111093208322010.1016/j.xphs.2021.05.00734015278
    [Google Scholar]
  187. YangJ.M. WuL.J. LinM.T. LuY.Y. WangT.T. HanM. ZhangB. XuD.H. Construction and Evaluation of Chitosan-Based Nanoparticles for Oral Administration of Exenatide in Type 2 Diabetic Rats.Polymers20221411218110.3390/polym1411218135683851
    [Google Scholar]
  188. ShengJ. HanL. QinJ. RuG. LiR. WuL. CuiD. YangP. HeY. WangJ. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption.ACS Appl. Mater. Interfaces2015728154301544110.1021/acsami.5b0355526111015
    [Google Scholar]
  189. InchaurragaL. LópezM.A.L. ArbellaM.N. IracheJ.M. Zein-based nanoparticles for the oral delivery of insulin.Drug Deliv. Transl. Res.20201061601161110.1007/s13346‑020‑00796‑332514704
    [Google Scholar]
  190. JiN. HongY. GuZ. ChengL. LiZ. LiC. Chitosan coating of zein-carboxymethylated short-chain amylose nanocomposites improves oral bioavailability of insulin in vitro and in vivo.J. Control. Release201931311310.1016/j.jconrel.2019.10.00631622690
    [Google Scholar]
  191. GuoH. YanX. TangH. ZhangX. Assessment of Exenatide loaded Biotinylated Trimethylated Chitosan/HP- 55 Nanoparticles.Curr. Drug Deliv.2022191324010.2174/156720181866621061410060334126896
    [Google Scholar]
  192. HeZ. LiuZ. TianH. HuY. LiuL. LeongK.W. MaoH.Q. ChenY. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin.Nanoscale20181073307331910.1039/C7NR08047F29384554
    [Google Scholar]
  193. KumariY. SinghS.K. KumarR. KumarB. KaurG. GulatiM. TewariD. GowthamarajanK. KarriV.V.S.N.R. AyinkamiyeC. KhursheedR. AwasthiA. PandeyN.K. MohantaS. GuptaS. CorrieL. PatniP. KumarR. KumarR. Modified apple polysaccharide capped gold nanoparticles for oral delivery of insulin.Int. J. Biol. Macromol.202014997698810.1016/j.ijbiomac.2020.01.30232018009
    [Google Scholar]
  194. ChoH.J. OhJ. ChooM.K. HaJ.I. ParkY. MaengH.J. Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin.Int. J. Biol. Macromol.201463152010.1016/j.ijbiomac.2013.10.02624444886
    [Google Scholar]
  195. LinY.H. MiF.L. ChenC.T. ChangW.C. PengS.F. LiangH.F. SungH.W. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery.Biomacromolecules20078114615210.1021/bm060777617206800
    [Google Scholar]
  196. UhlP GrundmannC SauterM StorckP TurschA ÖzbekS LeottaK RothR WitzigmannD KulkarniJA FideljV KleistC CullisPR FrickerG MierW Coating of PLA-nanoparticles with cyclic, arginine-rich cell penetrating peptides enables oral delivery of liraglutide.Nanomedicine202024102132
    [Google Scholar]
  197. JaafarM.H.M. HamidK.A. Chitosan-Coated Alginate Nanoparticles Enhanced Absorption Profile of Insulin Via Oral Administration.Curr. Drug Deliv.201916767268610.2174/156720181666619062011074831250754
    [Google Scholar]
  198. MukhopadhyayP. ChakrabortyS. BhattacharyaS. MishraR. KunduP.P. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery.Int. J. Biol. Macromol.20157264064810.1016/j.ijbiomac.2014.08.04025239194
    [Google Scholar]
  199. SarmentoB. RibeiroA. VeigaF. SampaioP. NeufeldR. FerreiraD. Alginate/chitosan nanoparticles are effective for oral insulin delivery.Pharm. Res.200724122198220610.1007/s11095‑007‑9367‑417577641
    [Google Scholar]
  200. VermaA. SharmaS. GuptaP.K. SinghA. TejaB.V. DwivediP. GuptaG.K. TrivediR. MishraP.R. Vitamin B12 functionalized layer by layer calcium phosphate nanoparticles: A mucoadhesive and pH responsive carrier for improved oral delivery of insulin.Acta Biomater.20163128830010.1016/j.actbio.2015.12.01726685755
    [Google Scholar]
  201. CuiF. QianF. ZhaoZ. YinL. TangC. YinC. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles.Biomacromolecules20091051253125810.1021/bm900035u19292439
    [Google Scholar]
  202. ShamsaE.S. MahjubR. MansoorpourM. TehraniR.M. DorkooshA.F. Nanoparticles Prepared From N,N-Dimethyl-N-Octyl Chitosan as the Novel Approach for Oral Delivery of Insulin: Preparation, Statistical Optimization and in-vitro Characterization.Iran. J. Pharm. Res.201817244245929881403
    [Google Scholar]
  203. MahjubR. RadmehrM. DorkooshF.A. OstadS.N. TehraniR.M. Lyophilized insulin nanoparticles prepared from quaternized N -aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex-vivo and in vivo characterizations.Drug Dev. Ind. Pharm.201440121645165910.3109/03639045.2013.84118724093431
    [Google Scholar]
  204. MansourpourM. MahjubR. AminiM. OstadS.N. ShamsaE.S. TehraniR.M. DorkooshF.A. Development of acid-resistant alginate/trimethyl chitosan nanoparticles containing cationic β-cyclodextrin polymers for insulin oral delivery.AAPS PharmSciTech201516495296210.1208/s12249‑014‑0282‑925604700
    [Google Scholar]
  205. RekhaM.R. SharmaC.P. Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption.J. Control. Release2009135214415110.1016/j.jconrel.2009.01.01119331862
    [Google Scholar]
  206. WongC.Y. MartinezJ. ZhaoJ. Al-SalamiH. DassC.R. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: Statistical optimization and physicochemical characterization.Drug Dev. Ind. Pharm.20204681238125210.1080/03639045.2020.178806132597264
    [Google Scholar]
  207. GaoJ NaH ZhongR YuanM GuoJ ZhaoL WangY WangL ZhangF One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity.Colloids Surf B Biointerfaces2020186110704
    [Google Scholar]
  208. ElsayedA. RemawiM.A. QinnaN. FaroukA. BadwanA. Formulation and characterization of an oily-based system for oral delivery of insulin.Eur. J. Pharm. Biopharm.200973226927910.1016/j.ejpb.2009.06.00419508890
    [Google Scholar]
  209. AlenaziA.S.M. El-BagoryI.M. YassinA.B. AlanaziF.K. AlsarraI.A. HaqN. BayomiM.A. ShakeelF. Design of polymeric nanoparticles for oral delivery of capreomycin peptide using double emulsion technique: Impact of stress conditions.J. Drug Deliv. Sci. Technol.20227110332610.1016/j.jddst.2022.103326
    [Google Scholar]
  210. LiX. QiJ. XieY. ZhangX. HuS. XuY. LuY. WuW. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: Preparation, characterization, and hypoglycemic effect in rats.Int. J. Nanomedicine2013882383223293517
    [Google Scholar]
  211. HarsiddharayR.K. GuptaA. SinghP.K. RaiS. SinghY. SharmaM. PawarV. KedarA.S. GayenJ.R. ChourasiaM.K. Poly-L-lysine Coated Oral Nanoemulsion for Combined Delivery of Insulin and C-Peptide.J. Pharm. Sci.2022111123352336110.1016/j.xphs.2022.08.02636030844
    [Google Scholar]
  212. ČilekA. ČelebiN. TirnaksizF. Lecithin-based microemulsion of a peptide for oral administration: Preparation, characterization, and physical stability of the formulation.Drug Deliv.2006131192410.1080/1071754050031310916401589
    [Google Scholar]
  213. KimJ.U. ShahbazH.M. LeeH. KimT. YangK. RohY.H. ParkJ. Optimization of phytic acid-crosslinked chitosan microspheres for oral insulin delivery using response surface methodology.Int. J. Pharm.202058811973610.1016/j.ijpharm.2020.11973632758596
    [Google Scholar]
  214. LópezM.A.L. MillanC.E. CruzS.N. MicardV. ChuR.A. FrancoL.Y.L. MendozaL.J. RomeroC.R. Enzymatically cross-linked arabinoxylan microspheres as oral insulin delivery system.Int. J. Biol. Macromol.201912695295910.1016/j.ijbiomac.2018.12.19230584929
    [Google Scholar]
  215. KaurP. SinghS.K. GargV. GulatiM. VaidyaY. Optimization of spray drying process for formulation of solid dispersion containing polypeptide-k powder through quality by design approach.Powder Technol.201528411110.1016/j.powtec.2015.06.034
    [Google Scholar]
  216. ShprakhZ. Formulation of somatostatin analog tablets using quality by design approach.J. Appl. Pharm. Sci.202111496105
    [Google Scholar]
  217. WadhwaG. KrishnaV.K. DubeyK.S. TaliyanR. Design and biological evaluation of Repaglinide loaded polymeric nanocarriers for diabetes linked neurodegenerative disorder: QbD-driven optimization, in situ, in vitro and in vivo investigation.Int. J. Pharm.202363612282410.1016/j.ijpharm.2023.12282436921745
    [Google Scholar]
  218. GooY.T. LeeS. ChoiJ.Y. KimM.S. SinG.H. HongS.H. KimC.H. SongS.H. ChoiY.W. Enhanced oral absorption of insulin: Hydrophobic ion pairing and a self-microemulsifying drug delivery system using a D-optimal mixture design.Drug Deliv.20222912831284510.1080/10717544.2022.211839936050870
    [Google Scholar]
  219. ParkS.J. ChooG.H. HwangS.J. KimM.S. Quality by design: Screening of critical variables and formulation optimization of Eudragit E nanoparticles containing dutasteride.Arch. Pharm. Res.201336559360110.1007/s12272‑013‑0064‑z23446651
    [Google Scholar]
  220. VozzaG. DanishM. ByrneH.J. FríasJ.M. RyanS.M. Application of Box-Behnken experimental design for the formulation and optimisation of selenomethionine-loaded chitosan nanoparticles coated with zein for oral delivery.Int. J. Pharm.20185511-225726910.1016/j.ijpharm.2018.08.05030153488
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873309964240521074809
Loading
/content/journals/cnanom/10.2174/0124681873309964240521074809
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test