Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Alzheimer's disease (AD), a progressive neurodegenerative disorder, arises from the buildup of beta-amyloid plaques within the intricate neural networks of the brain. A lasting remedy for Alzheimer's disease remains elusive, as current pharmaceutical options merely offer the potential to decelerate its advancement. Nevertheless, nanotechnology has demonstrated its efficacy in the realm of medical interventions. Nanotechnology holds immense promise for the treatment of Alzheimer's disease, particularly in the realms of disease detection and providing alternative therapeutic approaches. With its demonstrated superiority in medical applications, nanotechnology emerges as a potent tool with significant potential in addressing the complexities of Alzheimer's disease, offering enhanced diagnostics and novel treatment strategies. This feat is achieved by augmenting the efficacy of drug administration through the penetration and surmounting of the BBB.

Nonetheless, it is crucial to thoroughly investigate and explore the limitations at hand, aiming to minimize undesired side effects and potential toxicity while enhancing medication absorption, thereby optimizing the overall therapeutic outcome. Cutting-edge breakthroughs in Alzheimer's disease treatment utilizing nanotechnology encompass a spectrum of remarkable advancements, including stem cell regeneration, nanomedicine, and neuroprotection. The present investigation delves into the remarkable strides made in nanotechnology, specifically examining its pivotal role in detecting and treating neurodegenerative disorders such as Alzheimer's while shedding light on the challenges ahead.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873312057240622175745
2024-07-05
2025-10-11
Loading full text...

Full text loading...

References

  1. Fonseca-SantosB. ChorilliM. Palmira Daflon GremiãoM. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease.Int. J. Nanomedicine2015104981500310.2147/IJN.S8714826345528
    [Google Scholar]
  2. UddinM.S. KabirM.T. TewariD. Al MamunA. BarretoG.E. BungauS.G. Bin-JumahM.N. Abdel-DaimM.M. AshrafG.M. Emerging therapeutic promise of ketogenic diet to attenuate neuropathological alterations in alzheimer’s disease.Mol. Neurobiol.202057124961497710.1007/s12035‑020‑02065‑332820459
    [Google Scholar]
  3. UddinM.S. KabirM.T. Al MamunA. BehlT. MansouriR.A. AloqbiA.A. PerveenA. HafeezA. AshrafG.M. Exploring potential of alkaloidal phytochemicals targeting neuroinflammatory signaling of alzheimer’s disease.Curr. Pharm. Des.202127335736610.2174/18734286MTA3dMDAby32473620
    [Google Scholar]
  4. UddinM.S. RahmanM.A. KabirM.T. BehlT. MathewB. PerveenA. BarretoG.E. Bin-JumahM.N. Abdel-DaimM.M. AshrafG.M. Multifarious roles of mTOR signaling in cognitive aging and cerebrovascular dysfunction of Alzheimer’s disease.IUBMB Life20207291843185510.1002/iub.232432472959
    [Google Scholar]
  5. MamunA.A. UddinM.S. Bin BasharM.F. ZamanS. BegumY. BulbulI.J. IslamM.S. SarwarM.S. MathewB. AmranM.S. Md AshrafG. Bin-JumahM.N. MousaS.A. Abdel-DaimM.M. Molecular insight into the therapeutic promise of targeting APOE4 for alzheimer’s disease.Oxid. Med. Cell. Longev.2020202011610.1155/2020/508625032509144
    [Google Scholar]
  6. PutriS.N. HidayatullahM.R. AfladhantiP.M. Potensi modifikasi eksosom derivat bone marrow mesenchymal stem cell (BMMSC) dengan rabies viral glycoprotein (RVG) sebagai modalitas mutakhir dalam penatalaksanaan penyakit alzheimer. Scr. SCORE.Sci. Med. J.202326777
    [Google Scholar]
  7. UddinM.S. TewariD. MamunA.A. KabirM.T. NiazK. WahedM.I.I. BarretoG.E. AshrafG.M. Circadian and sleep dysfunction in Alzheimer’s disease.Ageing Res. Rev.20206010104610.1016/j.arr.2020.10104632171783
    [Google Scholar]
  8. UddinM.S. RahmanM.M. JakariaM. RahmanM.S. HossainM.S. IslamA. AhmedM. MathewB. OmarU.M. BarretoG.E. AshrafG.M. Estrogen signaling in alzheimer’s disease: Molecular insights and therapeutic targets for alzheimer’s dementia.Mol. Neurobiol.20205762654267010.1007/s12035‑020‑01911‑832297302
    [Google Scholar]
  9. WenM.M. El-SalamouniN.S. El-RefaieW.M. HazzahH.A. AliM.M. TosiG. FaridR.M. Blanco-PrietoM.J. BillaN. HanafyA.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges.J. Control. Release20172459510710.1016/j.jconrel.2016.11.02527889394
    [Google Scholar]
  10. SeathP. Macedo-OrregoL.E. VelayudhanL. Clinical characteristics of early-onset versus late-onset Alzheimer’s disease: A systematic review and meta-analysis.Int. Psychogeriatr.202311710.1017/S104161022300050937431284
    [Google Scholar]
  11. UddinM.S. HasanaS. HossainM.F. IslamM.S. BehlT. PerveenA. HafeezA. AshrafG.M. Molecular genetics of early- and late-onset alzheimer’s disease.Curr. Gene Ther.2021211435210.2174/156652322066620112311282233231156
    [Google Scholar]
  12. GoldeT.E. Disease-modifying therapies for alzheimer’s disease: More questions than answers.Neurotherapeutics202219120922710.1007/s13311‑022‑01201‑235229269
    [Google Scholar]
  13. Alzheimer’s Association Alzheimer’s disease facts and figures.Alzheimers Dement.20193321387
    [Google Scholar]
  14. SinghA. AnsariV.A. MahmoodT. AhsanF. WasimR. MaheshwariS. ShariqM. ParveenS. ShamimA. Emerging nanotechnology for the treatment of alzheimer’s disease.CNS Neurol Disord Drug Targets.2023
    [Google Scholar]
  15. JeevanandamJ. BarhoumA. ChanY.S. DufresneA. DanquahM.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations.Beilstein J. Nanotechnol.201891050107410.3762/bjnano.9.9829719757
    [Google Scholar]
  16. Trejo-LopezJ.A. YachnisA.T. ProkopS. Neuropathology of alzheimer’s disease.Neurotherapeutics202219117318510.1007/s13311‑021‑01146‑y34729690
    [Google Scholar]
  17. AlegretM. MuñozN. RobertoN. RentzD.M. ValeroS. GilS. MarquiéM. HernándezI. RiverosC. SanabriaA. Perez-CordonA. EspinosaA. OrtegaG. MauleónA. AbdelnourC. Rosende-RocaM. PappK.V. OrellanaA. BenaqueA. TarragaL. RuizA. BoadaM. A computerized version of the Short Form of the Face-Name Associative Memory Exam (FACEmemory®) for the early detection of Alzheimer’s disease.Alzheimers Res. Ther.20201212510.1186/s13195‑020‑00594‑632178724
    [Google Scholar]
  18. KhouryR. GhossoubE. Diagnostic biomarkers of Alzheimer’s disease: A state-of-the-art review.Biomarkers in Neuropsychiatry2019110000510.1016/j.bionps.2019.100005
    [Google Scholar]
  19. Gonzalez-OrtizF. TurtonM. KacP.R. SmirnovD. PremiE. GhidoniR. BenussiL. CantoniV. SaracenoC. RivoltaJ. AshtonN.J. BorroniB. GalaskoD. HarrisonP. ZetterbergH. BlennowK. KarikariT.K. Brain-derived tau: A novel blood-based biomarker for Alzheimer’s disease-type neurodegeneration.Brain202314631152116510.1093/brain/awac40736572122
    [Google Scholar]
  20. ZangY. ZhouX. PanM. LuY. LiuH. XiongJ. FengL. Certification of visinin-like protein-1 (VILIP-1) certified reference material by amino acid-based and sulfur-based liquid chromatography isotope dilution mass spectrometry.Anal. Bioanal. Chem.2023415121122010.1007/s00216‑022‑04401‑z36342508
    [Google Scholar]
  21. ShawG. A novel biomarker for the diagnosis of corticobasal degeneration.Neurol. Today2023231182110.1097/01.NT.0000912468.84928.6e
    [Google Scholar]
  22. TeunissenC.E. VerberkI.M.W. ThijssenE.H. VermuntL. HanssonO. ZetterbergH. van der FlierW.M. MielkeM.M. del CampoM. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation.Lancet Neurol.2022211667710.1016/S1474‑4422(21)00361‑634838239
    [Google Scholar]
  23. ParaskevasG.P. ConstantinidesV.C. BoufidouF. TsantzaliI. PyrgelisE.S. LiakakisG. KapakiE. Recognizing atypical presentations of alzheimer’s disease: The importance of CSF biomarkers in clinical practice.Diagnostics20221212301110.3390/diagnostics1212301136553018
    [Google Scholar]
  24. BlennowK. DuboisB. FaganA.M. LewczukP. de LeonM.J. HampelH. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease.Alzheimers Dement.2015111586910.1016/j.jalz.2014.02.00424795085
    [Google Scholar]
  25. LiY. ChenZ. WangQ. LvX. ChengZ. WuY. TangF. ShenY. GaoF. Identification of hub proteins in cerebrospinal fluid as potential biomarkers of Alzheimer’s disease by integrated bioinformatics.J. Neurol.202327031487150010.1007/s00415‑022‑11476‑236396814
    [Google Scholar]
  26. KumarP. DwivediA. PlaimasK. SagarK. ChauhanL. Nanoengineering and nanotechnology for diagnosis and treatment of CNS and neurological diseases.Inemerg. Nanotechnol. Med. Appl.20235559410.1016/B978‑0‑323‑91182‑5.00006‑1
    [Google Scholar]
  27. NaqviS. PanghalA. FloraS.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs.Front. Neurosci.20201449410.3389/fnins.2020.0049432581676
    [Google Scholar]
  28. JabirN. TabrezS. FirozC.K. ZaidiS. BaeesaS. GanS. ShakilS. KamalM. A synopsis of nano-technological approaches toward anti-epilepsy therapy: Present and future research implications.Curr. Drug Metab.201516533634510.2174/138920021566614112514260525429676
    [Google Scholar]
  29. HarrisW.J. AsselinM.C. HinzR. ParkesL.M. AllanS. SchiesslI. BoutinH. DickieB.R. in vivo methods for imaging blood–brain barrier function and dysfunction.Eur. J. Nucl. Med. Mol. Imaging20235041051108310.1007/s00259‑022‑05997‑136437425
    [Google Scholar]
  30. ZhangD.X. EsserL. VasaniR.B. ThissenH. VoelckerN.H. Porous silicon nanomaterials: Recent advances in surface engineering for controlled drug-delivery applications.Nanomedicine201914243213323010.2217/nnm‑2019‑016731855121
    [Google Scholar]
  31. ChopraH. BibiS. SinghI. KamalM.A. IslamF. AlhumaydhiF.A. EmranT.B. CavaluS. Nanomedicines in the management of alzheimer’s disease: Current view and future prospects.Front. Aging Neurosci.20221487911410.3389/fnagi.2022.87911435875806
    [Google Scholar]
  32. CaoY. ZhangR. The application of nanotechnology in treatment of Alzheimer’s disease.Front. Bioeng. Biotechnol.202210104298610.3389/fbioe.2022.104298636466349
    [Google Scholar]
  33. Baranowska-WójcikE. SzwajgierD. Alzheimer’s disease: Review of current nanotechnological therapeutic strategies.Expert Rev. Neurother.202020327127910.1080/14737175.2020.171906931957510
    [Google Scholar]
  34. SudhakarV. RichardsonR.M. Gene therapy for neurodegenerative diseases.Neurotherapeutics201916116617510.1007/s13311‑018‑00694‑030542906
    [Google Scholar]
  35. ZengC.W. ZhangC.L. Neuronal regeneration after injury: A new perspective on gene therapy.Front. Neurosci.202317118181610.3389/fnins.2023.118181637152598
    [Google Scholar]
  36. JadhavS. AvilaJ. SchöllM. KovacsG.G. KövariE. SkrabanaR. EvansL.D. KontsekovaE. MalawskaB. de SilvaR. BueeL. ZilkaN. A walk through tau therapeutic strategies.Acta Neuropathol. Commun.2019712210.1186/s40478‑019‑0664‑z30767766
    [Google Scholar]
  37. KumarA. JayeoyeT.J. MohiteP. SinghS. RajputT. MundeS. EzeF.N. ChidrawarV.R. PuriA. PrajapatiB.G. PariharA. ReferencesKumar Sustainable and consumer- centric nanotechnology-based materials: An update on the multifaceted applications, risks and tremendous opportunities.Nano-Structures & Nano-Objects20243810114810.1016/j.nanoso.2024.101148
    [Google Scholar]
  38. SharifiS. SamaniA.A. AhmadianE. EftekhariA. DerakhshankhahH. JafariS. MokhtarpourM. VahedS.Z. SalatinS. DizajS.M. Oral delivery of proteins and peptides by mucoadhesive nanoparticles.Biointerface Res. Appl. Chem.2019923849385210.33263/BRIAC92.849852
    [Google Scholar]
  39. SingerA. MarkoutsaE. LimayemA. MohapatraS. MohapatraS.S. Nanobiotechnology medical applications: Overcoming challenges through innovation.EuroBiotech Journal20182314616010.2478/ebtj‑2018‑0019
    [Google Scholar]
  40. RibaričS. Nanotechnology therapy for alzheimer′s disease memory impairment attenuation.Int. J. Mol. Sci.2021223110210.3390/ijms2203110233499311
    [Google Scholar]
  41. HanifS. MuhammadP. ChesworthR. RehmanF.U. QianR. ZhengM. ShiB. ReferencesHanif Nanomedicine-based immunotherapy for central nervous system disorders.Acta Pharmacol. Sin.202041793695310.1038/s41401‑020‑0429‑z32467570
    [Google Scholar]
  42. NgowiE.E. WangY-Z. QianL. HelmyY.A.S.H. AnyomiB. LiT. ZhengM. JiangE-S. DuanS-F. WeiJ-S. WuD-D. JiX-Y. ReferencesNgowi The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders.Front. Bioeng. Biotechnol.2021962983210.3389/fbioe.2021.629832
    [Google Scholar]
  43. Rizzello L. Nanotechnology meets immunotherapy: CAR-T cells technology and beyond.J. Biomater.20181116
    [Google Scholar]
  44. CacciatoreI. CiullaM. FornasariE. MarinelliL. Di StefanoA. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases.Expert Opin. Drug Deliv.20161381121113110.1080/17425247.2016.117823727073977
    [Google Scholar]
  45. SalveP. PiseS. BaliN. Formulation and evaluation of solid lipid nanoparticle based transdermal drug delivery system for alzheimer’s disease.Res. J. Pharm. Dos. Forms Technol.201682738010.5958/0975‑4377.2016.00011.2
    [Google Scholar]
  46. VakilinezhadM.A. AminiA. Akbari JavarH. Baha’addini Beigi ZarandiB.F. MontaseriH. DinarvandR. ReferencesVakilinezhad Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation.Daru201826216517710.1007/s40199‑018‑0221‑530386982
    [Google Scholar]
  47. AroraD. BhattS. KumarM. VermaR. TanejaY. KaushalN. TiwariA. TiwariV. AlexiouA. AlbogamiS. AlotaibiS.S. MittalV. SinglaR.K. KaushikD. BatihaG.E.S. RETRACTED: QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer’s therapeutics.Front. Aging Neurosci.20221496024610.3389/fnagi.2022.96024636034142
    [Google Scholar]
  48. PuranikN. YadavD. SongM. Advancements in the application of nanomedicine in alzheimer’s disease: A therapeutic perspective.Int. J. Mol. Sci.202324181404410.3390/ijms24181404437762346
    [Google Scholar]
  49. LoureiroJ. AndradeS. DuarteA. NevesA. QueirozJ. NunesC. SevinE. FenartL. GosseletF. CoelhoM. PereiraM. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of alzheimer’s disease.Molecules201722227710.3390/molecules2202027728208831
    [Google Scholar]
  50. AlievG. AshrafG.M. TarasovV.V. ChubarevV.N. LeszekJ. GasiorowskiK. MakhmutovаA. BaeesaS.S. Avila-RodriguezM. UstyugovA.A. BachurinS.O. Alzheimer’s disease – Future therapy based on dendrimers.Curr. Neuropharmacol.201917328829410.2174/1570159X1666618091816462330227819
    [Google Scholar]
  51. SharmaA.K. GuptaL. SahuH. QayumA. SinghS.K. NakhateK.T. Ajazuddin GuptaU. ReferencesSharma Chitosan engineered PAMAM dendrimers as nanoconstructs for the enhanced anti-cancer potential and improved in vivo brain pharmacokinetics of temozolomide.Pharm. Res.2018351910.1007/s11095‑017‑2324‑y29294212
    [Google Scholar]
  52. SinghA.K. MishraS.K. MishraG. MauryaA. AwasthiR. YadavM.K. AtriN. PandeyP.K. SinghS.K. Inorganic clay nanocomposite system for improved cholinesterase inhibition and brain pharmacokinetics of donepezil.Drug Dev. Ind. Pharm.202046181910.1080/03639045.2019.169859431809608
    [Google Scholar]
  53. IgartúaD.E. MartinezC.S. Del V AlonsoS. PrietoM.J. Combined therapy for alzheimer’s disease: Tacrine and PAMAM dendrimers co-administration reduces the side effects of the drug without modifying its activity.AAPS PharmSciTech202021311010.1208/s12249‑020‑01652‑w32215751
    [Google Scholar]
  54. IgartúaD.E. MartinezC.S. TempranaC.F. AlonsoS.V. PrietoM.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization.Int. J. Pharm.2018544119120210.1016/j.ijpharm.2018.04.03229678547
    [Google Scholar]
  55. LiX. NaeemA. XiaoS. HuL. ZhangJ. ZhengQ. Safety challenges and application strategies for the use of dendrimers in medicine.Pharmaceutics2022146129210.3390/pharmaceutics1406129235745863
    [Google Scholar]
  56. UllahZ. Al-AsmariA. TariqM. FataniA. ReferencesAl Asmari Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.Drug Des. Devel. Ther.20161020521510.2147/DDDT.S9393726834457
    [Google Scholar]
  57. Ordóñez-GutiérrezL. WandosellF. Nanoliposomes as a therapeutic tool for alzheimer’s disease.Front. Synaptic Neurosci.2020122010.3389/fnsyn.2020.0002032523525
    [Google Scholar]
  58. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Transferrin- functionalized liposomes loaded with vitamin VB12 for Alzheimer’s disease therapy.Int. J. Pharm.202262612216710.1016/j.ijpharm.2022.12216736075524
    [Google Scholar]
  59. SaffariP.M. AlijanpourS. TakzareeN. SahebgharaniM. Etemad-MoghadamS. NoorbakhshF. PartoazarA. Metformin loaded phosphatidylserine nanoliposomes improve memory deficit and reduce neuroinflammation in streptozotocin-induced Alzheimer’s disease model.Life Sci.202025511786110.1016/j.lfs.2020.11786132473247
    [Google Scholar]
  60. HadaviD. PootA.A. Biomaterials for the treatment of alzheimer’s disease.Front. Bioeng. Biotechnol.201644910.3389/fbioe.2016.0004927379232
    [Google Scholar]
  61. KongL. LiX. NiY. XiaoH. YaoY. WangY. JuR. LiH. LiuJ. FuM. WuY. YangJ. ChengL. ReferencesKong Transferrin-modified osthole pegylated liposomes travel the blood-brain barrier and mitigate alzheimer’s disease-related pathology in APP/PS-1 mice.Int. J. Nanomedicine2020152841285810.2147/IJN.S23960832425521
    [Google Scholar]
  62. KocsisI. SannaE. HunterC.A. Liposome enhanced detection of amyloid protein aggregates.Org. Lett.202123364765010.1021/acs.orglett.0c0359733467854
    [Google Scholar]
  63. YangP. ShengD. GuoQ. WangP. XuS. QianK. LiY. ChengY. WangL. LuW. ZhangQ. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease.Biomaterials202023811984410.1016/j.biomaterials.2020.11984432062148
    [Google Scholar]
  64. YuY. HeS. KongL. ShiN. LiuY. ZangJ. GuoR. ZhangL. LiX. LiX. Brain-targeted multifunctional micelles delivering Oridonin and Phillyrin for synergistic therapy of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20238710479410.1016/j.jddst.2023.104794
    [Google Scholar]
  65. LuY. GuoZ. ZhangY. LiC. ZhangY. GuoQ. ChenQ. ChenX. HeX. LiuL. RuanC. SunT. JiB. LuW. JiangC. Microenvironment remodeling micelles for alzheimer’s disease therapy by early modulation of activated microglia.Adv. Sci.201964180158610.1002/advs.20180158630828531
    [Google Scholar]
  66. AgwaM.M. AbdelmonsifD.A. KhattabS.N. SabraS. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer’s disease.Int. J. Biol. Macromol.202016224626110.1016/j.ijbiomac.2020.06.05832531361
    [Google Scholar]
  67. AgraharamG. SaravananN. GirigoswamiA. GirigoswamiK. Future of alzheimer’s disease: Nanotechnology-based diagnostics and therapeutic approach.Bionanoscience20221231002101710.1007/s12668‑022‑00998‑8
    [Google Scholar]
  68. ZhangW. MehtaA. TongZ. EsserL. VoelckerN.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges.Adv. Sci.2021810200393710.1002/advs.20200393734026447
    [Google Scholar]
  69. AllahyariM. MohitE. Peptide/protein vaccine delivery system based on PLGA particles.Hum. Vaccin. Immunother.201612380682810.1080/21645515.2015.110280426513024
    [Google Scholar]
  70. MendesI.T. RuelaA.L.M. CarvalhoF.C. FreitasJ.T.J. BonfilioR. PereiraG.R. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil.Colloids Surf. B Biointerfaces201917727428110.1016/j.colsurfb.2019.02.00730763792
    [Google Scholar]
  71. ManekE. DarvasF. PetroianuG.A. ReferencesManek Use of biodegradable, chitosan-based nanoparticles in the treatment of alzheimer’s disease.Molecules20202520486610.3390/molecules2520486633096898
    [Google Scholar]
  72. SunenaS.K. SinghS.K. MishraD.N. Nose to brain delivery of galantamine loaded nanoparticles: in-vivo pharmacodynamic and biochemical study in mice.Curr. Drug Deliv.2018161515810.2174/156720181566618100409470730289074
    [Google Scholar]
  73. AderibigbeB. NakiT. Design and efficacy of nanogels formulations for intranasal administration.Molecules2018236124110.3390/molecules2306124129789506
    [Google Scholar]
  74. PiconeP. SabatinoM.A. DittaL.A. AmatoA. San BiagioP.L. MulèF. GiacomazzaD. DispenzaC. Di CarloM. Nose-to-brain delivery of insulin enhanced by a nanogel carrier.J. Control. Release2018270233610.1016/j.jconrel.2017.11.04029196041
    [Google Scholar]
  75. YeC. ChengM. MaL. ZhangT. SunZ. YuC. WangJ. DouY. Oxytocin nanogels inhibit innate inflammatory response for early intervention in alzheimer’s disease.ACS Appl. Mater. Interfaces20221419218222183510.1021/acsami.2c0000735510352
    [Google Scholar]
  76. ZhangW. Taheri-LedariR. GanjaliF. AfruziF.H. HajizadehZ. SaeidiradM. QaziF.S. KashtiarayA. SehatS.S. HamblinM.R. MalekiA. Nanoscale bioconjugates: A review of the structural attributes of drug-loaded nanocarrier conjugates for selective cancer therapy.Heliyon202286e0957710.1016/j.heliyon.2022.e0957735706949
    [Google Scholar]
  77. SivanesanS. RajeshkumarS. Gold nanoparticles in diagnosis and treatment of alzheimer’s disease.Nanobiotechnology in Neurodegenerative Diseases.Springer201928930610.1007/978‑3‑030‑30930‑5_12
    [Google Scholar]
  78. ShaoX. YanC. WangC. WangC. CaoY. ZhouY. GuanP. HuX. ZhuW. DingS. Advanced nanomaterials for modulating Alzheimer’s related amyloid aggregation.Nanoscale Adv.202251468010.1039/D2NA00625A36605800
    [Google Scholar]
  79. QinJ. GuanY. LiZ. GuoX. ZhangM. WangD. TangJ. Aptamer conjugated polydopamine- coated gold nanoparticles as a dual-action nanoplatform targeting β-amyloid peptide for Alzheimer’s disease therapy.J. Mater. Chem. B Mater. Biol. Med.202210418525853410.1039/D2TB01499H36222089
    [Google Scholar]
  80. dos Santos TramontinN. da SilvaS. ArrudaR. UgioniK.S. CanteiroP.B. de Bem SilveiraG. MendesC. SilveiraP.C.L. MullerA.P. Gold nanoparticles treatment reverses brain damage in alzheimer’s disease model.Mol. Neurobiol.202057292693610.1007/s12035‑019‑01780‑w31612296
    [Google Scholar]
  81. DowdingJ.M. SongW. BossyK. KarakotiA. KumarA. KimA. BossyB. SealS. EllismanM.H. PerkinsG. SelfW.T. Bossy-WetzelE. ReferencesDowding Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death.Cell Death Differ.201421101622163210.1038/cdd.2014.7224902900
    [Google Scholar]
  82. ZhangW. LiD. LianT. GuoP. ZhangY. LiJ. GuanH. HeM. ZhangW. ZhangW. LuoD. WangX. ZhangW. Clinical features and potential mechanisms relating neuropathological biomarkers and blood-brain barrier in patients with alzheimer’s disease and hearing loss.Front. Aging Neurosci.20221491102810.3389/fnagi.2022.91102835783139
    [Google Scholar]
  83. ChungY.J. LeeB.I. ParkC.B. Multifunctional carbon dots as a therapeutic nanoagent for modulating Cu( ii )-mediated β-amyloid aggregation.Nanoscale201911136297630610.1039/C9NR00473D30882825
    [Google Scholar]
  84. YanC. WangC. ShaoX. TengY. ChenP. HuX. GuanP. WuH. Multifunctional carbon-dot-photosensitizer nanoassemblies for inhibiting amyloid aggregates, suppressing microbial infection, and overcoming the blood–brain barrier.ACS Appl. Mater. Interfaces20221442474324744410.1021/acsami.2c1411836254877
    [Google Scholar]
  85. ChungY.J. LeeC.H. LimJ. JangJ. KangH. ParkC.B. Photomodulating carbon dots for spatiotemporal suppression of alzheimer’s β-amyloid aggregation.ACS Nano20201412169731698310.1021/acsnano.0c0607833236883
    [Google Scholar]
  86. WangK. WangL. ChenL. PengC. LuoB. MoJ. ChenW. Intranasal administration of dauricine loaded on graphene oxide: Multi-target therapy for Alzheimer’s disease.Drug Deliv.202128158059310.1080/10717544.2021.189590933729067
    [Google Scholar]
  87. LiuC. LuoX. Potential molecular and graphene oxide chelators to dissolve amyloid-β plaques in Alzheimer’s disease: A density functional theory study.J. Mater. Chem. B Mater. Biol. Med.20219112736274610.1039/D0TB02985H33688880
    [Google Scholar]
  88. LiX. LiK. ChuF. HuangJ. YangZ. Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons.Chem. Biol. Interact.202032510912610.1016/j.cbi.2020.10912632430275
    [Google Scholar]
  89. QinQ. WangX. ShiJ. WuD. Preparation of electrochemical sensor based on β-cyclodextrin/carbon nanotube nanocomposite for donepezil hydrochloride as drug for treatment of alzheimer’s disease.Int. J. Electrochem. Sci.202217122011910.20964/2022.01.09
    [Google Scholar]
  90. CaffoM. CurcioA. RajivK. CarusoG. VenzaM. GermanòA. Potential role of carbon nanomaterials in the treatment of malignant brain gliomas.Cancers2023159257510.3390/cancers1509257537174040
    [Google Scholar]
  91. BockampE. RosigkeitS. SieglD. SchuppanD. ReferencesBockamp Nano-enhanced cancer immunotherapy: Immunology encounters nanotechnology.Cells202099210210.3390/cells909210232942725
    [Google Scholar]
  92. ErenlerR. ChaouiaR. YildizI. GencN. GecerE.N. TemizC. AkkalS. Biosynthesis, characterisation, and antioxidant activity of silver nanoparticles using Schinus molle l.Trends in Sciences20232010610510.48048/tis.2023.6105
    [Google Scholar]
  93. AndersonD.S. SydorM.J. FletcherP. HolianA. Nanotechnology: The risks and benefits for medical diagnosis and treatment.J. Nanomed. Nanotechnol.201644498
    [Google Scholar]
  94. LingT.S. ChandrasegaranS. XuanL.Z. SuanT.L. ElaineE. NathanD.V. ChaiY.H. GunasekaranB. SalvamaniS. The Potential Benefits of Nanotechnology in Treating Alzheimer’s Disease.BioMed Res. Int.202120211910.1155/2021/555093834285915
    [Google Scholar]
  95. PanditS. DasguptaD. DewanN. PrinceA. Nanotechnology based biosensors and its application.J. Pharm. Innov.20166518
    [Google Scholar]
  96. GhoshR. GhoshP. KarS. MukherjeeS. SinhaD. Green Nanotechnology: The Novel and Emerging Strategy for Sustainable DevelopmentSustain. Nanomater. Biosyst. Eng. Trends Renew. Energy Environ. Agric.2023May4417
    [Google Scholar]
  97. WiekA. FarioliF. FukushiK. YarimeM. Sustainability science: Bridging the gap between science and society.Sustain. Sci.20127S11410.1007/s11625‑011‑0154‑0
    [Google Scholar]
  98. ZhanP. PeilA. JiangQ. WangD. MousaviS. XiongQ. ShenQ. ShangY. DingB. LinC. KeY. LiuN. Recent advances in DNA origami-engineered nanomaterials and applications.Chem. Rev.202312373976405010.1021/acs.chemrev.3c0002836990451
    [Google Scholar]
  99. KlefenzH. Nanobiotechnology: From molecules to systems.Eng. Life Sci.20044321121810.1002/elsc.200402090
    [Google Scholar]
  100. HeathJ.R. DavisM.E. Nanotechnology and cancer.Annu. Rev. Med.200859125126510.1146/annurev.med.59.061506.18552317937588
    [Google Scholar]
  101. MostafaviE. SoltantabarP. WebsterT.J. Nanotechnology and picotechnology: A new arena for translational medicine.Inbiomater. Transl. Med.20191191212
    [Google Scholar]
  102. WangZ. RuanJ. CuiD. Advances and prospect of nanotechnology in stem cells.Nanoscale Res. Lett.20094759360510.1007/s11671‑009‑9292‑z20596412
    [Google Scholar]
  103. España-SánchezB.L. Cruz-SotoM.E. Elizalde-PeñaE.A. Sabasflores-BenítezS. Roca-ArandaA. Esquivel-EscalanteK. Luna-BárcenasG. Trends in tissue regeneration: Bio-nanomaterials.Tissue Regen.201827218218
    [Google Scholar]
  104. AmbeshP. AngeliD. Nanotechnology in neurology: Genesis, current status, and future prospects.Ann. Indian Acad. Neurol.201518438238610.4103/0972‑2327.16953526713006
    [Google Scholar]
  105. PercheF. UchidaS. AkibaH. LinC.Y. IkegamiM. DirisalaA. NakashimaT. ItakaK. TsumotoK. KataokaK. ReferencesPerche Improved brain expression of anti-amyloid β scfv by complexation of mrna including a secretion sequence with peg-based block catiomer.Curr. Alzheimer Res.201714329530210.2174/156720501366616110811003127829339
    [Google Scholar]
  106. XieJ. Gonzalez-CarterD. TockaryT.A. NakamuraN. XueY. NakakidoM. AkibaH. DirisalaA. LiuX. TohK. YangT. WangZ. FukushimaS. LiJ. QuaderS. TsumotoK. YokotaT. AnrakuY. KataokaK. Dual-sensitive nanomicelles enhancing systemic delivery of therapeutically active antibodies specifically into the brain.ACS Nano20201466729674210.1021/acsnano.9b0999132431145
    [Google Scholar]
  107. LalkovicováM. DanielisováV. Neuroprotection and antioxidants.Neural Regen. Res.201611686587410.4103/1673‑5374.18444727482198
    [Google Scholar]
  108. TuchtenhagenM. StibollerM. WittB. SchwerdtleT. A novel approach for the determination of exchangeable copper in serum using protein precipitation.J. Anal. At. Spectrom.202338358759410.1039/D2JA00355D
    [Google Scholar]
  109. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  110. GuoQ. LiY. XuS. WangP. QianK. YangP. ShengD. WangL. ChengY. MengR. CaoJ. LuoH. WeiY. ZhangQ. Brain-neuron targeted nanoparticles for peptide synergy therapy at dual-target of Alzheimer’s disease.J. Control. Release202335560462110.1016/j.jconrel.2023.01.07436738970
    [Google Scholar]
  111. GovindarajanK. KarS. Detection of β-amyloid aggregates/plaques in 5xFAD mice by labelled native PLGA nanoparticles: Implication in the diagnosis of Alzheimer’s disease.J. Nanobiotechnology202321121610.1186/s12951‑023‑01957‑537424018
    [Google Scholar]
  112. MoazzamF. Hatamian-ZarmiA. Ebrahimi HosseinzadehB. KhodagholiF. RookiM. RashidiF. Preparation and characterization of brain-targeted polymeric nanocarriers (Frankincense-PMBN-lactoferrin) and in-vivo evaluation on an Alzheimer’s disease- like rat model induced by scopolamine.Brain Res.2024182214862210.1016/j.brainres.2023.14862237832760
    [Google Scholar]
  113. AbbasH. SayedN.S.E. YoussefN.A.H.A. GaafarM.E. Novel luteolin-loaded chitosan decorated nanoparticles for brain-targeting delivery in a sporadic alzheimer’s disease mouse model: Focus on antioxidant, antiinflammatory, and amyloidogenic pathways.Pharmaceutics20221451003102910.3390/pharmaceutics1405100335631589
    [Google Scholar]
  114. YangL. WangY. LiZ. WuX. MeiJ. ZhengG. Brain targeted peptide-functionalized chitosan nanoparticles for resveratrol delivery: Impact on insulin resistance and gut microbiota in obesity-related Alzheimer’s disease.Carbohydr. Polym.202331012071410.1016/j.carbpol.2023.12071436925241
    [Google Scholar]
  115. SuD. ChenZ. AnX. YangJ. YangJ. WangX. QuY. GongC. ChaiY. LiuX. ChengW. WangD. WuY. MaJ. ZhaoX. WangQ. XuY. PengH. AiJ. MicroRNA-195 liposomes for therapy of Alzheimer’s disease.J. Control. Release202436558360110.1016/j.jconrel.2023.12.00338048963
    [Google Scholar]
  116. VasilevaL. GaynanovaG. ValeevaF. BelyaevG. ZuevaI. BushmelevaK. SibgatullinaG. SamigullinD. VyshtakalyukA. PetrovK. ZakharovaL. SinyashinO. Mitochondria-targeted delivery strategy of dual-loaded liposomes for alzheimer’s disease therapy.Int. J. Mol. Sci.202324131049410.3390/ijms24131049437445673
    [Google Scholar]
  117. ShehataM.K. IsmailA.A. KamelM.A. Nose to brain delivery of astaxanthin–loaded nanostructured lipid carriers in rat model of alzheimer’s disease: Preparation, in vitro and in vivo evaluation.Int. J. Nanomedicine2023181631165810.2147/IJN.S40244737020692
    [Google Scholar]
  118. SainiS. SharmaT. JainA. KaurH. KatareO.P. SinghB. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence.Colloids Surf. B Biointerfaces202120511183810.1016/j.colsurfb.2021.11183834022704
    [Google Scholar]
  119. Abd ElmonemH.A. MorsiR.M. MansourD.S. El-SayedE.S.R. Myco-fabricated ZnO nanoparticles ameliorate neurotoxicity in mice model of Alzheimer’s disease via acetylcholinesterase inhibition and oxidative stress reduction.Biometals20233661391140410.1007/s10534‑023‑00525‑637556014
    [Google Scholar]
  120. PradhanS.P. SahooS. BeheraA. SahooR. SahuP.K. Memory amelioration by hesperidin conjugated gold nanoparticles in diabetes induced cognitive impaired rats.J. Drug Deliv. Sci. Technol.20226910314510.1016/j.jddst.2022.103145
    [Google Scholar]
  121. AbozaidO.A.R. SallamM.W. El-SonbatyS. AzizaS. EmadB. AhmedE.S.A. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3β expression.Biol. Trace Elem. Res.2022200125104511410.1007/s12011‑021‑03073‑735059981
    [Google Scholar]
  122. ZhouX. HuS. WangS. PangY. LinY. LiM. Large amino acid mimicking selenium-doped carbon quantum dots for multi-target therapy of alzheimer’s disease.Front. Pharmacol.20211277861310.3389/fphar.2021.77861334776988
    [Google Scholar]
  123. El-HawwaryS.S. Abd AlmaksoudH.M. SaberF.R. ElimamH. SayedA.M. El RaeyM.A. AbdelmohsenU.R. Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling.RSC Advances20211129180091802510.1039/D1RA01725J35480186
    [Google Scholar]
  124. MS.L. A review on phyto-nanotechnology for therapy of alzheimer’s disease.Indian J. Biochem. Biophys.20229867872
    [Google Scholar]
  125. YoussifK.A. Haggage.g. ElshamyA.M. RabehM.A. GabrN.M. SeleemA. SalemM.A. HusseinA.S. KrischkeM. MuellerM.J. AbdelmohsenU.R. Anti-Alzheimer potential, metabolomic profiling and molecular docking of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea aqueous extracts.PLoS One20191411e022378110.1371/journal.pone.022378131693694
    [Google Scholar]
  126. PinheiroR.G.R. GranjaA. LoureiroJ.A. PereiraM.C. PinheiroM. NevesA.R. ReisS. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease.Eur. J. Pharm. Sci.202014810531410.1016/j.ejps.2020.10531432200044
    [Google Scholar]
  127. AmanzadehE. EsmaeiliA. AbadiR.E.N. KazemipourN. PahlevanneshanZ. BeheshtiS. Quercetin conjugated with superparamagnetic iron oxide nanoparticles improves learning and memory better than free quercetin via interacting with proteins involved in LTP.Sci. Rep.201991687610.1038/s41598‑019‑43345‑w31053743
    [Google Scholar]
  128. HuoX. ZhangY. JinX. LiY. ZhangL. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease.J. Photochem. Photobiol. B20191909810210.1016/j.jphotobiol.2018.11.008
    [Google Scholar]
  129. KuangY. ZhangJ. XiongM. ZengW. LinX. YiX. LuoY. YangM. LiF. HuangQ. ReferencesKuang A novel nanosystem realizing curcumin delivery based on Fe3O4@Carbon Dots nanocomposite for alzheimer’s disease therapy.Front. Bioeng. Biotechnol.2020861490610.3389/fbioe.2020.61490633344438
    [Google Scholar]
  130. AliT. KimM.J. RehmanS.U. AhmadA. KimM.O. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1–42 mouse model of alzheimer’s disease.Mol. Neurobiol.20175486490650610.1007/s12035‑016‑0136‑427730512
    [Google Scholar]
  131. AalinkeelR. KutscherH.L. SinghA. CwiklinskiK. KhechenN. SchwartzS.A. PrasadP.N. MahajanS.D. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease?J. Drug Target.201826218219310.1080/1061186X.2017.135400228697660
    [Google Scholar]
  132. LinT.S. WoonC.K. HuiW.K. AbasR. HaronM.H. DasS. Natural product-based nanomedicine: Recent advances and issues for the treatment of alzheimer’s disease.Curr. Neuropharmacol.20222081498151810.2174/1570159X2066621121716354034923947
    [Google Scholar]
  133. AlamS. MustafaG. KhanZ.I. IslamF. BhatnagarA. AhmadF. Kumar Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study.Int. J. Nanomedicine201275705571810.2147/IJN.S3532923180965
    [Google Scholar]
  134. JusrilN.A. Abu BakarS.I. KhalilK.A. Md SaadW.M. WenN.K. AdenanM.I. Development and optimization of nanoemulsion from ethanolic extract of Centella asiatica (NanoSECA) using D-optimal mixture design to improve blood-brain barrier permeability.Evid. Based Complement. Alternat. Med.2022202211810.1155/2022/348351135295926
    [Google Scholar]
  135. MukherjeeS. KumarG. PatnaikR. Withanolide a penetrates brain via intra-nasal administration and exerts neuroprotection in cerebral ischemia reperfusion injury in mice.Xenobiotica202050895796610.1080/00498254.2019.170922831870211
    [Google Scholar]
  136. BereczkiE. ReF. MasseriniM.E. WinbladB. PeiJ.J. ReferencesBereczki Liposomes functionalized with acidic lipids rescue Aβ-induced toxicity in murine neuroblastoma cells.Nanomedicine20117556057110.1016/j.nano.2011.05.009
    [Google Scholar]
  137. Ordóñez-GutiérrezL. ReF. BereczkiE. IojaE. GregoriM. AndersenA.J. AntónM. MoghimiS.M. PeiJ.J. MasseriniM. WandosellF. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice.Nanomedicine201511242143010.1016/j.nano.2014.09.01525461285
    [Google Scholar]
  138. TaylorM. MooreS. MourtasS. NiarakisA. ReF. ZonaC. FerlaB.L. NicotraF. MasseriniM. AntimisiarisS.G. GregoriM. AllsopD. Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide.Nanomedicine20117554155010.1016/j.nano.2011.06.01521722618
    [Google Scholar]
  139. GobbiM. ReF. CanoviM. BeegM. GregoriM. SesanaS. SonninoS. BrogioliD. MusicantiC. GascoP. SalmonaM. MasseriniM.E. Lipid-based nanoparticles with high binding affinity for amyloid-β1–42 peptide.Biomaterials201031256519652910.1016/j.biomaterials.2010.04.04420553982
    [Google Scholar]
  140. WangP. KouyoumdjianH. ZhuD.C. HuangX. Heparin nanoparticles for β amyloid binding and mitigation of β amyloid associated cytotoxicity.Carbohydr. Res.201540511011410.1016/j.carres.2014.07.02025498198
    [Google Scholar]
  141. ZhangY.N. PoonW. TavaresA.J. McGilvrayI.D. ChanW.C.W. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination.J. Control. Release201624033234810.1016/j.jconrel.2016.01.02026774224
    [Google Scholar]
  142. DirisalaA. UchidaS. TohK. LiJ. OsawaS. TockaryT.A. LiuX. AbbasiS. HayashiK. MochidaY. FukushimaS. KinohH. OsadaK. KataokaK. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines.Sci. Adv.2020626eabb813310.1126/sciadv.abb813332637625
    [Google Scholar]
  143. TangY. WangX. LiJ. NieY. LiaoG. YuY. LiC. Overcoming the reticuloendothelial system barrier to drug delivery with a “Don’t-Eat-Us” strategy.ACS Nano20191311130151302610.1021/acsnano.9b0567931689086
    [Google Scholar]
  144. Gonzalez-CarterD. LiuX. TockaryT.A. DirisalaA. TohK. AnrakuY. KataokaK. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium.Proc. Natl. Acad. Sci. USA202011732191411915010.1073/pnas.200201611732703811
    [Google Scholar]
  145. ZhangC. ChenJ. FengC. ShaoX. LiuQ. ZhangQ. PangZ. JiangX. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease.Int. J. Pharm.20144611-219220210.1016/j.ijpharm.2013.11.04924300213
    [Google Scholar]
  146. GaoX. WuB. ZhangQ. ChenJ. ZhuJ. ZhangW. RongZ. ChenH. JiangX. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration.J. Control. Release2007121315616710.1016/j.jconrel.2007.05.02617628165
    [Google Scholar]
  147. WenZ. YanZ. HuK. PangZ. ChengX. GuoL. ZhangQ. JiangX. FangL. LaiR. Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration.J. Control. Release2011151213113810.1016/j.jconrel.2011.02.02221362449
    [Google Scholar]
  148. PiazzaJ. HoareT. MolinaroL. TerpstraK. BhandariJ. SelvaganapathyP.R. GuptaB. MishraR.K. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly(d,l)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia.Eur. J. Pharm. Biopharm.2014871303910.1016/j.ejpb.2014.02.00724560967
    [Google Scholar]
  149. WileyD.T. WebsterP. GaleA. DavisM.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor.Proc. Natl. Acad. Sci. USA2013110218662866710.1073/pnas.130715211023650374
    [Google Scholar]
  150. PardridgeW.M. KangY.S. BuciakJ.L. YangJ. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate.Pharm. Res.199512680781610.1023/A:10162445005967667183
    [Google Scholar]
  151. KuplennikN. LangK. SteinfeldR. SosnikA. Folate receptor α-modified nanoparticles for targeting of the central nervous system.ACS Appl. Mater. Interfaces20191143396333964710.1021/acsami.9b1465931532618
    [Google Scholar]
  152. BerneyE. SabnisN. PanchooM. RautS. DickermanR. LackoA.G. The SR-B1 receptor as a potential target for treating glioblastoma.J. Oncol.2019201911010.1155/2019/180584131275377
    [Google Scholar]
  153. LuQ. CaiX. ZhangX. LiS. SongY. DuD. DuttaP. LinY. Synthetic polymer nanoparticles functionalized with different ligands for receptor-mediated transcytosis across the blood–brain barrier.ACS Appl. Bio Mater.2018151687169410.1021/acsabm.8b0050231815251
    [Google Scholar]
  154. LiuY. HuangR. HanL. KeW. ShaoK. YeL. LouJ. JiangC. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles.Biomaterials200930254195420210.1016/j.biomaterials.2009.02.05119467700
    [Google Scholar]
  155. PetriB. BootzA. KhalanskyA. HekmataraT. MüllerR. UhlR. KreuterJ. GelperinaS. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: Revisiting the role of surfactants.J. Control. Release20071171515810.1016/j.jconrel.2006.10.01517150277
    [Google Scholar]
  156. TamaruM. AkitaH. FujiwaraT. KajimotoK. HarashimaH. Leptin-derived peptide, a targeting ligand for mouse brain-derived endothelial cells via macropinocytosis.Biochem. Biophys. Res. Commun.2010394358759210.1016/j.bbrc.2010.03.02420214882
    [Google Scholar]
  157. KuoY.C. ChungC.Y. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells.Colloids Surf. B Biointerfaces20129124224910.1016/j.colsurfb.2011.11.00722137614
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873312057240622175745
Loading
/content/journals/cnanom/10.2174/0124681873312057240622175745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test