Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Prostate cancer remains a significant global health concern, necessitating the development of innovative therapeutic approaches. This editorial provides an overview of the current state of research on aptamer-modified nanocarriers as a novel strategy for prostate cancer therapy. Aptamers, known for their high specificity and affinity, have drawn much attention in both research and the pharmaceutical industry. The Systematic Evolution of Ligands by the Exponential Enrichment (SELEX) technique has enabled the development of aptamers that can selectively bind to target ligands based on their unique three-dimensional structures. Notably, the A10 aptamer, modified to target PSMA (Prostate-Specific Membrane Antigen), has demonstrated strong binding affinity and specificity to prostate cancer cells, offering promise as an efficient drug-delivery system. Additionally, biosensors, like the innovative apta-sensor targeting MUC1, have utilized aptamers to detect cancer through electrochemical signals. Additionally, aptamers have improved the pharmacological attributes of chemotherapeutic agents for prostate cancer treatment. Aptamer- mediated drug delivery has offered enhanced drug delivery, targeting, cellular uptake, and minimizing side effects.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873303161240419115025
2024-04-26
2025-10-10
Loading full text...

Full text loading...

/deliver/fulltext/cnanom/15/4/CNANOM-15-4-01.html?itemId=/content/journals/cnanom/10.2174/0124681873303161240419115025&mimeType=html&fmt=ahah

References

  1. YanJ. XiongH. CaiS. WenN. HeQ. LiuY. PengD. LiuZ. Advances in aptamer screening technologies.Talanta201920012414410.1016/j.talanta.2019.03.01531036165
    [Google Scholar]
  2. WeeksK.M. Advances in RNA structure analysis by chemical probing.Curr. Opin. Struct. Biol.201020329530410.1016/j.sbi.2010.04.00120447823
    [Google Scholar]
  3. Cruz-HernándezC.D. Rodríguez-MartínezG. Cortés-RamírezS.A. Morales-PachecoM. Cruz-BurgosM. Losada-GarcíaA. Reyes-GrajedaJ.P. González-RamírezI. González-CovarrubiasV. Camacho-ArroyoI. CerbónM. Rodríguez-DorantesM. Aptamers as theragnostic tools in prostate cancer.Biomolecules2022128105610.3390/biom1208105636008950
    [Google Scholar]
  4. ZhuoZ. YuY. WangM. LiJ. ZhangZ. LiuJ. WuX. LuA. ZhangG. ZhangB. Recent advances in SELEX technology and aptamer applications in biomedicine.Int. J. Mol. Sci.20171810214210.3390/ijms1810214229036890
    [Google Scholar]
  5. MoritaY. LeslieM. KameyamaH. VolkD. TanakaT. Aptamer therapeutics in cancer: Current and future.Cancers (Basel)20181038010.3390/cancers1003008029562664
    [Google Scholar]
  6. ZhuG. ChenX. Aptamer-based targeted therapy.Adv. Drug Deliv. Rev.2018134657810.1016/j.addr.2018.08.00530125604
    [Google Scholar]
  7. HoellenriegelJ. ZboralskiD. MaaschC. RosinN.Y. WierdaW.G. KeatingM.J. KruschinskiA. BurgerJ.A. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization.Blood201412371032103910.1182/blood‑2013‑03‑49392424277076
    [Google Scholar]
  8. BagalkotV. FarokhzadO.C. LangerR. JonS. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform.Angew. Chem. Int. Ed.200645488149815210.1002/anie.20060225117099918
    [Google Scholar]
  9. JeongH. LeeS.H. HwangY. YooH. JungH. KimS.H. MokH. Multivalent Aptamer–RNA conjugates for simple and efficient delivery of doxorubicin/siRNA into multidrug-resistant cells.Macromol. Biosci.2017174160034310.1002/mabi.20160034327863037
    [Google Scholar]
  10. ZhangJ.J. ChengF.F. ZhengT.T. ZhuJ.J. Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells.Biosens. Bioelectron.201789Pt 293794510.1016/j.bios.2016.09.08727818049
    [Google Scholar]
  11. BagalkotV. ZhangL. Levy-NissenbaumE. JonS. KantoffP.W. LangerR. FarokhzadO.C. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer.Nano Lett.20077103065307010.1021/nl071546n17854227
    [Google Scholar]
  12. FarokhzadO.C. ChengJ. TeplyB.A. SherifiI. JonS. KantoffP.W. RichieJ.P. LangerR. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo .Proc. Natl. Acad. Sci.2006103166315632010.1073/pnas.060175510316606824
    [Google Scholar]
  13. XuW. SiddiquiI.A. NihalM. PillaS. RosenthalK. MukhtarH. GongS. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer.Biomaterials201334215244525310.1016/j.biomaterials.2013.03.00623582862
    [Google Scholar]
  14. GuW. MengF. HaagR. ZhongZ. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation.J. Control. Release202132967669510.1016/j.jconrel.2020.10.00333022328
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873303161240419115025
Loading

  • Article Type:
    Editorial
Keyword(s): aptamer; drug delivery system; liposomes; Prostate cancer; PSMA, MUC1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test