Skip to content
2000
Volume 15, Issue 5
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Introduction / Objective

The goal of the current study was to create Azithromycin-loaded niosomes and conduct evaluation for topical eczema management. Eczema is a common dry skin disorder that causes inflammation and may affect people of any age, mainly in early infancy ages. Another term for dermatitis is “Derma” which refers to skin, and “dermatitis” “Tis” refers to inflammation. Both phrases are interchangeably employed. The most prevalent kind of eczema is atopic eczema, which is also often the most chronic type. Azithromycin is a macrolide antibiotic that is employed to treat infection of both the lower and upper respiratory tracts. It also has antimicrobial properties that help in the treatment of skin infections. The topical appeal of AZM-loaded niosomal gel can probably reduce side effects associated with drug molecules. The objective of the present study was to formulate and evaluate topical gel with loaded niosomes for sustained effect that could be beneficial for the treatment of eczema. Creating topical formulations increases drug absorption, diminishes side effects, and improves patient compliance.

Methods

AZM-loaded niosomes were prepared by Ether injection method by using Span60 and Brij30 as a surfactant in a ratio of 2:1:1 along with the combination of Cholesterol.

Results

After several optimization tests, formulation F3 was found to be the best fit for gel formulation. According to SEM analysis, the shape of the particles was almost spherical. A Zetasizer measured the mean diameter of the improved formulation and found it to be 576 nm. The entrapment efficiency of the formulations was found to be 60-89%. Next, employing Carbopol 940, which acts as the gelling agent, the improved formulation was added to a gel. An evaluation of the antibacterial activity of Azithromycin's well-known antimicrobial properties, which are crucial for managing skin infections associated with eczema, was carried out. The optimized formulation exhibited a zone of inhibition that was 3 mm smaller than that of the pure drug. release experiments revealed 59% release for eight hours.

Conclusion

In conclusion, this research successfully developed a topical Azithromycin-loaded niosomal gel, demonstrating promising results in terms of particle morphology, size, drug release profile, and antibacterial activity. The optimized formulation, characterized by its controlled release and potential for reduced side effects, represents a significant advancement in the topical treatment of eczema. Future studies should focus on further clinical evaluations and potential modifications to enhance the efficacy and patient acceptability of the formulation.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873349887250211064235
2025-02-12
2025-10-21
Loading full text...

Full text loading...

References

  1. KuotsuK. KarimK.M. MandalA.S. BiswasN. GuhaA. ChatterjeeS. BeheraM. Niosome: A future of targeted drug delivery systems.J. Adv. Pharm. Technol. Res.20101437438010.4103/0110‑5558.7643522247876
    [Google Scholar]
  2. KeservaniR.K. SharmaA.K. AyazM. KesharwaniR.K. Novel drug delivery system for the vesicular delivery of drug by the niosomes.Int. J. Res. Cont. Rel.20111118
    [Google Scholar]
  3. KhandareJ.N. MadhaviG. TamhankarB.M. Niosomes-novel drug delivery system.East. Pharmacist.19943761
    [Google Scholar]
  4. BasiriL. RajabzadehG. BostanA. Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery.Lebensm. Wiss. Technol.20178447147810.1016/j.lwt.2017.06.009
    [Google Scholar]
  5. KapoorA. Niosomes as efficient nanocarriers for targeted drug delivery.Asian J. Pharm.202418382283110.22377/ajp.v18i3.5643
    [Google Scholar]
  6. MuzzalupoR. TavanoL. Niosomal drug delivery for transdermal targeting: Recent advances.Res. Rep. Transd. Drug Deliv.20154233310.2147/RRTD.S64773
    [Google Scholar]
  7. KumarM. MandalU.K. MahmoodS. Dermatological formulations.Dosage Forms, Formulation Developments and Regulations.Cambridge, USAcademic Press202461364210.1016/B978‑0‑323‑91817‑6.00021‑8
    [Google Scholar]
  8. KumariR. VermaK. VermaA. YadavG.K. MauryaS.D. Proniosomes: A key to improved drug delivery.J. Drug Deliv. Ther.201400566510.22270/jddt.v0i0.875
    [Google Scholar]
  9. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics1102005530700021
    [Google Scholar]
  10. Zaid AlkilaniA. Abu-ZourH. AlshishaniA. Abu-HuwaijR. BasheerH.A. Abo-ZourH. Formulation and evaluation of niosomal alendronate sodium encapsulated in polymeric microneedles: In vitro studies, stability study and cytotoxicity study.Nanomaterials (Basel)20221220357010.3390/nano1220357036296760
    [Google Scholar]
  11. TavanoL. MuzzalupoR. PicciN. De CindioB. Coentrapment of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical Colloids Surf. B Biointerfaces2014114828810.1016/j.colsurfb.2013.09.05824176886
    [Google Scholar]
  12. LiuT. GuoR. HuaW. QiuJ. Structure behaviors of hemoglobin in PEG 6000/Tween 80/Span 80/H2O niosome system.Colloids Surf. A Physicochem. Eng. Asp.20072931-325526110.1016/j.colsurfa.2006.07.053
    [Google Scholar]
  13. MarianecciC. Di MarzioL. RinaldiF. CeliaC. PaolinoD. AlhaiqueF. EspositoS. CarafaM. Niosomes from 80s to present: The state of the art.Adv. Colloid Interface Sci.201420518720610.1016/j.cis.2013.11.01824369107
    [Google Scholar]
  14. MarianecciC. RinaldiF. Di MarzioL. CiogliA. EspositoS. CarafaM. Polysorbate 20 vesicles as multi-drug carriers: In vitro preliminary evaluations.Lett. Drug Des. Discov.2013103212218
    [Google Scholar]
  15. Owodeha-AshakaK. IlomuanyaM.O. IyireA. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery.Prog. Biomater.202110320722010.1007/s40204‑021‑00164‑534549376
    [Google Scholar]
  16. WaqasM.K. SadiaH. KhanM.I. OmerM.O. SiddiqueM.I. QamarS. ZamanM. ButtM.H. MustafaM.W. RasoolN. Development and characterization of niosomal gel of fusidic acid: In-vitro and ex-vivo approaches.Des. Monomers Polym.202225116517410.1080/15685551.2022.208641135711622
    [Google Scholar]
  17. MishraA. KapoorA. BhargavaS. Proniosomal gel as a carrier for improved transdermal drug-delivery.Asian J. Pharm. Clin. Res.201122314423
    [Google Scholar]
  18. YueP.F. LuX.Y. ZhangZ.Z. YuanH.L. ZhuW.F. ZhengQ. YangM. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion.AAPS Pharm. Sci. Tech.200910237638310.1208/s12249‑009‑9216‑319381837
    [Google Scholar]
  19. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Cont. Rel.2014185223610.1016/j.jconrel.2014.04.01524747765
    [Google Scholar]
  20. SagadevanS. KoteeswariP. Analysis of structure, surface morphology, optical and electrical properties of copper nanoparticles.J. Nanomed. Res.20052500040
    [Google Scholar]
  21. LujanH. GriffinW.C. TaubeJ.H. SayesC.M. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells.Int. J. Nanomedicine2019145159517310.2147/IJN.S20333031371954
    [Google Scholar]
  22. PerrieY. AliH. KirbyD.J. MohammedA.U.R. McNeilS.E. VangalaA. Environmental scanning electron microscope imaging of vesicle systems.Methods Mol. Biol.2017152213114310.1007/978‑1‑4939‑6591‑5_1127837536
    [Google Scholar]
  23. LawrenceM. ChauhanS. LawrenceS.M. The formation, characterization and stability of non-ionic surfactant vesicles.STP Pharma Sci.1996614960
    [Google Scholar]
  24. PatelK.K. KumarP. ThakkarH.P. Formulation of niosomal gel for enhanced transdermal lopinavir delivery and its comparative evaluation with ethosomal gel.AAPS Pharm. Sci. Tech.20121341502151010.1208/s12249‑012‑9871‑723104306
    [Google Scholar]
  25. BalakrishnanP. ShanmugamS. LeeW.S. LeeW.M. KimJ.O. OhD.H. KimD.D. KimJ.S. YooB.K. ChoiH.G. WooJ.S. YongC.S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery.Int. J. Pharm.20093771-21810.1016/j.ijpharm.2009.04.02019394413
    [Google Scholar]
  26. NareshR.R. PillaiG.K. UdupaN. ChandrashekarG. Anti-inflammatory activity of niosome encapsulated diclofenac sodium in arthritic rats.Indian J. Pharmacol.19942614648
    [Google Scholar]
  27. OkoreV.C. AttamaA.A. OfokansiK.C. EsimoneC.O. OnuigboE.B. Formulation and evaluation of niosomes.Indian J. Pharm. Sci.201173332332822457561
    [Google Scholar]
  28. PandeyA. KumarA. NiranjanA.K. Development and evaluation of novel carrier for topical formulation of antifungal drug.World J. Pharm. Res.2022111211411154
    [Google Scholar]
  29. PandoD. GutiérrezG. CocaJ. PazosC. Preparation and characterization of niosomes containing resveratrol.J. Food Eng.2013117222723410.1016/j.jfoodeng.2013.02.020
    [Google Scholar]
  30. RogersonA. CummingsJ. FlorenceA.T. Adriamycin-loaded niosomes: Drug entrapment, stability and release.J. Microencapsul.19874432110.3109/02652048709021824
    [Google Scholar]
  31. NayakS.H. NakhatP.D. YeoleP.G. Development and evaluation of cosmeceutical hair styling gels of ketoconazole.Ind. J. Pharm. Sci.200552231233
    [Google Scholar]
  32. PandeyP. MisraS.K. KapoorA. SharmaN. KumariP. Tolnaftate microsponges embedded biocompatible gels for controlled and effective anti dermatophytic activity.Int. Res. J. Pharm.20189612813310.7897/2230‑8407.096103
    [Google Scholar]
  33. RossiA. CampoD. FortunaM.C. GarelliV. PrantedaG. De VitaG. Sorriso-ValvoL. Di NunnoD. CarlesimoM. A preliminary study on topical cetirizine in the therapeutic management of androgenetic alopecia.J. Dermatolog. Treat.201829214915110.1080/09546634.2017.134161028604133
    [Google Scholar]
  34. SarisozenC. VuralI. LevchenkoT. HincalA.A. TorchilinV.P. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells.Drug Deliv.201219416917610.3109/10717544.2012.67416322506922
    [Google Scholar]
  35. NgS.F. RouseJ.J. SandersonF.D. MeidanV. EcclestonG.M. Validation of a static Franz diffusion cell system for in vitro permeation studies.AAPS Pharm. Sci. Tech.20101131432144110.1208/s12249‑010‑9522‑920842539
    [Google Scholar]
  36. KumarM. SharmaA. MahmoodS. ThakurA. MirzaM.A. BhatiaA. Franz diffusion cell and its implication in skin permeation studies.J. Dispers. Sci. Technol.202445594395610.1080/01932691.2023.2188923
    [Google Scholar]
  37. MahajanN.M. ManmodeA.S. SakarkarD.M. A novel approach in development of diffusion cell for in-vitro diffusion study.Res. J. Pharm. and Tech.200922315318
    [Google Scholar]
  38. SelvarajS. NiraimathiV. NappinnaiM. Formulation and evaluation of acyclovir loaded chitosan nanoparticles.Int. J. Pharm. Anal. Res.20165619629
    [Google Scholar]
  39. ShaberyA.M. WidodoR.T. ChikZ. Formulation and in vivo pain assessment of a novel niosomal lidocaine and prilocaine in an emulsion gel (Emulgel) of semisolid palm oil base for topical drug delivery.Gels2023929610.3390/gels902009636826266
    [Google Scholar]
  40. SmuldersS. KaiserJ.P. ZuinS. Van LanduytK.L. GolanskiL. VanoirbeekJ. WickP. HoetP.H. Contamination of nanoparticles by endotoxin: Evaluation of different test methods.Part. Fibre. Toxicol.201294110.1186/1743‑8977‑9‑41
    [Google Scholar]
  41. SrinivasS. KumarY.A. HemanthA. AnithaM. Preparation and evaluation of niosomes containing aceclofenac.Dig. J. Nanomater. Biostruct.201051249254
    [Google Scholar]
  42. SumaU.S. ParthibanS. Senthil KumarG.P. Tamiz ManiT. Novelty of niosomal gel in tdds application.Asi. J. Res. Biolog. Pharma. Sci.2015324148
    [Google Scholar]
  43. SzokaF.Jr PapahadjopoulosD. Comparative properties and methods of preparation of lipid vesicles (liposomes).Annu. Rev. Biophys. Bioeng.19809146750810.1146/annurev.bb.09.060180.0023436994593
    [Google Scholar]
  44. TangriP. KhuranaS. Niosomes: Formulation and evaluation.Int. J. Biopharm.2011214153
    [Google Scholar]
  45. TarekegnA. JosephN.M. PalaniS. ZachariaA. AyenewZ. Niosomes in targeted drug delivery: Some recent advances.IJPSR20101918
    [Google Scholar]
  46. TavanoL. AielloR. IoeleG. PicciN. MuzzalupoR. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties.Colloids Surf. B Biointerfaces201411871310.1016/j.colsurfb.2014.03.01624709252
    [Google Scholar]
  47. JessyS. SharvariG. Transethosomes and ethosomes for enhanced transdermal delivery of ketorolac tromethamine.Int. J. Curr. Pharm. Res.2014648893
    [Google Scholar]
  48. SoniS. BaghelK. SoniM.L. KashawS.K. SoniV. Size-dependent effects of niosomes on the penetration of methotrexate in skin layers.Fut. J. Pharma. Sci.20241014810.1186/s43094‑024‑00624‑2
    [Google Scholar]
  49. MoammeriA. ChegeniM.M. SahrayiH. GhafelehbashiR. MemarzadehF. MansouriA. AkbarzadehI. AbtahiM.S. HejabiF. RenQ. Current advances in niosomes applications for drug delivery and cancer treatment.Mater. Tod. Bio.20232310083710.1016/j.mtbio.2023.10083737953758
    [Google Scholar]
  50. ZhaoY. WangY. RanF. CuiY. LiuC. ZhaoQ. GaoY. WangD. WangS. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics.Sci. Rep.201771413110.1038/s41598‑017‑03834‑228646143
    [Google Scholar]
  51. WeyJ.S. GautesenA.K. EstrinJ. A note on the stability of a growing sphere.J. Cryst. Grow.197319316917610.1016/0022‑0248(73)90106‑1
    [Google Scholar]
  52. XuB. LeeK-W. LiW. YaszemskiM.J. LuL. YangY. WangS. A comparative study on cylindrical and spherical models in fabrication of bone tissue engineering scaffolds: Finite element simulation and experiments.Mater. Des.202121111015010.1016/j.matdes.2021.110150
    [Google Scholar]
  53. YaghoobianM. HaeriA. BolourchianN. ShahhosseniS. DadashzadehS. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug.Int. J. Nanomedicine2020158767878110.2147/IJN.S26193233204087
    [Google Scholar]
  54. ThakkarM. SB. Opportunities and challenges for niosomes as drug delivery systems.Curr. Drug Deliv.20161381275128910.2174/156720181366616032811352227017826
    [Google Scholar]
  55. NowrooziF. AlmasiA. JavidiJ. HaeriA. DadashzadehS. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes.Iran. J. Pharm. Res.201817Suppl. 211131011337
    [Google Scholar]
  56. TingW.W. VestC.D. SontheimerR.D. Review of traditional and novel modalities that enhance the permeability of local therapeutics across the stratum corneum.Int. J. Dermatol.200443753854710.1111/j.1365‑4632.2004.02147.x15230899
    [Google Scholar]
  57. UchegbuI.F. FlorenceA.T. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry.Adv. Colloid Interface Sci.199558115510.1016/0001‑8686(95)00242‑I
    [Google Scholar]
  58. VermaS. SinghS.K. SyanN. MathurP. ValechaV. Nanoparticle vesicular systems: A versatiletool for drug delivery.J. Chem. Pharm. Res.201022496509
    [Google Scholar]
  59. VishvakramaP. SharmaS. Liposomes: An overview.J. Drug Deliv. Ther.201414755
    [Google Scholar]
  60. DavidV. Understanding the main principles of skin care in older adults, art and science dermatology supplement.Nurs Stand. 201227115960
    [Google Scholar]
  61. AbdelazizA.A. ElbannaT.E. SonbolF.I. GamaleldinN.M. El MaghrabyG.M. Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: In vitro and in vivo evaluation.Expert Opin. Drug Deliv.201512216318010.1517/17425247.2014.94263925135453
    [Google Scholar]
  62. HaddadianA. RobattorkiF.F. DibahH. SoheiliA. GhanbarzadehE. SartipniaN. HajrasoulihaS. PasbanK. AndalibiR. ChM.H. AzariA. ChitgarzadehA. KashtaliA.B. MastaliF. NoorbazarganH. MirzaieA. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities.Sci. Rep.20221212193810.1038/s41598‑022‑26400‑x36536030
    [Google Scholar]
  63. AbonasheyS.G. HassanH.A.F.M. ShalabyM.A. FouadA.G. MobarezE. El-BannaH.A. Formulation, pharmacokinetics, and antibacterial activity of florfenicol-loaded niosome.Drug Deliv. Transl. Res.20241441077109210.1007/s13346‑023‑01459‑937957473
    [Google Scholar]
  64. WaddadA.Y. AbbadS. YuF. MunyendoW.L.L. WangJ. LvH. ZhouJ. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants.Int. J. Pharm.2013456244645810.1016/j.ijpharm.2013.08.04023998955
    [Google Scholar]
  65. YadavR. ChananaA. ChawraH.S. SinghR.P. Recent advances in niosomal drug delivery: A review.Int. J. Multidiscip. Res.2023511
    [Google Scholar]
  66. NamdeoA. MishraP.R. KhopadeA.J. JainN.K. Formulation and evaluation of niosome encapsulated indomethacin.Indian Drugs.1999366378380
    [Google Scholar]
  67. AgrawalS. JainP. Formulation, evaluation, and in vitro drug diffusion of niosomal gel of selected drug.Int. J. Heal. Sci.20226S67338735110.53730/ijhs.v6nS6.11391
    [Google Scholar]
  68. SomjidS. KrongsukS. JohnsJ.R. Cholesterol concentration effect on the bilayer properties and phase formation of niosome bilayers: A molecular dynamics simulation study.J. Mol. Liq.201825659159810.1016/j.molliq.2018.02.077
    [Google Scholar]
  69. AhmadiS. SerajM. ChianiM. HosseiniS. BazzazanS. AkbarzadehI. SaffarS. MostafaviE. In vitro development of controlled-release nanoniosomes for improved delivery and anticancer activity of letrozole for breast cancer treatment.Int. J. Nanomedicine202217176233625510.2147/IJN.S38408536531115
    [Google Scholar]
  70. KorsmeyerR.W. GurnyR. DoelkerE. BuriP. PeppasN.A. Mechanisms of solute release from porous hydrophilic polymers.Int. J. Pharm.1983151253510.1016/0378‑5173(83)90064‑9
    [Google Scholar]
  71. CarterK.C. DolanT.F. AlexanderJ. BaillieA.J. MccolganC. Visceral leishmaniasis: Drug carrier system characteristics and the ability to clear parasites from the liver, spleen and bone marrow in Leishmania donovani infected BALB/c mice.J. Pharm. Pharmacol.1989412879110.1111/j.2042‑7158.1989.tb06399.x2568434
    [Google Scholar]
  72. AmiriB. Ebrahimi-FarM. SaffariZ. AkbarzadehA. SoleimaniE. ChianiM. Preparation, characterization and cytotoxicity of silibinin-containing nanoniosomes in T47D human breast carcinoma cells.Asian Pac. J. Cancer Prev.20161783835383827644625
    [Google Scholar]
  73. PoustforooshA. Investigation on the structural and dynamical properties of cationic, anionic, and catanionic niosomes as multifunctional controlled drug delivery system for cabozantinib.Colloids Surf. A Physicochem. Eng. Asp.202468713354710.1016/j.colsurfa.2024.133547
    [Google Scholar]
  74. BashkeranT. KamaruddinA.H. NgoT.X. SudaK. UmakoshiH. WatanabeN. NadzirM.M. Niosomes in cancer treatment: A focus on curcumin encapsulation.Heliyon.2023981871010.1016/j.heliyon.2023.e18710
    [Google Scholar]
  75. KshitijB. MakeshwarA. SurajR. WasankarA. Niosome: A novel drug delivery system.Asi. J. Pharm. Res.2013311519
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873349887250211064235
Loading
/content/journals/cnanom/10.2174/0124681873349887250211064235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test