Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Ovarian cancer (OC) is a gynecologic disease characterized by the uncontrolled growth and proliferation of abnormal cells in the ovaries, fallopian tubes, or peritoneum. Emerging evidence has shown the pivotal role of non-coding RNAs (ncRNAs), such as miRNAs, in driving the pathogenesis of OC. miRNAs are recognized as small ncRNAs that play critical roles in regulating gene expression in normal development and in disease states, including OC. Among miRNAs, the expression of miR-34a was found to be downregulated in OC. Elevated levels of this miRNA are associated with the induction of apoptosis and the inhibition of OC cell proliferation by targeting various signaling pathways, including NOTCH1, P21/P53, STAT3, and BCL2 in OC. Therefore, miR-34a can be a therapeutic target in the management of OC. In this review, we summarized the functional significance of this miRNA in the treatment of OC.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240345216241120093846
2025-01-03
2025-12-21
Loading full text...

Full text loading...

References

  1. AnghelB. GeorgescuM.T. SerboiuC.S. Optimizing Palliative Pelvic Radiotherapy in Gynecological Cancers: A Systematic Review and Analysis.Diagnostics (Basel)202414554710.3390/diagnostics14050547 38473019
    [Google Scholar]
  2. PourF.K. KeivanM. GhaedrahmatiF. Endometrial Cancer Stem Cells Related Signaling Pathways.Curr. Cancer Ther. Rev.202319428429110.2174/1573394719666230306145642
    [Google Scholar]
  3. PfeiferC.R. HalesK.H. HalesD.B. ShyerA.E. RodriguesA.R. Collective fibroblast mechanics in ovarian cancer metastasis.Biophys. J.20241233405a10.1016/j.bpj.2023.11.2486
    [Google Scholar]
  4. SowamberR. LukeyA. HuntsmanD. HanleyG. Ovarian cancer: From precursor lesion identification to population-based prevention programs.Curr. Oncol.20233012101791019410.3390/curroncol30120741 38132375
    [Google Scholar]
  5. O’MahonyD.G. RamusS.J. SoutheyM.C. Ovarian cancer pathology characteristics as predictors of variant pathogenicity in BRCA1 and BRCA2.Br. J. Cancer2023128122283229410.1038/s41416‑023‑02263‑5 37076566
    [Google Scholar]
  6. LashenA. AlgethamiM. AlqahtaniS. The Clinicopathological Significance of the Cyclin D1/E1–Cyclin-Dependent Kinase (CDK2/4/6)–Retinoblastoma (RB1/pRB1) Pathway in Epithelial Ovarian Cancers.Int. J. Mol. Sci.2024257406010.3390/ijms25074060 38612869
    [Google Scholar]
  7. KAR ArumugamS MuninathanN BaskarK SD DDR P53 Gene as a Promising Biomarker and Potential Target for the Early Diagnosis of Reproductive Cancers.Cureus2024165e6012510.7759/cureus.60125 38864057
    [Google Scholar]
  8. TcyganovE.N. KwakT. YangX. PoliA.N.R. HartC. BhuniyaA. Targeting LxCxE cleft pocket of retinoblastoma protein in M2 macrophages inhibits ovarian cancer progression.bioRxiv2024202459356210.1101/2024.05.10.593562
    [Google Scholar]
  9. C eDK CVTT J CEM The Impact of BRCA1- and BRCA2 Mutations on Ovarian Reserve Status.Reprod. Sci.202330127028210.1007/s43032‑022‑00997‑w 35705781
    [Google Scholar]
  10. EhmannT. BarelS. RayA. BorschD. The Role of Estrogen in Ovarian Cancer and the Pathways by Which Estrogen Acts.Available from: https://www.hmsreview.org/issue-8/ehmann-2023 2023
    [Google Scholar]
  11. KimS.Y. ChangH.K. KwonO. ParkJ. MyongJ-P. Asbestos exposure and Ovarian Cancer; A meta-analysis.Saf. Health Work2023 38496274
    [Google Scholar]
  12. WentzensenN. O’BrienK.M. Talc, body powder, and ovarian cancer: A summary of the epidemiologic evidence.Gynecol. Oncol.2021163119920810.1016/j.ygyno.2021.07.032 34366148
    [Google Scholar]
  13. HarrisB.H.L. MacaulayV.M. HarrisD.A. Obesity: a perfect storm for carcinogenesis.Cancer Metastasis Rev.202241349151510.1007/s10555‑022‑10046‑2 36038791
    [Google Scholar]
  14. CuiJ. WangY. Premature ovarian insufficiency: a review on the role of tobacco smoke, its clinical harm, and treatment.J. Ovarian Res.2024171810.1186/s13048‑023‑01330‑y 38191456
    [Google Scholar]
  15. EvangelinakisN. GeladariE.V. GeladariC.V. The influence of environmental factors on premature ovarian insufficiency and ovarian aging.Maturitas202417910787110.1016/j.maturitas.2023.107871 37925867
    [Google Scholar]
  16. ChiaffarinoF. CiprianiS. RicciE. EspositoG. ParazziniF. VercelliniP. Histologic Subtypes in Endometriosis-Associated Ovarian Cancer and Ovarian Cancer Arising in Endometriosis: A Systematic Review and Meta-Analysis.Reprod. Sci.202419
    [Google Scholar]
  17. HassanS. ThacharodiA. PriyaA. Endocrine disruptors: Unravelling the link between chemical exposure and Women’s reproductive health.Environ. Res.202424111738510.1016/j.envres.2023.117385 37838203
    [Google Scholar]
  18. VenezianiA.C. Gonzalez-OchoaE. AlqaisiH. Heterogeneity and treatment landscape of ovarian carcinoma.Nat. Rev. Clin. Oncol.2023201282084210.1038/s41571‑023‑00819‑1 37783747
    [Google Scholar]
  19. MoftakharA. NajafiS. AnbiyaeeO. FarzanehM. KhoshnamS.E. Functional Roles of the lncRNA MALAT1 in Glioma.Curr. Cancer Ther. Rev.202420216617610.2174/1573394719666230720164009
    [Google Scholar]
  20. NajafiS. GhaedrahmatiF. Abouali Gale DariM. FarzanehM. Mohammad JafariR. The Regulatory Role of Circular RNAs as miRNA Sponges in Cervical Cancer.Curr. Signal Transduct. Ther.2023183e24112322377710.2174/0115743624273536231105142321
    [Google Scholar]
  21. LiS. WeiX. HeJ. The comprehensive landscape of miR-34a in cancer research.Cancer Metastasis Rev.202140392594810.1007/s10555‑021‑09973‑3 33959850
    [Google Scholar]
  22. DirimtekinE. MortoglouM. AlavandaC. miR-34a-FOXP1 Loop in Ovarian Cancer.ACS Omega2023830277432775010.1021/acsomega.3c03867 37546627
    [Google Scholar]
  23. WelponerH. TsibulakI. WieserV. The miR-34 family and its clinical significance in ovarian cancer.J. Cancer20201161446145610.7150/jca.33831 32047551
    [Google Scholar]
  24. AbdelaalA.M. SohalI.S. IyerS. A first-in-class fully modified version of miR-34a with outstanding stability, activity, and anti-tumor efficacy.Oncogene202342402985299910.1038/s41388‑023‑02801‑8 37666938
    [Google Scholar]
  25. VeltriA.J. D’OrazioK.N. LessenL.N. Loll-KrippleberR. BrownG.W. GreenR. Distinct elongation stalls during translation are linked with distinct pathways for mRNA degradation.eLife202211e7603810.7554/eLife.76038 35894211
    [Google Scholar]
  26. del Valle-MoralesD. LeP. SavianaM. The epitranscriptome in miRNAs: crosstalk, detection, and function in cancer.Genes (Basel)2022137128910.3390/genes13071289 35886072
    [Google Scholar]
  27. McGearyS.E. BisariaN. PhamT.M. WangP.Y. BartelD.P. MicroRNA 3′-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position.eLife202211e6980310.7554/eLife.69803 35191832
    [Google Scholar]
  28. RokavecM. HuangZ. HermekingH. Meta-analysis of miR-34 target mRNAs using an integrative online application.Comput. Struct. Biotechnol. J.20232126727410.1016/j.csbj.2022.12.003 36582442
    [Google Scholar]
  29. Di PaoloD. PastorinoF. BrignoleC. Combined replenishment of miR‐34a and let‐7b by targeted nanoparticles inhibits tumor growth in neuroblastoma preclinical models.Small20201620190642610.1002/smll.201906426 32323486
    [Google Scholar]
  30. ChoiYJ LinC-P RissoD ChenS KimTA TanMH Deficiency of microRNA miR-34a expands cell fate potential in pluripotent stem cells.Science20173556325eaag192710.1126/science.aag1927
    [Google Scholar]
  31. MinX. WangJ.Y. ZongF.J. ZhaoJ. LiuN. HeK.W. miR-34a regulates silent synapse and synaptic plasticity in mature hippocampus.Prog. Neurobiol.202322210240410.1016/j.pneurobio.2023.102404 36642095
    [Google Scholar]
  32. GaderpourS. GhiasiR. HamidianG. HeydariH. KeyhanmaneshR. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway.Iran. J. Basic Med. Sci.20212415865 33643571
    [Google Scholar]
  33. WangJ. HeP. TianQ. Genetic modification of miR-34a enhances efficacy of transplanted human dental pulp stem cells after ischemic stroke.Neural Regen. Res.202318920292036 36926729
    [Google Scholar]
  34. PetersF. GrimmC. Regulation of ABCA1 by miR-33 and miR-34a in the Aging Eye. In: Retinal Degenerative Diseases XIX: Mechanisms and Experimental Therapy.Springer2023555910.1007/978‑3‑031‑27681‑1_9
    [Google Scholar]
  35. ChenR. ChenH. YangZ. Danlou tablet inhibits high-glucose-induced cardiomyocyte apoptosis via the miR-34a-SIRT1 axis.Heliyon202393e1447910.1016/j.heliyon.2023.e14479 36950610
    [Google Scholar]
  36. LiuX. ZhaoZ. ChenD. SIRT1 and miR-34a-5p Expression in PBMCs as Potential Biomarkers for Patients With Type 2 Diabetes With Cognitive Impairments.J. Clin. Endocrinol. Metab.2024109381582610.1210/clinem/dgad562 37758217
    [Google Scholar]
  37. NóbregaO.T. Morais-JuniorG.S. VianaN.I. ReisS.T. PerezD.I. FreitasW.M. Circulating miR-34a and Bone Mineral Density of Brazilian Very-Old Adults.J. Aging Res.20202020343182810.1155/2020/3431828
    [Google Scholar]
  38. Briones-EspinozaM.J. Cortés-GarcíaJ.D. Vega-CárdenasM. Decreased levels and activity of Sirt1 are modulated by increased miR-34a expression in adipose tissue mononuclear cells from subjects with overweight and obesity: A pilot study.Diabetes Metab. Syndr.20201451347135410.1016/j.dsx.2020.07.014 32755834
    [Google Scholar]
  39. XuY. ZhuY. HuS. Hepatocyte miR-34a is a key regulator in the development and progression of non-alcoholic fatty liver disease.Mol. Metab.20215110124410.1016/j.molmet.2021.101244 33930596
    [Google Scholar]
  40. KalfertD. LudvikovaM. PestaM. LudvikJ. DostalovaL. KholováI. Multifunctional Roles of miR-34a in Cancer: A Review with the Emphasis on Head and Neck Squamous Cell Carcinoma and Thyroid Cancer with Clinical Implications.Diagnostics (Basel)202010856310.3390/diagnostics10080563 32764498
    [Google Scholar]
  41. LiW.J. WangY. LiuR. MicroRNA-34a: Potent Tumor Suppressor, Cancer Stem Cell Inhibitor, and Potential Anticancer Therapeutic.Front. Cell Dev. Biol.2021964058710.3389/fcell.2021.640587 33763422
    [Google Scholar]
  42. HermekingH. The miR-34 family in cancer and apoptosis.Cell Death Differ.201017219319910.1038/cdd.2009.56 19461653
    [Google Scholar]
  43. SchmidG. NotaroS. ReimerD. Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer.BMC Cancer201616110210.1186/s12885‑016‑2135‑2 26879132
    [Google Scholar]
  44. ArapakiA. KarabelasA. PanoutsopoulouK. PapachristopoulouG. AvgerisM. ScorilasA. EP1277 Clinical evaluation of miR-34a in ovarian carcinoma.BMJ Specialist Journal201910.1136/ijgc‑2019‑ESGO.1283
    [Google Scholar]
  45. YaoS. GaoM. WangZ. WangW. ZhanL. WeiB. Upregulation of MicroRNA-34a Sensitizes Ovarian Cancer Cells to Resveratrol by Targeting Bcl-2.Yonsei Med. J.202162869170110.3349/ymj.2021.62.8.691 34296546
    [Google Scholar]
  46. WeiB. YaoS. GaoM. WangZ. WangW. ZhanL. Resveratrol suppresses ovarian cancer cell growth and invasion through upregulation of microRNA-34a.Res Sq2020202010.21203/rs.3.rs‑38233/v1
    [Google Scholar]
  47. TaoF. TianX. LuM. ZhangZ. A novel lncRNA, Lnc-OC1, promotes ovarian cancer cell proliferation and migration by sponging miR-34a and miR-34c.J. Genet. Genomics201845313714510.1016/j.jgg.2018.03.001 29576507
    [Google Scholar]
  48. JiaY. LinR. JinH. RETRACTED: MicroRNA-34 suppresses proliferation of human ovarian cancer cells by triggering autophagy and apoptosis and inhibits cell invasion by targeting Notch 1.Biochimie201916019319910.1016/j.biochi.2019.03.011 30905732
    [Google Scholar]
  49. MaedaK. SasakiH. UedaS. Serum exosomal microRNA-34a as a potential biomarker in epithelial ovarian cancer.J. Ovarian Res.20201314710.1186/s13048‑020‑00648‑1 32336272
    [Google Scholar]
  50. XuD. SongQ. LiuY. LINC00665 promotes Ovarian Cancer progression through regulating the miRNA-34a-5p/E2F3 axis.J. Cancer20211261755176310.7150/jca.51457 33613764
    [Google Scholar]
  51. DongP. XiongY. WatariH. MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells.J. Exp. Clin. Cancer Res.201635113210.1186/s13046‑016‑0415‑y 27596137
    [Google Scholar]
  52. JiangX. YeZ. JiangY. YuW. FangQ. LncRNA OIP5-AS1 upregulates snail expression by sponging miR-34a to promote ovarian carcinoma cell invasion and migration.Biol. Res.20205314910.1186/s40659‑020‑00315‑1 33092644
    [Google Scholar]
  53. ZuoY. ZhengW. LiuJ. TangQ. WangS.S. YangX.S. MiR-34a-5p/PD-L1 axis regulates cisplatin chemoresistance of ovarian cancer cells.Neoplasma20206719310110.4149/neo_2019_190202N106 31777260
    [Google Scholar]
  54. LvT. SongK. ZhangL. miRNA-34a decreases ovarian cancer cell proliferation and chemoresistance by targeting HDAC1.Biochem. Cell Biol.201896566367110.1139/bcb‑2018‑0031 29561664
    [Google Scholar]
  55. YokomizoR. YanaiharaN. YamaguchiN. MicroRNA-34a/IL-6R pathway as a potential therapeutic target for ovarian high-grade serous carcinoma.Oncotarget201910474880489310.18632/oncotarget.27117 31448054
    [Google Scholar]
  56. RobelinP. TodM. ColombanO. Comparison of 11 circulating miRNAs and CA125 kinetics in ovarian cancer during first line treatment: Data from the randomized CHIVA trial (a GINECO-GCIG study).Ann. Oncol.201930v783v78410.1093/annonc/mdz268.072
    [Google Scholar]
  57. LiH-L. DuanY-A. ZhaoN. MiR-34a-5p directly targeting TRIM44 affects the biological behavior of ovarian cancer cells.Eur. Rev. Med. Pharmacol. Sci.202125312501260 33629295
    [Google Scholar]
  58. LiY. DuM. FangJ. ZhouJ. ChenZ. UTMD promoted local delivery of miR-34a-mimic for ovarian cancer therapy.Drug Deliv.20212811616162510.1080/10717544.2021.1955041 34319204
    [Google Scholar]
  59. Hashemi SheikhshabaniS. Amini-FarsaniZ. RahmatiS. JazaeriA. Mohammadi-SamaniM. AsgharzadeS. Oleuropein reduces cisplatin resistance in ovarian cancer by targeting apoptotic pathway regulators.Life Sci.202127811952510.1016/j.lfs.2021.119525 33894272
    [Google Scholar]
  60. KumarV. PandeyA. AroraA. Diagnostics and Therapeutic Potential of miR-205 and miR-34a in Ovarian Cancer Management: A miRNA-Target-Based Analysis.DNA Cell Biol.202342315116210.1089/dna.2022.0487 36779980
    [Google Scholar]
  61. DingN. WuH. TaoT. PengE. NEAT1 regulates cell proliferation and apoptosis of ovarian cancer by miR-34a-5p/BCL2.OncoTargets Ther.2017104905491510.2147/OTT.S142446 29062236
    [Google Scholar]
  62. KumarV. GuptaS. VarmaK. ChaurasiaA. SachanM. Diagnostic performance of microRNA-34a, let-7f and microRNA-31 in epithelial ovarian cancer prediction.J. Gynecol. Oncol.2022334e4910.3802/jgo.2022.33.e49 35557032
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240345216241120093846
Loading
/content/journals/cmm/10.2174/0115665240345216241120093846
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BCL2; biomarker; miR-34a; ovarian cancer; therapeutic potential; tumor suppressor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test