Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Medical nanorobots and nanobots are at the forefront of therapy and diagnostics, potentially improving human health by enabling previously inaccessible treatments. This review explores critical issues concerning the design, components, signaling, structure, and roles of nanorobots and nanobots while elucidating the distinctions between microrobots and nanorobots or microrobotics and nanorobotics as well. By complementing traditional medical procedures, nanorobotic technology offers a rapid, safe, and potentially beneficial pathway toward early clinical applications. It finds numerous applications in both current and future pharmacological and medical advancements. The current and future applications of various nanorobots, such as DNA origami nanorobots, nucleic acid robots, microbivore nanorobots, respirocyte nanorobots, and orthodontic nanorobots, are briefly discussed. In the future, nanobots will likely be prominently featured in hospitals and pharmacies for individuals or specialized groups with specific needs. Continuous innovation and improvement of these technologies, addressing these technical challenges, will broadly advance research in micro/nanorobotics for medical diagnosis and treatment.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240309670241030171130
2024-11-04
2025-12-09
Loading full text...

Full text loading...

References

  1. KongX. GaoP. WangJ. FangY. HwangK.C. Advances of medical nanorobots for future cancer treatments.J. Hematol. Oncol.20231617410.1186/s13045‑023‑01463‑z37452423
    [Google Scholar]
  2. RequichaA.A.G. Nanorobots, nems, and nanoassembly.Proc. IEEE20039111922193310.1109/JPROC.2003.818333
    [Google Scholar]
  3. FreitasR.A. Current status of nanomedicine and medical nanorobotics.J. Comput. Theor. Nanosci.200521125
    [Google Scholar]
  4. SharmaNN MittalRK Nanorobot movement: Challenges and biologically inspired solutions.Int J Smart Sens Intell Syst.200811, march8710910.21307/ijssis‑2017‑280
    [Google Scholar]
  5. SaadehY. VyasD. Nanorobotic applications in medicine: Current proposals and designs.Am. J. Robot. Surg.20141141110.1166/ajrs.2014.101026361635
    [Google Scholar]
  6. Nanotechnology introduction: A complete beginner's guide.Available from: https://www.nanowerk.com/nanotechnology/introduction/introduction_to_nanotechnology_1.php 1974
  7. AguilarZ.P. Nanomaterials for medical applications. Can use nanobots cure cancer? Accessed date: August 14, 2019.Bruno Jacobson.2013840945110.1016/B978‑0‑12‑385089‑8.00009
    [Google Scholar]
  8. SimóC. CasablancasS.M. HortelaoA.C. CarloD.V. GarridoG.S. GarcíaP.S. RabanalR.M. CabrerR.P. YagüeB. AguadoL. BardiaL. TosiS. VallejoG.V. MartínA. PatiñoT. JuliánE. ColombelliJ. LlopJ. SánchezS. Urease-powered nanobots for radionuclide bladder cancer therapy.Nat. Nanotechnol.202419455456410.1038/s41565‑023‑01577‑y38225356
    [Google Scholar]
  9. TripathiR. KumarA. Application of nanorobotics for cancer treatment.Mater. Today Proc.2018539114911710.1016/j.matpr.2017.10.029
    [Google Scholar]
  10. FletcherM. BiglarbegianM. NeethirajanS. Intelligent system design for bionanorobots in drug delivery.Cancer Nanotechnol.201344-511712510.1007/s12645‑013‑0044‑526069507
    [Google Scholar]
  11. WarkA.W. LeeH.J. QaviA.J. CornR.M. Nanoparticle-enhanced diffraction gratings for ultrasensitive surface plasmon biosensing.Anal. Chem.200779176697670110.1021/ac071062b17676761
    [Google Scholar]
  12. AgrahariV. AgrahariV. ChouM.L. ChewC.H. NollJ. BurnoufT. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges.Biomaterials202026012016310.1016/j.biomaterials.2020.12016332882512
    [Google Scholar]
  13. AliE.S. SharkerS.M. IslamM.T. KhanI.N. ShawS. RahmanM.A. UddinS.J. ShillM.C. RehmanS. DasN. AhmadS. ShilpiJ.A. TripathiS. MishraS.K. MubarakM.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives.Semin. Cancer Biol.202169526810.1016/j.semcancer.2020.01.01132014609
    [Google Scholar]
  14. CavalcantiA. FreitasR.A. KretlyL.C. Nanorobotics control design: A practical approach tutorial.ASME Design Engineering Technical Conferences 28th Biennial Mechanisms and Robotics ConferenceSalt Lake City, Utah, USASeptember 28 to October 2200411010.1115/DETC2004‑57031
    [Google Scholar]
  15. BajpaiA.K. ShuklaS.K. BhanuS. KankaneS. Responsive polymers in controlled drug delivery.Prog. Polym. Sci.200833111088111810.1016/j.progpolymsci.2008.07.005
    [Google Scholar]
  16. SachinS.S. NeelaM.B. SachinS.M. Nanorobots: Novel emerging technology in the development of pharmaceuticals for drug delivery applications.World J. Pharm. Pharm. Sci.20132647284744
    [Google Scholar]
  17. MishraJ DashAK KumarR Nanotechnology challengesNanomedicine: Nanorabots.201252102259
    [Google Scholar]
  18. SahaM. Nanomedicine: Promising tiny machine for the healthcare in future-A review.Oman Med. J.200924424224710.5001/omj.2009.5022216376
    [Google Scholar]
  19. RohitK. OmprakashB. SanatK. Applications of nanorobotics.Int J Sci Res Eng Tech20143811311136
    [Google Scholar]
  20. FreitasR.A.Jr Nanodentistry.J. Am. Dent. Assoc.2000131111559156510.14219/jada.archive.2000.008411103574
    [Google Scholar]
  21. ShettyN.J. SwatiP. DavidK. Nanorobots: Future in dentistry.Saudi Dent. J.2013252495210.1016/j.sdentj.2012.12.00223960556
    [Google Scholar]
  22. Electrical and computer engineering.Available from: https://ece.msu.edu/researchfeature/nanorobotics-systems 2024
  23. Nanobots will be flowing through your body by 2030.Available from: https://interestingengineering.com/nanobots-will-flowing-body-2030 2023
  24. Nanorobotics in conservative dentistry and endodontics.Available from: https://www.longdom.org/proceedings/nanorobotics-in-conservative-dentistry-and-endodontics-37138.html 2017
  25. DrexlerK.E. Engines of creation: The coming era of nanotechnology, anchor press.New YorkDoubleday Publishing1986298
    [Google Scholar]
  26. RedlichM. GorodnevA. FeldmanY. AshiriK.I. TenneR. FleischerN. GenutM. FeuersteinN. Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS 2 coating for improved stainless steel orthodontic wires.J. Mater. Res.200823112909291510.1557/JMR.2008.0350
    [Google Scholar]
  27. CaoB. WangY. LiN. LiuB. ZhangY. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance.Dent. Mater. J.201332231131610.4012/dmj.2012‑15523538768
    [Google Scholar]
  28. ThubagereAJ LiW JohnsonRF ChenZ DoroudiS LeeYL IzattG WittmanS SrinivasN WoodsD WinfreeE QianL A cargo-sorting DNA robot.Science20173576356eaan655810.1126/science.aan6558
    [Google Scholar]
  29. NamitaS KellenR. Modular reconfiguration of DNA origami assemblies using tile displacement.Sci Robot.20238eadf151110.1126/scirobotics.adf1511
    [Google Scholar]
  30. ZhouF. NiH. ZhuG. BershadskyL. ShaR. SeemanN.C. ChaikinP.M. Toward three-dimensional DNA industrial nanorobots.Sci. Robot.2023885eadf127410.1126/scirobotics.adf127438055806
    [Google Scholar]
  31. JavaranV.J. MoffettP. LemoyneP. XuD. PurushothamaA.C.R. FallM.L. Grapevine virology in the third-generation sequencing era: From virus detection to viral epitranscriptomics.Plants20211011235510.3390/plants1011235534834718
    [Google Scholar]
  32. FanC. LiQ. Advances in DNA nanotechnology.Small20191526190258610.1002/smll.20190258631355531
    [Google Scholar]
  33. LenaghanS.C. YongzhongW. NingX. FukudaT. TarnT. HamelW.R. ZhangM. Grand challenges in bioengineered nanorobotics for cancer therapy.IEEE Trans. Biomed. Eng.201360366767310.1109/TBME.2013.224459923380844
    [Google Scholar]
  34. VenkatesanM. JoladB. Nanorobots in cancer treatment.ChennaiINTERACT2010258264
    [Google Scholar]
  35. Nanotech robots deliver gene therapy through blood.Available from: https://www.reuters.com/article/us-cancer-rnai/nanotech-robots-deliver-gene-therapy-through-blood-idUSTRE62K1BK20100321 2010
  36. CavalcantiA. FreitasR.A.Jr Autonomous multi-robot sensor-based cooperation for nanomedicine.Int. J. Nonlinear Sci. Numer. Simul.200233-474374610.1515/IJNSNS.2002.3.3‑4.743
    [Google Scholar]
  37. MartelS. Beyond imaging: Macro- and microscale medical robots actuated by clinical MRI scanners.Sci. Robot.201723eaam811910.1126/scirobotics.aam811933157863
    [Google Scholar]
  38. RahmerJ. StehningC. GleichB. Spatially selective remote magnetic actuation of identical helical micromachines.Sci. Robot.201723eaal284510.1126/scirobotics.aal284533157862
    [Google Scholar]
  39. CasalA. HoggT. CavalcantiA. Nanorobots as cellular assistants in inflammatory responses.Proceedings of the 2003 Stanford biomedical computation symposium (BCATS2003) ShapiroJ. Stanford, CA200362Available from: http://bcats.stanford.edu
    [Google Scholar]
  40. MurphyD ChallacombeB NedasT ElhageO AlthoeferK SeneviratneL DasguptaP Equipment and technology in robotics.Arch Esp Urol.20076043495510.4321/S0004‑06142007000400004
    [Google Scholar]
  41. CavalcantiA. ShirinzadehB. KretlyL.C. Medical nanorobotics for diabetes control.Nanomedicine20084212713810.1016/j.nano.2008.03.00118455965
    [Google Scholar]
  42. SotoF. ChrostowskiR. Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses.Front. Bioeng. Biotechnol.2018617010.3389/fbioe.2018.0017030488033
    [Google Scholar]
  43. Welcome to our blog, your go-to source for the latest trends, insights, and innovations in the industry.Available from: https://nanobotmedical.com/atherosclerosis-plaque-extraction-scientific-animation/ 2024
  44. Magnetic nanobots could treat retinal disease.Available from: https://physicsworld.com/a/magnetic-nanobots-could-treat-retinal-disease/ 2018
  45. Top 5 reasons the novel eye-drilling nanobots could cure complex eye diseases.Available from: https://www.mirrorreview.com/top-5-reasons-the-novel-eye-drilling-nanobots-could-cure-complex-eye-diseases/ 2018
  46. Nanorobotics is a new emerging technology which can gear the world.Nanorobotics Can Revolutionize Med Ind Near Futurei.e., reversal of freezing injury by introduction of cryoprotectants and other chemicals into the vascular system rapidly, using nanorobots.2014
    [Google Scholar]
  47. An essay on nano-robotics-the future of medical sciences by Prakhar Dixit. July 7th.Available from: http://indiafuturesociety.org/an-essay-on-nanorobotics-the-future-of-medical-sciences/ 2013
  48. LepplaS.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells.Proc. Natl. Acad. Sci.198279103162316610.1073/pnas.79.10.31626285339
    [Google Scholar]
  49. CavalcantiA. ShirinzadehB. FreitasR.Jr KretlyL. Medical nanorobot architecture based on nanobioelectronics.Recent Pat. Nanotechnol.20071111010.2174/18722100777981474519076015
    [Google Scholar]
  50. AlbalawiF. HusseinM.Z. FakuraziS. MasarudinM.J. Engineered nanomaterials: The challenges and opportunities for nanomedicines.Int. J. Nanomedicine20211616118410.2147/IJN.S28823633447033
    [Google Scholar]
  51. FrcitasR.A. Exploratory design in medical nanotechnology: A mechanical artificial red cell.Artif. Cells Blood Substit. Immobil. Biotechnol.199826441143010.3109/107311998091176829663339
    [Google Scholar]
  52. TasciottiE. CabreraF.J. EvangelopoulosM. MartinezJ.O. ThekkedathU.R. KlocM. GhobrialR.M. LiX.C. GrattoniA. FerrariM. The emerging role of nanotechnology in cell and organ transplantation.Transplantation201610081629163810.1097/TP.000000000000110027257995
    [Google Scholar]
  53. FreitasR.A.Jr PhoenixC.J. Vasculoid: A personal nanomedical appliance to replace human blood.J. Evol. Technol.2002111
    [Google Scholar]
  54. Treating disease with nanobots.Available from: https://www.dummies.com/education/science/nanotechnology/nanorobots-being-developed-to-repair-cells/ 2016
  55. ReadiE.MZ AlthubitiMA Cancer nanomedicine: A new era of successful targeted therapy.J Nanomater.2019201911310.1155/2019/4927312
    [Google Scholar]
  56. SwainS. GhoseD. PatraC.N. JenaB.R. RaoM.E.B. Advancement and applications of platelet-inspired nanoparticles: A paradigm for cancer targeting.Curr. Pharm. Biotechnol.202324221323710.2174/138920102366622032911192035352648
    [Google Scholar]
  57. SlavkinH.C. Entering the era of molecular dentistry.J. Am. Dent. Assoc.1999130341341710.14219/jada.archive.1999.021210085665
    [Google Scholar]
  58. Different types of nanorobots and applications – advanced materials 2019.Available from: https://advancedmaterials2018.wordpress.com/2018/10/08/different-types-of-nanorobots-and-applications-advanced-materials-2019/ 2018
  59. These tiny robots could be disease-fighting machines inside the body.Available from: https://www.nbcnews.com/mach/science/these-tiny-robots-could-be-disease-fighting-machines-inside-body-ncna861451 2018
  60. MaW. ZhanY. ZhangY. ShaoX. XieX. MaoC. CuiW. LiQ. ShiJ. LiJ. FanC. LinY. An intelligent DNA nanorobot with in vitro enhanced protein lysosomal degradation of HER2.Nano Lett.20191974505451710.1021/acs.nanolett.9b0132031185573
    [Google Scholar]
  61. MirzaiebadiziA. RavanH. DabiriS. MohammadiP. ShahbaA. ZiasistaniM. KhatamiM. An intelligent DNA nanorobot for detection of MiRNAs cancer biomarkers using molecular programming to fabricate a logic-responsive hybrid nanostructure.Bioprocess Biosyst. Eng.202245111781179710.1007/s00449‑022‑02785‑x36125526
    [Google Scholar]
  62. We're unable to locate the page you are looking for.Available from: https://www.news-medical.net/health/NanoroboticDevices.aspx#:~:text=These%20remote%2Dcontrolled%2C%20high%2D,%2C%20and%20sperm%2Dlike%20nanorobots 2024
  63. Immunobiology, the immune system in health and disease. JanewayC. 5th edGarland ScienceNew York2001
    [Google Scholar]
  64. ThompsonR. MukhopadhyayT.P. Microbial nanoids: Electronic arts in the face of mexicos megadiversity crisis.Leonardo201851329429510.1162/leon_a_01537
    [Google Scholar]
  65. SandhiyaS. DkharS.A. SurendiranA. Emerging trends of nanomedicine-An overview.Fundam Clin Pharmacol.2009233263910.1111/j.1472‑8206.2009.00692.x
    [Google Scholar]
  66. FreitasR.A.Jr Microbivores: Artificial mechanical phagocytes using digest and discharge protocol.J. Evol. Technol.20051455106
    [Google Scholar]
  67. VijayalakshmiR. KumarS.R. Nanotechnology in dentistry.Indian J. Dent. Res.2006172626510.4103/0970‑9290.2989017051869
    [Google Scholar]
  68. SivasankarM. DurairajR.B. Brief review on nano robots in bio medical applications.Adv. Rob. Auto.20121110110.4172/2168‑9695.1000101
    [Google Scholar]
  69. PhilipkoskiK. Nanorockets for precision bombing human disease.Available from: https://gizmodo.com/nanorockets-for-precision-bombing-human-disease-5846174 2011
  70. SeegertC. Nano Rockets Could Magnetically Release Therapeutics.Available from: https://www.meddeviceonline.com/doc/nano-rockets-could-magnetically-release-therapeutics-0001 2014
  71. News analysis.Available from: https://www.drishtiias.com/daily-news-analysis/nano-robots 2021
  72. ManjunathA. KishoreV. The promising future in medicine: Nanorobots.Biomed. Sci. Eng.201422424710.12691/bse‑2‑2‑3
    [Google Scholar]
  73. BarbosaG. SilvaP.A.F. LuzG.V.S. BrasilL.M. Nanotechnology applied in drug delivery.World Congress on Medical Physics and Biomedical Engineering51st ed.Springer International Publishing SwitzerlandToronto. Canada201591114
    [Google Scholar]
  74. MeenaK. MonikaN. SheelaM. Nanorobots: A future medical device in diagnosis and treatment.Res. J. Pharm. Biol. Chem. Sci.20134212291307
    [Google Scholar]
  75. GleciaVirgolinoD.S. KleberV.G.B. VladimirF.C.D.A. Nanorobotics in drug delivery systems for treatment of cancer: A review.J. Mater. Sci. Eng. A.201665-616780
    [Google Scholar]
  76. PrajapatiP.M. SolankiA.S. SenD.J. Importance nanorobotics in health care.Int. Res. J. Pharm.201233122124
    [Google Scholar]
  77. MaryamM. Future of dentistry, nanodentistry, ozone therapy and tissue engineering.J. Dev. Biol. Tissue Eng.20135116
    [Google Scholar]
  78. LiM. XiN. WangY. LiuL. Progress in nanorobotics for advancing biomedicine.IEEE Trans. Biomed. Eng.202168113014710.1109/TBME.2020.299038032340931
    [Google Scholar]
  79. FreitasR.A.Jr Pharmacytes: An ideal vehicle for targeted drug delivery.J. Nanosci. Nanotechnol.2006692769277510.1166/jnn.2006.41317048481
    [Google Scholar]
  80. LiJ AvilaE.F.D.B GaoW ZhangL WangJ. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification.Sci Robot.201724eaam6431
    [Google Scholar]
  81. MartelS. HunterI. Nanofactories based on a fleet of scientific instruments configured as miniature autonomous robots.J Micromechatronics.200423-4201214
    [Google Scholar]
  82. MartelS. Fundamental principles and issues of high-speed piezo-actuated three-legged motion for miniature robots designed for nanometer-scale operations.Int. J. Robot. Res.200524757558810.1177/0278364905055594
    [Google Scholar]
  83. GoicoecheaJ. ZamarrenoC. MatiasI. ArreguiF. Minimizing the photobleaching of self-assembled multilayers for sensor applications.Sens. Actuators B Chem.20071261414710.1016/j.snb.2006.10.037
    [Google Scholar]
  84. CavalcantiA Nanorobot hardware architecture for medical defense.Sensors.2008852932295810.3390/s8052932
    [Google Scholar]
  85. HuangP.S. BoykenS.E. BakerD. The coming of age of de novo protein design.Nature2016537762032032710.1038/nature1994627629638
    [Google Scholar]
  86. StephanopoulosN. Hybrid nanostructures from the self-assembly of proteins and DNA.Chem20206236440510.1016/j.chempr.2020.01.012
    [Google Scholar]
  87. DanielsenM.B. MaoH. LouC. Peptide-DNA conjugates as building blocks for de novo design of hybrid nanostructures.Cell Rep. Phys. Sci.202341010162010.1016/j.xcrp.2023.101620
    [Google Scholar]
  88. Systems and methods for the detection and analysis of in vivo circulating cells, entities, and nanobots.US,2008,0241065,A12008
  89. Patent application publication Bachelet et al.US,2013,0224859,A12013
  90. Patent application publication Labhasetwar.US,2011,0130325,A12011
  91. International application published under the patent cooperation treaty (PCT).WO,2008,063473,A32008
  92. Patent application publication Solomon.US,2008,0241264,A12008
  93. Patent application publication Solomon.US,2010,0068798,A12010
  94. Patent application publication Fritsch et al.US,2007,0225776,A12007
  95. Patent application publication Solomon.US,2008,0269948,A12008
  96. Patent application publication Yoo et al.US,2018,0263494,A12018
  97. Patent application publication Toscano et al.US,2018,0036053,A12018
  98. Patent application publication Zhang et al.US,2018,0074083,A12018
  99. Patent application publication Yan et al.US,2019,0240248,A12019
  100. Patent application publication Wang et al.US,2019,0343758,A12019
  101. Programmable, self-assembling patched nanoparticles, and associated devices, systems and methods.WO,2017,0154442017
  102. Microfluidics system for single sperm isolation.WO,2019,211596,A12019
  103. PaxtonW.F. KistlerK.C. OlmedaC.C. SenA. AngeloS.S.K. CaoY. MalloukT.E. LammertP.E. CrespiV.H. Catalytic nanomotors: Autonomous movement of striped nanorods.J. Am. Chem. Soc.200412641134241343110.1021/ja047697z15479099
    [Google Scholar]
  104. ErkocP. YasaI.C. CeylanH. YasaO. AlapanY. SittiM. Mobile microrobots for active therapeutic delivery.Adv. Ther.201921180006410.1002/adtp.201800064
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240309670241030171130
Loading
/content/journals/cmm/10.2174/0115665240309670241030171130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test