Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Cancer stem cells (CSCs) are the key drivers of tumorigenesis and relapse. A growing body of evidence reveals the tremendous power of CSCs to directly resist innate and adaptive anti-tumor immune responses. The immunomodulatory property gives CSCs the ability to control the tumor immune microenvironment (TIME). CSCs hijack the anti-tumor capacity of immune cells to provide self-protection from immune attack and enhance the pro-tumor immune cell infiltration and activity. To date, cancer immunotherapy strategies have largely been designed without taking into account the immunosuppressive properties of CSCs. As a result, the clinical efficacy of cancer immunotherapy is altered, perpetuating tumor progression and relapse. Therefore, targeting the signals underlying CSC immune evasion is essential to improve immunotherapy efficacy and reduce tumor relapse. The aim of this mini-view is to comprehensively summarize the key immune escape mechanisms adopted by CSCs. This will provide necessary clues for the development of more effective cancer immunotherapy strategies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240345875241105053103
2025-01-07
2025-12-21
Loading full text...

Full text loading...

References

  1. YuZ. PestellT.G. LisantiM.P. PestellR.G. Cancer stem cells.Int. J. Biochem. Cell Biol.201244122144215110.1016/j.biocel.2012.08.022 22981632
    [Google Scholar]
  2. AyobA.Z. RamasamyT.S. Cancer stem cells as key drivers of tumour progression.J. Biomed. Sci.20182512010.1186/s12929‑018‑0426‑4 29506506
    [Google Scholar]
  3. CappJ.P. Cancer stem cells: From historical roots to a new perspective.J. Oncol.2019201911010.1155/2019/5189232 31308849
    [Google Scholar]
  4. BiserovaK. JakovlevsA. UljanovsR. StrumfaI. Cancer stem cells: Significance in origin, pathogenesis and treatment of glioblastoma.Cells202110362110.3390/cells10030621 33799798
    [Google Scholar]
  5. JonesR.J. ArmstrongS.A. Cancer stem cells in hematopoietic malignancies.Biol. Blood Marrow Transplant.2008141Suppl.121610.1016/j.bbmt.2007.10.012
    [Google Scholar]
  6. Ricci-VitianiL. FabriziE. PalioE. De MariaR. Colon cancer stem cells.J. Mol. Med.200987111097110410.1007/s00109‑009‑0518‑4 19727638
    [Google Scholar]
  7. TempletonA.K. MiyamotoS. BabuA. MunshiA. RameshR. Cancer stem cells: Progress and challenges in lung cancer.Stem Cell Investig.201414910.3978/j.issn.2306‑9759.2014.03.06 27358855
    [Google Scholar]
  8. PospiesznaJ. Dams-KozlowskaH. UdomsakW. MuriasM. KucinskaM. Unmasking the deceptive nature of cancer stem cells: The role of CD133 in revealing their secrets.Int. J. Mol. Sci.202324131091010.3390/ijms241310910 37446085
    [Google Scholar]
  9. WalcherL. KistenmacherA.K. SuoH. Cancer stem cells—origins and biomarkers: Perspectives for targeted personalized therapies.Front. Immunol.202011128010.3389/fimmu.2020.01280 32849491
    [Google Scholar]
  10. WuB. ShiX. JiangM. LiuH. Cross-talk between cancer stem cells and immune cells: Potential therapeutic targets in the tumor immune microenvironment.Mol. Cancer20232213810.1186/s12943‑023‑01748‑4 36810098
    [Google Scholar]
  11. LiD. WangL. JiangB. JingY. LiX. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment.Biomed. Pharmacother.202417011604310.1016/j.biopha.2023.116043 38128186
    [Google Scholar]
  12. WangY.Y. WangW.D. SunZ.J. Cancer stem cell‐immune cell collusion in immunotherapy.Int. J. Cancer2023153469470810.1002/ijc.34421 36602290
    [Google Scholar]
  13. DemuytereJ. ErnstS. van OvostJ. CosynsS. CeelenW. The tumor immune microenvironment in peritoneal carcinomatosis.Int. Rev. Cell Mol. Biol.2022371639510.1016/bs.ircmb.2022.04.015
    [Google Scholar]
  14. ThakkarS. SharmaD. KaliaK. TekadeR.K. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review.Acta Biomater.2020101436810.1016/j.actbio.2019.09.009 31518706
    [Google Scholar]
  15. ArnethB. Tumor Microenvironment.Medicina (Kaunas)20195611510.3390/medicina56010015 31906017
    [Google Scholar]
  16. Iglesias-EscuderoM. Arias-GonzálezN. Martínez-CáceresE. Regulatory cells and the effect of cancer immunotherapy.Mol. Cancer20232212610.1186/s12943‑023‑01714‑0 36739406
    [Google Scholar]
  17. ChababG. BarjonC. AbdellaouiN. Identification of a regulatory Vδ1 gamma delta T cell subpopulation expressing CD73 in human breast cancer.J. Leukoc. Biol.202010761057106710.1002/JLB.3MA0420‑278RR 32362028
    [Google Scholar]
  18. Zito MarinoF. AsciertoP.A. RossiG. Are tumor-infiltrating lymphocytes protagonists or background actors in patient selection for cancer immunotherapy?Expert Opin. Biol. Ther.201717673574610.1080/14712598.2017.1309387 28318336
    [Google Scholar]
  19. JinM.Z. JinW.L. The updated landscape of tumor microenvironment and drug repurposing.Signal Transduct. Target. Ther.20205116610.1038/s41392‑020‑00280‑x 32843638
    [Google Scholar]
  20. LiaoF. ZhangJ. HuY. Efficacy of an ALDH peptide-based dendritic cell vaccine targeting cancer stem cells.Cancer Immunol. Immunother.20227181959197310.1007/s00262‑021‑03129‑6 35098344
    [Google Scholar]
  21. SumransubN. JirapongwattanaN. JamjuntraP. Breast cancer stem cell RNA pulsed dendritic cells enhance tumor cell killing by effector T-cells.Oncol. Lett.20201932422243010.3892/ol.2020.11338 32194742
    [Google Scholar]
  22. BöttcherJ.P. BonavitaE. ChakravartyP. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control.Cell2018172510221037.e1410.1016/j.cell.2018.01.004 29429633
    [Google Scholar]
  23. FuC. JiangA. Dendritic cells and CD8 T cell immunity in tumor microenvironment.Front. Immunol.20189305910.3389/fimmu.2018.03059
    [Google Scholar]
  24. ZhongM. ZhongC. CuiW. Induction of tolerogenic dendritic cells by activated TGF-β/Akt/Smad2 signaling in RIG-I-deficient stemness-high human liver cancer cells.BMC Cancer201919143910.1186/s12885‑019‑5670‑9 31088527
    [Google Scholar]
  25. GrangeC. TapparoM. TrittaS. Role of HLA-G and extracellular vesicles in renal cancer stem cell-induced inhibition of dendritic cell differentiation.BMC Cancer2015151100910.1186/s12885‑015‑2025‑z 26704308
    [Google Scholar]
  26. HsuY.L. ChenY.J. ChangW.A. Interaction between Tumor-Associated Dendritic Cells and Colon Cancer Cells Contributes to Tumor Progression via CXCL1.Int. J. Mol. Sci.2018198242710.3390/ijms19082427 30115896
    [Google Scholar]
  27. AllavenaP. DigificoE. BelgiovineC. Macrophages and cancer stem cells: a malevolent alliance.Mol. Med.202127112110.1186/s10020‑021‑00383‑3 34583655
    [Google Scholar]
  28. CassettaL. FragkogianniS. SimsA.H. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets.Cancer Cell2019354588602.e1010.1016/j.ccell.2019.02.009 30930117
    [Google Scholar]
  29. GuoQ. JinZ. YuanY. Corrigendum to “New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy”.J. Immunol. Res.20182018110.1155/2018/6728474 30151395
    [Google Scholar]
  30. AraminiB. MascialeV. GrisendiG. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer.Oncotarget202112323025010.18632/oncotarget.27870 33613850
    [Google Scholar]
  31. ChanmeeT. OntongP. KonnoK. ItanoN. Tumor-associated macrophages as major players in the tumor microenvironment.Cancers (Basel)2014631670169010.3390/cancers6031670 25125485
    [Google Scholar]
  32. GeZ. DingS. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy.Front. Oncol.20201059094110.3389/fonc.2020.590941 33224886
    [Google Scholar]
  33. GomezK.E. WuF. KeysarS.B. Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells.Cancer Res.202080194185419810.1158/0008‑5472.CAN‑20‑1079 32816856
    [Google Scholar]
  34. RadharaniN.N.V. YadavA.S. NimmaR. Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway.Cancer Cell Int.202222112210.1186/s12935‑022‑02527‑9 35300689
    [Google Scholar]
  35. HuangR. WangS. WangN. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating β-catenin/STAT3 signaling.Cell Death Dis.202011423410.1038/s41419‑020‑2435‑y 32300100
    [Google Scholar]
  36. FanQ.M. JingY.Y. YuG.F. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma.Cancer Lett.2014352216016810.1016/j.canlet.2014.05.008 24892648
    [Google Scholar]
  37. ShangS. YangC. ChenF. ID1 expressing macrophages support cancer cell stemness and limit CD8+ T cell infiltration in colorectal cancer.Nat. Commun.2023141766110.1038/s41467‑023‑43548‑w 37996458
    [Google Scholar]
  38. PutraA. Relationship between CD 163 tumor-associated macrophages and colorectal-cancer stem cell markers.Open Access Maced. J. Med. Sci.202191381138610.3889/oamjms.2021.7188
    [Google Scholar]
  39. RaghavanS. MehtaP. XieY. LeiY.L. MehtaG. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments.J. Immunother. Cancer20197119010.1186/s40425‑019‑0666‑1 31324218
    [Google Scholar]
  40. ClaraJ.A. MongeC. YangY. TakebeN. Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update.Nat. Rev. Clin. Oncol.202017420423210.1038/s41571‑019‑0293‑2 31792354
    [Google Scholar]
  41. KobatakeK. IkedaK. NakataY. Kdm6a Deficiency Activates Inflammatory Pathways, Promotes M2 Macrophage Polarization, and Causes Bladder Cancer in Cooperation with p53 Dysfunction.Clin. Cancer Res.20202682065207910.1158/1078‑0432.CCR‑19‑2230 32047002
    [Google Scholar]
  42. WangL. ZhangL. ZhaoL. VEGFA/NRP-1/GAPVD1 axis promotes progression and cancer stemness of triple-negative breast cancer by enhancing tumor cell-macrophage crosstalk.Int. J. Biol. Sci.202420244646310.7150/ijbs.86085 38169627
    [Google Scholar]
  43. GabrusiewiczK. LiX. WeiJ. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes.OncoImmunology201874e141290910.1080/2162402X.2017.1412909 29632728
    [Google Scholar]
  44. MajetiR. ChaoM.P. AlizadehA.A. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells.Cell2009138228629910.1016/j.cell.2009.05.045 19632179
    [Google Scholar]
  45. FridlenderZ.G. SunJ. KimS. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN.Cancer Cell200916318319410.1016/j.ccr.2009.06.017 19732719
    [Google Scholar]
  46. HwangW.L. LanH.Y. ChengW.C. HuangS.C. YangM.H. Tumor stem-like cell-derived exosomal RNAs prime neutrophils for facilitating tumorigenesis of colon cancer.J. Hematol. Oncol.20191211010.1186/s13045‑019‑0699‑4 30683126
    [Google Scholar]
  47. AnselmiM. FontanaF. MarzagalliM. GaglianoN. SommarivaM. LimontaP. Melanoma Stem Cells Educate Neutrophils to Support Cancer Progression.Cancers (Basel)20221414339110.3390/cancers14143391 35884452
    [Google Scholar]
  48. ZhouS.L. YinD. HuZ.Q. A Positive Feedback Loop Between Cancer Stem‐Like Cells and Tumor‐Associated Neutrophils Controls Hepatocellular Carcinoma Progression.Hepatology20197041214123010.1002/hep.30630 30933361
    [Google Scholar]
  49. AkhterM.Z. SharawatS.K. KumarV. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype.Oncogene201837162089210310.1038/s41388‑017‑0106‑y 29379166
    [Google Scholar]
  50. LaughneyA.M. HuJ. CampbellN.R. Regenerative lineages and immune-mediated pruning in lung cancer metastasis.Nat. Med.202026225926910.1038/s41591‑019‑0750‑6 32042191
    [Google Scholar]
  51. ZhongY. GuanK. GuoS. Spheres derived from the human SK-RC-42 renal cell carcinoma cell line are enriched in cancer stem cells.Cancer Lett.2010299215016010.1016/j.canlet.2010.08.013 20846785
    [Google Scholar]
  52. KimuraY. TsunedomiR. YoshimuraK. Immune Evasion of Hepatoma Cancer Stem-Like Cells from Natural Killer Cells.Ann. Surg. Oncol.202229127423743310.1245/s10434‑022‑12220‑w 35876924
    [Google Scholar]
  53. Özgül ÖzdemirR.B. ÖzdemirA.T. OltuluF. KurtK. YiğittürkG. KırmazC. A comparison of cancer stem cell markers and nonclassical major histocompatibility complex antigens in colorectal tumor and noncancerous tissues.Ann. Diagn. Pathol.201625606310.1016/j.anndiagpath.2016.09.012 27806848
    [Google Scholar]
  54. MalladiS. MacalinaoD.G. JinX. Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT.Cell20161651456010.1016/j.cell.2016.02.025 27015306
    [Google Scholar]
  55. SongM. PingY. ZhangK. Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non–Small Cell Lung Cancer.Cancer Res.201979143737374810.1158/0008‑5472.CAN‑19‑0596 31085700
    [Google Scholar]
  56. JinH. KimH.J. NK Cells Lose Their Cytotoxicity Function against Cancer Stem Cell-Rich Radiotherapy-Resistant Breast Cancer Cell Populations.Int. J. Mol. Sci.20212217963910.3390/ijms22179639 34502547
    [Google Scholar]
  57. MalaerJ.D. MathewP.A. Pancreatic and colon cancer stem cells escape NK cell effector function via PCNA–NKp44 interaction.J. Immunol.2020204S1881610.4049/jimmunol.204.Supp.88.16
    [Google Scholar]
  58. WelteT. KimI.S. TianL. Erratum: Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation.Nat. Cell Biol.201618782210.1038/ncb3379 27350446
    [Google Scholar]
  59. WuY. YiM. NiuM. MeiQ. WuK. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy.Mol. Cancer202221118410.1186/s12943‑022‑01657‑y 36163047
    [Google Scholar]
  60. GabrilovichD.I. Myeloid-Derived Suppressor Cells.Cancer Immunol. Res.2017513810.1158/2326‑6066.CIR‑16‑0297 28052991
    [Google Scholar]
  61. ZhangR. DongM. TuJ. PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway.Signal Transduct. Target. Ther.2023819710.1038/s41392‑023‑01337‑3 36859354
    [Google Scholar]
  62. AiL. MuS. SunC. Myeloid-derived suppressor cells endow stem-like qualities to multiple myeloma cells by inducing piRNA-823 expression and DNMT3B activation.Mol. Cancer20191818810.1186/s12943‑019‑1011‑5 30979371
    [Google Scholar]
  63. PengD. TanikawaT. LiW. Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling.Cancer Res.201676113156316510.1158/0008‑5472.CAN‑15‑2528 27197152
    [Google Scholar]
  64. KomuraN. MabuchiS. ShimuraK. The role of myeloid-derived suppressor cells in increasing cancer stem-like cells and promoting PD-L1 expression in epithelial ovarian cancer.Cancer Immunol. Immunother.202069122477249910.1007/s00262‑020‑02628‑2 32561967
    [Google Scholar]
  65. GaoL. YuS. ZhangX. Hypothesis: Tim-3/galectin-9, a new pathway for leukemia stem cells survival by promoting expansion of myeloid-derived suppressor cells and differentiating into tumor-associated macrophages.Cell Biochem. Biophys.201470127327710.1007/s12013‑014‑9900‑0 24639110
    [Google Scholar]
  66. ShidalC. SinghN.P. NagarkattiP. NagarkattiM. MicroRNA-92 Expression in CD133+ Melanoma Stem Cells Regulates Immunosuppression in the Tumor Microenvironment via Integrin-Dependent Activation of TGFβ.Cancer Res.201979143622363510.1158/0008‑5472.CAN‑18‑2659 31015227
    [Google Scholar]
  67. InamotoS. ItataniY. YamamotoT. Loss of SMAD4 Promotes Colorectal Cancer Progression by Accumulation of Myeloid-Derived Suppressor Cells through the CCL15–CCR1 Chemokine Axis.Clin. Cancer Res.201622249250110.1158/1078‑0432.CCR‑15‑0726 26341919
    [Google Scholar]
  68. LauE.Y.T. HoN.P.Y. LeeT.K.W. Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications.Stem Cells Int.2017201711110.1155/2017/3714190 28337221
    [Google Scholar]
  69. WangY. YinK. TianJ. Granulocytic Myeloid‐Derived Suppressor Cells Promote the Stemness of Colorectal Cancer Cells through Exosomal S100A9.Adv. Sci. (Weinh.)2019618190127810.1002/advs.201901278 31559140
    [Google Scholar]
  70. NajafiM. FarhoodB. MortezaeeK. Contribution of regulatory T cells to cancer: A review.J. Cell. Physiol.201923467983799310.1002/jcp.27553 30317612
    [Google Scholar]
  71. LiuS. ZhangC. WangB. Regulatory T cells promote glioma cell stemness through TGF-β–NF-κB–IL6–STAT3 signaling.Cancer Immunol. Immunother.20217092601261610.1007/s00262‑021‑02872‑0 33576874
    [Google Scholar]
  72. SilverD.J. SinyukM. VogelbaumM.A. AhluwaliaM.S. LathiaJ.D. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.Neuro-oncol.201618215315910.1093/neuonc/nov157 26264894
    [Google Scholar]
  73. DuttaA. SenguptaD. PaulS. ChakrabortyS. MukherjeeS. DasT. A new insight into tumour immune-evasion: Crosstalk between cancer stem cells and T regulatory cells.Ann. Oncol.201930ix11310.1093/annonc/mdz438.020
    [Google Scholar]
  74. MukherjeeS. ChakrabortyS. BasakU. Breast cancer stem cells generate immune-suppressive T regulatory cells by secreting TGFβ to evade immune-elimination.Discov. Oncol.202314122010.1007/s12672‑023‑00787‑z 38038865
    [Google Scholar]
  75. SchattonT. SchütteU. FrankN.Y. Modulation of T-cell activation by malignant melanoma initiating cells.Cancer Res.201070269770810.1158/0008‑5472.CAN‑09‑1592 20068175
    [Google Scholar]
  76. LeeY. ShinJ.H. LongmireM. CD44+ Cells in Head and Neck Squamous Cell Carcinoma Suppress T-Cell–Mediated Immunity by Selective Constitutive and Inducible Expression of PD-L1.Clin. Cancer Res.201622143571358110.1158/1078‑0432.CCR‑15‑2665 26864211
    [Google Scholar]
  77. CaputoS. GrioniM. BrambillascaC.S. Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis.Front. Immunol.202011182010.3389/fimmu.2020.01820 33013832
    [Google Scholar]
  78. YuanY. WangL. GeD. Exosomal O-GlcNAc transferase from esophageal carcinoma stem cell promotes cancer immunosuppression through up-regulation of PD-1 in CD8+ T cells.Cancer Lett.20215009810610.1016/j.canlet.2020.12.012 33307156
    [Google Scholar]
  79. ChengW.C. LiaoT.T. LinC.C. RAB27B‐activated secretion of stem‐like tumor exosomes delivers the bio-marker microRNA‐146a‐5p, which promotes tumorigenesis and associates with an immunosuppressive tumor microenvironment in colorectal cancer.Int. J. Cancer201914582209222410.1002/ijc.32338 30980673
    [Google Scholar]
  80. JiS. YuH. ZhouD. Cancer stem cell-derived CHI3L1 activates the MAF/CTLA4 signaling pathway to promote immune escape in triple-negative breast cancer.J. Transl. Med.202321172110.1186/s12967‑023‑04532‑6 37838657
    [Google Scholar]
  81. QinZ. ZhangW. LiuS. WangY. PengX. JiaL. PVT1 inhibition stimulates anti-tumor immunity, prevents metastasis, and depletes cancer stem cells in squamous cell carcinoma.Cell Death Dis.202314318710.1038/s41419‑023‑05710‑6 36894542
    [Google Scholar]
  82. MensuradoS. Blanco-DomínguezR. Silva-SantosB. The emerging roles of γδ T cells in cancer immunotherapy.Nat. Rev. Clin. Oncol.202320317819110.1038/s41571‑022‑00722‑1 36624304
    [Google Scholar]
  83. Lo PrestiE. PizzolatoG. CorsaleA.M. γδ T Cells and Tumor Microenvironment: From Immunosurveillance to Tumor Evasion.Front. Immunol.20189139510.3389/fimmu.2018.01395 29963061
    [Google Scholar]
  84. RauteK. StrietzJ. ParigianiM.A. Breast Cancer Stem Cell–Derived Tumors Escape from γδ T-cell Immuno-surveillance In Vivo by Modulating γδ T-cell Ligands.Cancer Immunol. Res.202311681082910.1158/2326‑6066.CIR‑22‑0296 37139603
    [Google Scholar]
  85. YuanL. MaX. YangY. Phosphoantigens glue butyrophilin 3A1 and 2A1 to activate Vγ9Vδ2 T cells.Nature2023621798084084810.1038/s41586‑023‑06525‑3 37674084
    [Google Scholar]
  86. DuttaI. Dieters-CastatorD. PapatzimasJ.W. ADAM protease inhibition overcomes resistance of breast cancer stem-like cells to γδ T cell immunotherapy.Cancer Lett.202149615616810.1016/j.canlet.2020.10.013 33045304
    [Google Scholar]
  87. SanoY. KuwabaraN. NakagawaS. Hypoxia-adapted Multiple Myeloma Stem Cells Resist γδ-T-Cell-mediated Killing by Modulating the Mevalonate Pathway.Anticancer Res.202343254755510.21873/anticanres.16191 36697063
    [Google Scholar]
  88. ChababG. BarjonC. BonnefoyN. LafontV. Pro-tumor γδ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy.Front. Immunol.202011218610.3389/fimmu.2020.02186 33042132
    [Google Scholar]
  89. RenY YueY LiX Proteogenomics offers a novel avenue in neoantigen identification for cancer immune-therapy.Int Immunopharmacol2024142Pt A11314710.1016/j.intimp.2024.11314739270345
    [Google Scholar]
  90. Al ZeinM. BoukhdoudM. ShammaaH. Immunotherapy and immunoevasion of colorectal cancer.Drug Discov. Today202328910366910.1016/j.drudis.2023.103669 37328052
    [Google Scholar]
  91. ArshiA. MahmoudiE. RaeisiF. Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review.Front. Immunol.202415144693710.3389/fimmu.2024.1446937 39257589
    [Google Scholar]
  92. BeattyG.L. GladneyW.L. Immune escape mechanisms as a guide for cancer immunotherapy.Clin. Cancer Res.201521468769210.1158/1078‑0432.CCR‑14‑1860 25501578
    [Google Scholar]
  93. VahidianF. DuijfP.H.G. SafarzadehE. DerakhshaniA. BaghbanzadehA. BaradaranB. Interactions between cancer stem cells, immune system and some environmental components: Friends or foes?Immunol. Lett.2019208192910.1016/j.imlet.2019.03.004 30862442
    [Google Scholar]
  94. BayikD. LathiaJ.D. Cancer stem cell–immune cell crosstalk in tumour progression.Nat. Rev. Cancer202121852653610.1038/s41568‑021‑00366‑w 34103704
    [Google Scholar]
  95. ShirosakiT. KawaiN. EbiharaY. Aldehyde Dehydrogenese-1 High Cancer Stem-like Cells/Cancer-initiating Cells Escape from Cytotoxic T Lymphocytes due to Lower Expression of Human Leukocyte Antigen Class 1.Anticancer Res.20244451877188310.21873/anticanres.16989 38677758
    [Google Scholar]
  96. VeschiV. TurdoA. StassiG. Novel insights into cancer stem cells targeting: CAR-T therapy and epigenetic drugs as new pillars in cancer treatment.Front. Mol. Med.20233112009010.3389/fmmed.2023.1120090 39086678
    [Google Scholar]
  97. AmmiranteM. KuraishyA.I. ShalapourS. An IKKα–E2F1–BMI1 cascade activated by infiltrating B cells controls prostate regeneration and tumor recurrence.Genes Dev.201327131435144010.1101/gad.220202.113 23796898
    [Google Scholar]
  98. ChenC. YuanP. ZhangZ. Nanomedicine-based cancer immunotherapy: a bibliometric analysis of research progress and prospects.Front. Immunol.202415144653210.3389/fimmu.2024.1446532 39247199
    [Google Scholar]
  99. ZhuS. NiuM. O’MaryH. CuiZ. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles.Mol. Pharm.20131093525353010.1021/mp400216r 23901887
    [Google Scholar]
  100. ZhangY. ChenX. HuB. ZouB. XuY. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy.Nanomedicine (Lond.)20241921-2212010.1080/17435889.2024.2374230 39011582
    [Google Scholar]
  101. LuQ. KouD. LouS. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy.J. Hematol. Oncol.20241711610.1186/s13045‑024‑01535‑8 38566199
    [Google Scholar]
  102. YangM. QinC. TaoL. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment.Biomaterials202330112225310.1016/j.biomaterials.2023.122253 37536040
    [Google Scholar]
  103. Del PreteA. SalviV. SorianiA. Dendritic cell subsets in cancer immunity and tumor antigen sensing.Cell. Mol. Immunol.202320543244710.1038/s41423‑023‑00990‑6 36949244
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240345875241105053103
Loading
/content/journals/cmm/10.2174/0115665240345875241105053103
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-tumorigenic; CSCs; immune-escape; pro-tumorigenic; signals; TIME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test