Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

This study focuses on exploring the impact of Astragaloside IV [AS-IV] on osteogenic differentiation.

Methods

Osteogenic differentiation was induced in rat osteoblasts, following which treatment with AS-IV at varied doses was performed. Using Alizarin red staining and alkaline phosphatase (ALP) detection assay, the osteogenic differentiation of the cells was investigated. The expressions of osteogenic differentiation-related genes were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway-associated protein expressions were examined using Western blot. After osteoblasts were transfected with protein tyrosine phosphatase non-receptor type 2 (PTPN2) overexpression plasmid, the impact of PTPN2 on osteoblasts treated with AS-IV was examined.

Results

AS-IV treatment enhanced osteogenic differentiation and up-regulated the expression of osteogenic differentiation-related genes, as well as the levels of p-PI3K/PI3K and p-AKT/AKT, while reducing phosphatase and tensin homolog (PTEN) protein production in osteoblasts. Overexpression of PTEN inhibited osteogenic differentiation, and PTPN2 overexpression counteracted the effects of AS-IV on osteogenic differentiation.

Conclusion

AS-IV contributing to osteogenic differentiation may be related to the PTPN2-mediated PTEN/PI3K/Akt pathway.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240333454241203050356
2025-02-12
2025-12-16
Loading full text...

Full text loading...

References

  1. CiosekŻ. KotK. Kosik-BogackaD. Łanocha-ArendarczykN. RotterI. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue.Biomolecules202111450610.3390/biom11040506 33800689
    [Google Scholar]
  2. Delgado-CalleJ. BellidoT. The osteocyte as a signaling cell.Physiol. Rev.2022102137941010.1152/physrev.00043.2020 34337974
    [Google Scholar]
  3. RoblingA.G. BonewaldL.F. The osteocyte: New insights.Annu. Rev. Physiol.202082148550610.1146/annurev‑physiol‑021119‑034332 32040934
    [Google Scholar]
  4. PonzettiM. RucciN. Osteoblast differentiation and signaling: Established concepts and emerging topics.Int. J. Mol. Sci.20212213665110.3390/ijms22136651 34206294
    [Google Scholar]
  5. NingK. LiuS. YangB. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation.Mol. Metab.20225810145010.1016/j.molmet.2022.101450 35121170
    [Google Scholar]
  6. SrivastavaR.K. SapraL. MishraP.K. Osteometabolism: Metabolic alterations in bone pathologies.Cells20221123394310.3390/cells11233943 36497201
    [Google Scholar]
  7. LuQ. XuJ. JiangH. WeiQ. HuangR. HuangG. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment.Front. Pharmacol.202213100086510.3389/fphar.2022.1000865 36386147
    [Google Scholar]
  8. ZhangJ. WuC. GaoL. DuG. QinX. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects.Adv. Pharmacol.2020878911210.1016/bs.apha.2019.08.002 32089240
    [Google Scholar]
  9. WangF. QianH. KongL. Accelerated bone regeneration by astragaloside IV through stimulating the coupling of osteogenesis and angiogenesis.Int. J. Biol. Sci.20211771821183610.7150/ijbs.57681 33994865
    [Google Scholar]
  10. JinC. JiaL. TangZ. ZhengY. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/AKT pathway.Cell Death Dis.202011760110.1038/s41419‑020‑02813‑2 32732881
    [Google Scholar]
  11. ChengS. ZhangX. FengQ. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway.Life Sci.2019227829310.1016/j.lfs.2019.04.040 31004658
    [Google Scholar]
  12. WiedeF. ChewS.H. van VlietC. Strain-dependent differences in bone development, myeloid hyperplasia, morbidity and mortality in ptpn2-deficient mice.PLoS One201275e3670310.1371/journal.pone.0036703 22590589
    [Google Scholar]
  13. KarlssonE. VeenstraC. EminS. Loss of protein tyrosine phosphatase, non-receptor type 2 is associated with activation of AKT and tamoxifen resistance in breast cancer.Breast Cancer Res. Treat.20151531314010.1007/s10549‑015‑3516‑y 26208487
    [Google Scholar]
  14. KhotibJ. MarhaenyH.D. MiatmokoA. Differentiation of osteoblasts: the links between essential transcription factors.J. Biomol. Struct. Dyn.20234119102571027610.1080/07391102.2022.2148749 36420663
    [Google Scholar]
  15. KomoriT. Runx2, an inducer of osteoblast and chondrocyte differentiation.Histochem. Cell Biol.2018149431332310.1007/s00418‑018‑1640‑6 29356961
    [Google Scholar]
  16. MaJ. WangZ. ZhaoJ. MiaoW. YeT. ChenA. Resveratrol attenuates lipopolysaccharides (LPS)-induced inhibition of osteoblast differentiation in MC3T3-E1 cells.Med. Sci. Monit.2018242045205210.12659/MSM.905703 29624568
    [Google Scholar]
  17. WuC.T. LuT.Y. ChanD.C. TsaiK.S. YangR.S. LiuS.H. Effects of arsenic on osteoblast differentiation in vitro and on bone mineral density and microstructure in rats.Environ. Health Perspect.2014122655956510.1289/ehp.1307832 24531206
    [Google Scholar]
  18. CaoY. LvQ. LiY. AstragalosideI.V. Astragaloside IV improves tibial defect in rats and promotes proliferation and osteogenic differentiation of hBMSCs through MiR-124-3p.1/STAT3 Axis.J. Nat. Prod.202184228729710.1021/acs.jnatprod.0c00975 33464097
    [Google Scholar]
  19. CaoY. LvQ. HuangZ. Astragaloside-IV induces the differentiation of bone marrow mesenchymal stem cells into osteoblasts through NMUR2-mediated Wnt/β-catenin pathway.Regen. Med.2023186471485
    [Google Scholar]
  20. ChenJ. LiuZ. ZhangH. YBX1 promotes MSC osteogenic differentiation by activating the PI3K/AKT pathway.Curr. Stem Cell Res. Ther.202318451352110.2174/1574888X17666220805143833 35929633
    [Google Scholar]
  21. HashemiM. EtemadS. RezaeiS. ZiaolhaghS. RajabiR. RahmanianP. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions.Biomed. Pharmacother.2023158114204
    [Google Scholar]
  22. GaoS. ChenB. ZhuZ. PI3K-Akt signaling regulates BMP2-induced osteogenic differentiation of mesenchymal stem cells (MSCs): A transcriptomic landscape analysis.Stem Cell Res. (Amst.)20236610301010.1016/j.scr.2022.103010 36580886
    [Google Scholar]
  23. SasakoT. UmeharaT. SoedaK. Deletion of skeletal muscle Akt1/2 causes osteosarcopenia and reduces lifespan in mice.Nat. Commun.2022131565510.1038/s41467‑022‑33008‑2 36198696
    [Google Scholar]
  24. YinR. JiangJ. DengH. WangZ. GuR. WangF. miR-140-3p aggregates osteoporosis by targeting PTEN and activating PTEN/PI3K/AKT signaling pathway.Hum. Cell202033356958110.1007/s13577‑020‑00352‑8 32253621
    [Google Scholar]
  25. YeL. LouF. YuF. NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts.Bone Res.2018613210.1038/s41413‑018‑0030‑y 30455992
    [Google Scholar]
  26. WeiR. LiuH. ChenR. ShengY. LiuT. Astragaloside IV combating liver cirrhosis through the PI3K/Akt/mTOR signaling pathway.Exp. Ther. Med.2019171393397 30651810
    [Google Scholar]
  27. SongJ. LanJ. TangJ. LuoN. PTPN2 in the Immunity and Tumor Immunotherapy: A Concise Review.Int. J. Mol. Sci.202223171002510.3390/ijms231710025 36077422
    [Google Scholar]
  28. WeiB. CaoJ. TianJ-H. Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3β/β-catenin signaling pathway.Am. J. Cancer Res.202111626962716 34249423
    [Google Scholar]
  29. ZeeT. SettembreC. LevineR.L. KarsentyG. T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts.Mol. Cell. Biol.20123261080108810.1128/MCB.06279‑11 22252315
    [Google Scholar]
  30. OmerovicJ. ClagueM.J. PriorI.A. Phosphatome profiling reveals PTPN2, PTPRJ and PTEN as potent negative regulators of PKB/Akt activation in Ras-mutated cancer cells.Biochem. J.20104261657210.1042/BJ20091413 19922411
    [Google Scholar]
  31. Nguyen HuuT. ParkJ. ZhangY. Duong ThanhH. ParkI. ChoiJ.M. The role of oxidative inactivation of phosphatase PTEN and TCPTP in fatty liver disease.Antioxidants202312112010.3390/antiox12010120
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240333454241203050356
Loading
/content/journals/cmm/10.2174/0115665240333454241203050356
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test