Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Introduction

Currently, Medullary Thyroid Carcinoma (MTC) is considered a kind of rare neuroendocrine tumor, and molecular-targeted drugs have previously been used for MTC treatment. However, the prognosis of MTC patients is still unsatisfactory. In the present work, we aimed to explore the antitumor activity of the molecularly targeted drug anlotinib in combination with radiofrequency ablation on MTC.

Methods

44 MTC clinical specimens were involved. The targets of anlotinib in malignant cells were examined by qPCR. We cultured MTC cells line TT and treated with a series of concentration of TKIs. Then measure the inhibitory rates of TT cell survival. We established a subcutaneous tumorigenic model in nude mice to examine the antitumor effects of anlotinib combined with different RFA conditions.

Results

The targets of anlotinib were clearly expressed in MTC tissue specimens, and the expression level of these factors was much higher in MTC clinical specimens than in nontumor tissues. At the same time, anlotinib or Radiofrequency Ablation (RFA) showed clear antitumor activity against the MTC cell line TT (TT cells) and the tumor tissue it formed.

Conclusion

These results indicated that the combination of anlotinib with RFA could be a promising therapeutic strategy for MTC treatment.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240323681241023100958
2024-10-28
2025-12-21
Loading full text...

Full text loading...

References

  1. TrimboliP. MianC. PiccardoA. TregliaG. Diagnostic tests for medullary thyroid carcinoma: An umbrella review.Endocrine202381218319310.1007/s12020‑023‑03326‑6 36877452
    [Google Scholar]
  2. DaviesL. AngelosP. Medullary thyroid carcinoma and population screening—the promise and pitfalls of genetic testing.JAMA Otolaryngol. Head Neck Surg.2023149320220310.1001/jamaoto.2022.4196 36602793
    [Google Scholar]
  3. PapanikolaouV. KyrodimosE. MastronikolisN. Anti-EGFR/BRAF-tyrosine kinase inhibitors in thyroid carcinoma.Cancer Diagn. Progn.20233215115610.21873/cdp.10194 36875315
    [Google Scholar]
  4. PreteA. GambaleC. TorregrossaL. Clinical evolution of sporadic medullary thyroid carcinoma with biochemical incomplete response after initial treatment.J. Clin. Endocrinol. Metab.20231088e613e62210.1210/clinem/dgad061 36722192
    [Google Scholar]
  5. NewboldK. Molecular genotyping in medullary thyroid cancer.Curr. Opin. Oncol.2023351101410.1097/CCO.0000000000000915 36475457
    [Google Scholar]
  6. SaltikiK. SimeakisG. KarapanouO. PaschouS.A. AlevizakiM. Metastatic medullary thyroid carcinoma (MTC): Disease course, treatment modalities and factors predisposing for drug resistance.Endocrine202380357057910.1007/s12020‑022‑03296‑1 36626081
    [Google Scholar]
  7. OleinikovK. YaakovE. MizrachiA. A comparison of outcomes in medullary thyroid carcinoma patients with and without a preoperative diagnosis: A multicenter retrospective cohort study.Thyroid202333557858510.1089/thy.2022.0424 36792935
    [Google Scholar]
  8. MuhammadH. SanthanamP. RussellJ.O. Radiofrequency ablation and thyroid nodules: Updated systematic review.Endocrine202172361963210.1007/s12020‑020‑02598‑6 33449296
    [Google Scholar]
  9. YeowM. ZhaoJ.J. FongK.Y. Radiofrequency ablation versus repeat hepatectomy for recurrent hepatocellular carcinoma: A systematic review and meta-analysis.World J. Surg.202246112778278710.1007/s00268‑022‑06691‑x 35989371
    [Google Scholar]
  10. SunJ. ChangZ. GaoX. Novel nanoparticle CS-C60-Fe3O4 magnetically induces tissue-specific aggregation and enhances thermal ablation of hepatocellular carcinoma.Cancer Nanotechnol.2024151810.1186/s12645‑024‑00245‑7
    [Google Scholar]
  11. Pace-AsciakP. RussellJ.O. TufanoR.P. Surgical treatment of thyroid cancer: Established and novel approaches.Best Pract. Res. Clin. Endocrinol. Metab.202337110166410.1016/j.beem.2022.101664 35534363
    [Google Scholar]
  12. XiaoJ. YanL. LiY. Radiofrequency ablation for papillary thyroid cancer located in isthmus: Comparison with that originated in thyroid lobe.Int. J. Hyperthermia2023401226666810.1080/02656736.2023.2266668 37940133
    [Google Scholar]
  13. KandilE. IssaP.P. RandolphG.W. Can thyroid nodules be managed with radiofrequency ablation?Adv. Surg.20235718710110.1016/j.yasu.2023.05.004 37536864
    [Google Scholar]
  14. ZhouJ. SunY. ZhangW. Phase Ib study of anlotinib combined with TQB2450 in pretreated advanced biliary tract cancer and biomarker analysis.Hepatology2022771657610.1002/hep.32548 35491432
    [Google Scholar]
  15. ZhouW. GaoY. TongY. WuQ. ZhouY. LiY. Anlotinib enhances the antitumor activity of radiofrequency ablation on lung squamous cell carcinoma.Pharmacol. Res.202116410539210.1016/j.phrs.2020.105392 33348023
    [Google Scholar]
  16. LeeE.J. KangH. KwonH.J. ChungY.J. KimJ.H. LeeS.H. Radiofrequency endometrial ablation with a novel endometrial tip for the management of heavy menstrual bleeding and abnormal uterine bleeding: A prospective study.Int. J. Hyperthermia202037177277610.1080/02656736.2020.1778196 32619371
    [Google Scholar]
  17. RoskoskiR.Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update.Pharmacol. Res.202318710655210.1016/j.phrs.2022.106552 36403719
    [Google Scholar]
  18. RoskoskiR.Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update.Pharmacol. Res.202420010705910.1016/j.phrs.2024.107059 38216005
    [Google Scholar]
  19. LeiT. XuT. ZhangN. Anlotinib combined with osimertinib reverses acquired osimertinib resistance in NSCLC by targeting the c-MET/MYC/AXL axis.Pharmacol. Res.202318810666810.1016/j.phrs.2023.106668 36681369
    [Google Scholar]
  20. SunY. DuF. GaoM. Anlotinib for the treatment of patients with locally advanced or metastatic medullary thyroid cancer.Thyroid201828111455146110.1089/thy.2018.0022 30142994
    [Google Scholar]
  21. MengY. LiL. WangH. Pralsetinib for the treatment of a RET-positive advanced non-small-cell lung cancer patient harboring both ANK-RET and CCDC6-RET fusions with coronary heart disease: A case report.Ann. Transl. Med.202210849610.21037/atm‑22‑1237 35571397
    [Google Scholar]
  22. XingP. YangN. HuX. The clinical significance of RET gene fusion among Chinese patients with lung cancer.Transl. Cancer Res.20209106455646310.21037/tcr‑20‑754 35117253
    [Google Scholar]
  23. BockornyB. BullockA.J. AbramsT.A. Priming of sorafenib prior to radiofrequency ablation does not increase treatment effect in hepatocellular carcinoma.Dig. Dis. Sci.20226773455346310.1007/s10620‑021‑07156‑2 34297268
    [Google Scholar]
  24. FengF. JiangQ. JiaH. Which is the best combination of TACE and Sorafenib for advanced hepatocellular carcinoma treatment? A systematic review and network meta-analysis.Pharmacol. Res.20181358910110.1016/j.phrs.2018.06.021 29959032
    [Google Scholar]
  25. KimM. KimB.H. Current guidelines for management of medullary thyroid carcinoma.Endocrinol. Metab. (Seoul)202136351452410.3803/EnM.2021.1082 34154310
    [Google Scholar]
  26. LiB. FengF. JiaH. Rhamnetin decelerates the elimination and enhances the antitumor effect of the molecular-targeting agent sorafenib in hepatocellular carcinoma cells via the miR-148a/PXR axis.Food Funct.20211262404241710.1039/D0FO02270E 33570057
    [Google Scholar]
  27. LiP. HuX. FanZ. Novel potent molecular glue degraders against broad range of hematological cancer cell lines via multiple neosubstrates degradation.J. Hematol. Oncol.20241717710.1186/s13045‑024‑01592‑z 39218923
    [Google Scholar]
  28. FengY.Q. LiB.A. FengF. Novel mTOR inhibitor enhances the sensitivity of hepatocellular carcinoma cells to molecular targeting agents.OncoTargets Ther.2020137165717610.2147/OTT.S244474 32801748
    [Google Scholar]
  29. MaD.B. LiuX.Y. JiaH. A Novel small-molecule inhibitor of SREBP-1 based on natural product monomers upregulates the sensitivity of lung squamous cell carcinoma cells to antitumor drugs.Front. Pharmacol.20221389574410.3389/fphar.2022.895744 35662712
    [Google Scholar]
  30. MengH. LiB. XuW. miR-140-3p enhances the sensitivity of LUAD cells to antitumor agents by targeting the ADAM10/Notch pathway.J. Cancer202213153660367310.7150/jca.78835 36606198
    [Google Scholar]
  31. YangH. YangY. ZouX. NIO-1, a novel inhibitor of OCT1, enhances the antitumor action of radiofrequency ablation against hepatocellular carcinoma.Curr. Mol. Med.202424563764710.2174/1566524023666230526154739 37246325
    [Google Scholar]
  32. Hemmati-DinarvandM. MokhtariH. AlipourfardI. Cancer drug resistance reduction via co-treatment with oxaliplatin and nitazoxanide: Targeting the ABC transporters.Curr. Mol. Med.202323883484110.2174/1566524023666220820154623 35996253
    [Google Scholar]
  33. MaY. ChaiN. JiangQ. DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents.Pharmacol. Res.202016010507110.1016/j.phrs.2020.105071 32659427
    [Google Scholar]
  34. YinF. FengF. WangL. WangX. LiZ. CaoY. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity.Cell Death Dis.201910967210.1038/s41419‑019‑1884‑7 31511501
    [Google Scholar]
  35. LiP. LinQ. SunS. Inhibition of cannabinoid receptor type 1 sensitizes triple-negative breast cancer cells to ferroptosis via regulating fatty acid metabolism.Cell Death Dis.202213980810.1038/s41419‑022‑05242‑5 36130940
    [Google Scholar]
  36. WuQ. TanZ. XiongY. Comprehensive analysis of ferroptosis-related genes for clinical and biological significance in hepatocellular carcinoma.Discov. Oncol.20231416910.1007/s12672‑023‑00677‑4 37198416
    [Google Scholar]
  37. ShaoZ. LiY. DaiW. ETS-1 induces Sorafenib-resistance in hepatocellular carcinoma cells via regulating transcription factor activity of PXR.Pharmacol. Res.201813518820010.1016/j.phrs.2018.08.003 30114438
    [Google Scholar]
  38. HaoJ. ChenQ. FengY. Combination treatment with FAAH inhibitors/URB597 and ferroptosis inducers significantly decreases the growth and metastasis of renal cell carcinoma cells via the PI3K-AKT signaling pathway.Cell Death Dis.202314424710.1038/s41419‑023‑05779‑z 37024452
    [Google Scholar]
  39. WangH. ChuF. ZhangX. TPX2 enhances the transcription factor activation of PXR and enhances the resistance of hepatocellular carcinoma cells to antitumor drugs.Cell Death Dis.20231416410.1038/s41419‑022‑05537‑7 36707511
    [Google Scholar]
  40. XieH. YuH. TianS. MEIS-1 level in unresectable hepatocellular carcinoma can predict the post-treatment outcomes of radiofrequency ablation.Oncotarget2018920152521526510.18632/oncotarget.24165 29632641
    [Google Scholar]
  41. XieH. TianS. YuH. A new apatinib microcrystal formulation enhances the effect of radiofrequency ablation treatment on hepatocellular carcinoma.OncoTargets Ther.2018113257326510.2147/OTT.S165000 29910621
    [Google Scholar]
  42. SubbiahV. ShenT. TerzyanS.S. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations.Ann. Oncol.202132226126810.1016/j.annonc.2020.10.599 33161056
    [Google Scholar]
  43. WangH. TangJ. SuZ. YAP confers resistance to vandetanib in medullary thyroid cancer.Biochem. Cell Biol.202098344344810.1139/bcb‑2019‑0354 32449862
    [Google Scholar]
  44. AksoyY.A. XuB. ViswanathanK. Novel prognostic nomogram for predicting recurrence-free survival in medullary thyroid carcinoma.Histopathology202484694795910.1111/his.15141 38253940
    [Google Scholar]
  45. HouY. YangY. ChenG. The impact of preoperative calcitonin screening on the prognosis of patients with medullary thyroid cancer: A retrospective multicenter cohort study.Endocrine202485282783610.1007/s12020‑024‑03897‑y 38834859
    [Google Scholar]
  46. MemarM. FarazmandfarT. SabaghianA. ShahbaziM. GolalipourM. Transcriptome profiling of cisplatin resistance in triple-negative breast cancer: New insight into the role of PI3k/Akt pathway.Curr. Mol. Med.202323655956810.2174/1566524022666220517102423 35585821
    [Google Scholar]
  47. YaoC. WangY. GongD. Anti-TLR4 IgG2 prevents acetaminophen-induced acute liver injury through the toll-like receptor 4/MAPKs signaling pathway in mice.Curr. Mol. Med.202323545346910.2174/1566524022666220516141728 35578873
    [Google Scholar]
  48. VodopivecD.M. HuM.I. RET kinase inhibitors for RET -altered thyroid cancers.Ther. Adv. Med. Oncol.20221410.1177/17588359221101691 35756966
    [Google Scholar]
  49. CevatemreB. UlukayaE. DereE. DilegeS. AcilanC. Pyruvate dehydrogenase contributes to drug resistance of lung cancer cells through epithelial mesenchymal transition.Front. Cell Dev. Biol.2022973891610.3389/fcell.2021.738916 35083212
    [Google Scholar]
  50. JiaH. LiuM. WangX. Cimigenoside functions as a novel γ-secretase inhibitor and inhibits the proliferation or metastasis of human breast cancer cells by γ-secretase/Notch axis.Pharmacol. Res.202116910568610.1016/j.phrs.2021.105686 34022397
    [Google Scholar]
  51. DeshmukhA.P. VasaikarS.V. TomczakK. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing.Proc. Natl. Acad. Sci. USA202111819e210205011810.1073/pnas.2102050118 33941680
    [Google Scholar]
  52. ChegeniH. EbrahiminikH. Mosadegh KhahA. Ultrasound-guided radiofrequency ablation of locally recurrent thyroid carcinoma.Cardiovasc. Intervent. Radiol.202245567768410.1007/s00270‑021‑03042‑6 35066613
    [Google Scholar]
  53. TongM.Y. LiH.S. CheY. Recurrent medullary thyroid carcinoma treated with percutaneous ultrasound-guided radiofrequency ablation: A case report.World J. Clin. Cases20219486487010.12998/wjcc.v9.i4.864 33585633
    [Google Scholar]
  54. NervoA. RagniA. RettaF. Interventional radiology approaches for liver metastases from thyroid cancer: A case series and overview of the literature.J. Gastrointest. Cancer202152382383210.1007/s12029‑021‑00646‑6 33999355
    [Google Scholar]
  55. BiamonteE. SolbiatiL. IeraceT. Medullary thyroid carcinoma treated with percutaneous ultrasound-guided radiofrequency ablation.Endocrine201965351551910.1007/s12020‑019‑01995‑w 31273680
    [Google Scholar]
  56. LiD. ChiY. ChenX. Anlotinib in locally advanced or metastatic medullary thyroid carcinoma: A randomized, double-blind phase IIB trial.Clin. Cancer Res.202127133567357510.1158/1078‑0432.CCR‑20‑2950 33832949
    [Google Scholar]
  57. SunY. NiuW. DuF. Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors.J. Hematol. Oncol.20169110510.1186/s13045‑016‑0332‑8 27716285
    [Google Scholar]
  58. ZhaoJ. ChiY. HuC. Anlotinib in patients with medullary thyroid carcinoma with negative prognostic factors: A sub-analysis based on the ALTER01031 study.Front. Oncol.20221285203210.3389/fonc.2022.852032 36483043
    [Google Scholar]
  59. EliseiR. SchlumbergerM.J. MüllerS.P. Cabozantinib in progressive medullary thyroid cancer.J. Clin. Oncol.201331293639364610.1200/JCO.2012.48.4659 24002501
    [Google Scholar]
  60. FallahiP. FerrariS.M. GaldieroM.R. Molecular targets of tyrosine kinase inhibitors in thyroid cancer.Semin. Cancer Biol.20227918019610.1016/j.semcancer.2020.11.013 33249201
    [Google Scholar]
  61. CabanillasM.E. HabraM.A. Lenvatinib: Role in thyroid cancer and other solid tumors.Cancer Treat. Rev.201642475510.1016/j.ctrv.2015.11.003 26678514
    [Google Scholar]
  62. SpiliotisA.E. GäbeleinG. HolländerS. ScherberP.R. GlanemannM. PatelB. Microwave ablation compared with radiofrequency ablation for the treatment of liver cancer: A systematic review and meta-analysis.Radiol. Oncol.202155324725810.2478/raon‑2021‑0030 34167181
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240323681241023100958
Loading
/content/journals/cmm/10.2174/0115665240323681241023100958
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test