Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Endometriosis (EM) is a gynecological disease characterized by the benign growth of endometrial tissue outside the uterus. Upregulation of neuronally expressed developmentally downregulated 4 (NEDD4) has been reported to accelerate endometrial cancer progression.

Objectives

We explored whether abnormal expression of NEDD4 is correlated with EM.

Methods

Endometrial tissue in patients without endometriosis was used to develop the original generation of endometrial stromal cells (ESCs). Different types of endometrial tissue of patients with endometriosis were used to measure the expression of NEDD4 by immunohistochemistry (IHC) and western blotting. Its biological functions in ESCs were investigated using a cell counting kit-8 assay, fluorescein diacetate (FDA) staining, and Transwell invasion assays. Additionally, its involvement in ferroptosis was assessed by measuring Fe2+, malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) levels and the expression of ferroptosis markers.

Results

Compared with normal controls, NEDD4 levels were significantly elevated in the endometrial tissue of patients with EM. Furthermore, NEDD4 expression was higher in the ectopic endometrium than in the eutopic endometrium. NEDD4 knockdown reduced the viability and invasive capacity of ESCs, increased Fe2+, MDA, and ROS levels, and decreased GSH content. Further analysis revealed that NEDD4 knockdown promoted ferroptosis in ESCs by increasing the expression of prostaglandin-endoperoxide synthase 2 (PTGS2). As an E3 ubiquitin ligase, NEDD4 reduced PTGS2 protein levels by accelerating its ubiquitination and subsequent proteasomal degradation.

Conclusion

These findings suggest that inhibiting NEDD4 reduces ESC growth and invasion in EM by regulating PTGS2-dependent ferroptosis.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240311438241011052341
2024-11-04
2025-12-28
Loading full text...

Full text loading...

References

  1. McNamaraH.C. FrawleyH.C. DonoghueJ.F. Peripheral, central, and cross sensitization in endometriosis-associated pain and comorbid pain syndromes.Front. Reprod. Health2021372964210.3389/frph.2021.729642 36303969
    [Google Scholar]
  2. ChapronC. MarcellinL. BorgheseB. SantulliP. Rethinking mechanisms, diagnosis and management of endometriosis.Nat. Rev. Endocrinol.2019151166668210.1038/s41574‑019‑0245‑z 31488888
    [Google Scholar]
  3. MalvezziH. MarengoE.B. PodgaecS. PiccinatoC.A. Endometriosis: Current challenges in modeling a multifactorial disease of unknown etiology.J. Transl. Med.202018131110.1186/s12967‑020‑02471‑0 32787880
    [Google Scholar]
  4. HorneA.W. MissmerS.A. Pathophysiology, diagnosis, and management of endometriosis.BMJ2022379e07075010.1136/bmj‑2022‑070750 36375827
    [Google Scholar]
  5. TaylorH.S. KotlyarA.M. FloresV.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations.Lancet20213971027683985210.1016/S0140‑6736(21)00389‑5 33640070
    [Google Scholar]
  6. YangF. LiuB. XuL. LiuH. Age at surgery and recurrence of ovarian endometrioma after conservative surgery: A meta-analysis including 3125 patients.Arch. Gynecol. Obstet.20203021233010.1007/s00404‑020‑05586‑3 32430756
    [Google Scholar]
  7. JiangD. ZhangX. ShiJ. TaoD. NieX. Risk factors for ovarian endometrioma recurrence following surgical excision: A systematic review and meta analysis.Arch. Gynecol. Obstet.2021304358959810.1007/s00404‑021‑06129‑0 34148122
    [Google Scholar]
  8. SignorileP.G. ViceconteR. BaldiA. New insights in pathogenesis of endometriosis.Front. Med. (Lausanne)2022987901510.3389/fmed.2022.879015 35572957
    [Google Scholar]
  9. WangY. NicholesK. ShihI.M. The origin and pathogenesis of endometriosis.Annu. Rev. Pathol.2020151719510.1146/annurev‑pathmechdis‑012419‑032654 31479615
    [Google Scholar]
  10. SampsonJ.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity.Am. J. Obstet. Gynecol.192714442246910.1016/S0002‑9378(15)30003‑X
    [Google Scholar]
  11. YeL. WhitakerL.H.R. MawsonR.L. HickeyM. Endometriosis.BMJ2022379e06895010.1136/bmj‑2021‑068950 36442873
    [Google Scholar]
  12. Van LangendoncktA. Casanas-RouxF. DonnezJ. Iron overload in the peritoneal cavity of women with pelvic endometriosis.Fertil. Steril.200278471271810.1016/S0015‑0282(02)03346‑0 12372445
    [Google Scholar]
  13. SkarżyńskaE. WróbelM. ZborowskaH. The influence of lactoferrin in plasma and peritoneal fluid on iron metabolism in women with endometriosis.Int. J. Mol. Sci.2023242161910.3390/ijms24021619 36675136
    [Google Scholar]
  14. ZhouY. ZhaoX. ZhangL. Iron overload inhibits cell proliferation and promotes autophagy via PARP1/SIRT1 signaling in endometriosis and adenomyosis.Toxicology202246515305010.1016/j.tox.2021.153050 34826546
    [Google Scholar]
  15. WooJ.H. ChoiY.S. ChoiJ.H. Iron-storage protein ferritin is upregulated in endometriosis and iron overload contributes to a migratory phenotype.Biomedicines202081145410.3390/biomedicines8110454 33121166
    [Google Scholar]
  16. ZhangC. LiuX. JinS. ChenY. GuoR. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance.Mol. Cancer20222114710.1186/s12943‑022‑01530‑y 35151318
    [Google Scholar]
  17. HambrightW.S. FonsecaR.S. ChenL. NaR. RanQ. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration.Redox Biol.20171281710.1016/j.redox.2017.01.021 28212525
    [Google Scholar]
  18. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  19. DengL. HeS. GuoN. TianW. ZhangW. LuoL. Molecular mechanisms of ferroptosis and relevance to inflammation.Inflamm. Res.202372228129910.1007/s00011‑022‑01672‑1 36536250
    [Google Scholar]
  20. WangH. LiuC. ZhaoY. GaoG. Mitochondria regulation in ferroptosis.Eur. J. Cell Biol.202099115105810.1016/j.ejcb.2019.151058 31810634
    [Google Scholar]
  21. YeZ. LiuW. ZhuoQ. Ferroptosis: Final destination for cancer?Cell Prolif.2020533e1276110.1111/cpr.12761 32100402
    [Google Scholar]
  22. LiL.B. ChaiR. ZhangS. Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice.Cells20198219810.3390/cells8020198 30813496
    [Google Scholar]
  23. WanY. GuC. KongJ. Long noncoding RNA ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by regulating the miR-6516-5p/GPX4 axis in endometriosis.Sci. Rep.2022121261810.1038/s41598‑022‑04963‑z 35173188
    [Google Scholar]
  24. GalyB. ConradM. MuckenthalerM. Mechanisms controlling cellular and systemic iron homeostasis.Nat. Rev. Mol. Cell Biol.202425213315510.1038/s41580‑023‑00648‑1 37783783
    [Google Scholar]
  25. ScutieroG. IannoneP. BernardiG. Oxidative stress and endometriosis: A systematic review of the literature.Oxid. Med. Cell. Longev.201720171726523810.1155/2017/7265238 29057034
    [Google Scholar]
  26. NgS.W. NorwitzS.G. TaylorH.S. NorwitzE.R. Endometriosis: The role of iron overload and ferroptosis.Reprod. Sci.20202771383139010.1007/s43032‑020‑00164‑z 32077077
    [Google Scholar]
  27. Garcia-BermudezJ. BirsoyK. A mitochondrial gatekeeper that helps cells escape death by ferroptosis.Nature2021593786051451510.1038/d41586‑021‑01203‑8 33981062
    [Google Scholar]
  28. AsghariS. ValizadehA. Aghebati-MalekiL. NouriM. YousefiM. Endometriosis: Perspective, lights, and shadows of etiology.Biomed. Pharmacother.201810616317410.1016/j.biopha.2018.06.109 29958140
    [Google Scholar]
  29. Heard-LipsmeyerM.E. AlhallakI. SimmenF.A. MelnykS.B. SimmenR.C.M. Lesion genotype modifies high-fat diet effects on endometriosis development in mice.Front. Physiol.20211270267410.3389/fphys.2021.702674 34712146
    [Google Scholar]
  30. HeH. HuangC. ChenZ. HuangH. WangX. ChenJ. An outlined review for the role of Nedd4-1 and Nedd4-2 in lung disorders.Biomed. Pharmacother.202012510998310.1016/j.biopha.2020.109983 32092816
    [Google Scholar]
  31. ZhangY. QianH. WuB. E3 ubiquitin ligase NEDD4 family regulatory network in cardiovascular disease.Int. J. Biol. Sci.202016142727274010.7150/ijbs.48437 33110392
    [Google Scholar]
  32. HaouariS. Vourc’hP. JeanneM. The roles of NEDD4 subfamily of HECT E3 ubiquitin ligases in neurodevelopment and neurodegeneration.Int. J. Mol. Sci.2022237388210.3390/ijms23073882 35409239
    [Google Scholar]
  33. WangZ. HuX. YeM. LinM. ChuM. ShenX. NEDD4 E3 ligase: Functions and mechanism in human cancer.Semin. Cancer Biol.202067Pt 29210110.1016/j.semcancer.2020.03.006 32171886
    [Google Scholar]
  34. YangY. LuoM. ZhangK. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma.Nat. Commun.202011143310.1038/s41467‑020‑14324‑x 31974380
    [Google Scholar]
  35. GuoY. WangY. LiuH. JiangX. LeiS. High glucose environment induces NEDD4 deficiency that impairs angiogenesis and diabetic wound healing.J. Dermatol. Sci.2023112314815710.1016/j.jdermsci.2023.09.007 37932175
    [Google Scholar]
  36. LvB. FuP. WangM. DMT1 ubiquitination by Nedd4 protects against ferroptosis after intracerebral hemorrhage.CNS Neurosci. Ther.2024304e1468510.1111/cns.14685 38634270
    [Google Scholar]
  37. WangY. LiuY. LiuJ. KangR. TangD. NEDD4L-mediated LTF protein degradation limits ferroptosis.Biochem. Biophys. Res. Commun.2020531458158710.1016/j.bbrc.2020.07.032 32811647
    [Google Scholar]
  38. WanL. LiuT. HongZ. NEDD4 expression is associated with breast cancer progression and is predictive of a poor prognosis.Breast Cancer Res.201921114810.1186/s13058‑019‑1236‑7 31856858
    [Google Scholar]
  39. ZhangY. GoodfellowR. LiY. NEDD4 ubiquitin ligase is a putative oncogene in endometrial cancer that activates IGF-1R/PI3K/Akt signaling.Gynecol. Oncol.2015139112713310.1016/j.ygyno.2015.07.098 26193427
    [Google Scholar]
  40. YangH. HuT. HuP. QiC. QianL. miR 143 3p inhibits endometriotic stromal cell proliferation and invasion by inactivating autophagy in endometriosis.Mol. Med. Rep.202123535610.3892/mmr.2021.11995 33760149
    [Google Scholar]
  41. ShiY.L. LuoX.Z. ZhuX.Y. HuaK.Q. ZhuY. LiD.J. Effects of combined 17β-estradiol with TCDD on secretion of chemokine IL-8 and expression of its receptor CXCR1 in endometriotic focus-associated cells in co-culture.Hum. Reprod.200621487087910.1093/humrep/dei414 16517565
    [Google Scholar]
  42. YangA. LiangC. HuT. YangH. The effects and action mechanism of miR-199a on the adhesion andinvasion of endometrial stem cells in vitro.Hebei J Med2021431014511454
    [Google Scholar]
  43. WangX. TrotmanL.C. KoppieT. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN.Cell2007128112913910.1016/j.cell.2006.11.039 17218260
    [Google Scholar]
  44. RamónL. Gilabert-EstellésJ. CastellóR. mRNA analysis of several components of the plasminogen activator and matrix metalloproteinase systems in endometriosis using a real-time quantitative RT–PCR assay.Hum. Reprod.200520127227810.1093/humrep/deh571 15579491
    [Google Scholar]
  45. HamJ. ParkW. SongJ. Fraxetin reduces endometriotic lesions through activation of ER stress, induction of mitochondria-mediated apoptosis, and generation of ROS.Phytomedicine202412315518710.1016/j.phymed.2023.155187 37984125
    [Google Scholar]
  46. RuanJ. TianQ. LiS. The IL-33-ST2 axis plays a vital role in endometriosis via promoting epithelial–mesenchymal transition by phosphorylating β-catenin.Cell Commun. Signal.202422131810.1186/s12964‑024‑01683‑x 38858740
    [Google Scholar]
  47. IwaseA. KotaniT. GotoM. Possible involvement of CD10 in the development of endometriosis due to its inhibitory effects on CD44-dependent cell adhesion.Reprod. Sci.2014211828810.1177/1933719113488449 23653392
    [Google Scholar]
  48. ZhanH. PengB. MaJ. Epidermal growth factor promotes stromal cells migration and invasion via up-regulation of hyaluronate synthase 2 and hyaluronan in endometriosis.Fertil. Steril.2020114488889810.1016/j.fertnstert.2020.05.005 32762950
    [Google Scholar]
  49. YazdaniM. Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro.Toxicol. In Vitro2015301 Pt B57858210.1016/j.tiv.2015.08.010 26318276
    [Google Scholar]
  50. LiY. XuB. RenX. Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62–Keap1–NRF2 pathway.Cell. Mol. Biol. Lett.20222718110.1186/s11658‑022‑00383‑z 36180832
    [Google Scholar]
  51. FigueroaD. AsaduzzamanM. YoungF. Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′,7′–dichlorofluorescin diacetate (DCFDA) assay.J. Pharmacol. Toxicol. Methods201894Pt 1263310.1016/j.vascn.2018.03.007 29630935
    [Google Scholar]
  52. Ngounou WetieA.G. SokolowskaI. WoodsA.G. RoyU. DeinhardtK. DarieC.C. Protein–protein interactions: Switch from classical methods to proteomics and bioinformatics-based approaches.Cell. Mol. Life Sci.201471220522810.1007/s00018‑013‑1333‑1 23579629
    [Google Scholar]
  53. MontiM. OrrùS. PagnozziD. PucciP. Interaction Proteomics.Biosci. Rep.2005251-2455610.1007/s10540‑005‑2847‑z 16222419
    [Google Scholar]
  54. RumzhumN.N. PatelB.S. PrabhalaP. GelissenI.C. OliverB.G. AmmitA.J. IL-17A increases TNF-α-induced COX-2 protein stability and augments PGE2 secretion from airway smooth muscle cells: impact on β2-adrenergic receptor desensitization.Allergy201671338739610.1111/all.12810 26606373
    [Google Scholar]
  55. TerzicM. AimagambetovaG. KunzJ. Molecular basis of endometriosis and endometrial cancer: current knowledge and future perspectives.Int. J. Mol. Sci.20212217927410.3390/ijms22179274 34502183
    [Google Scholar]
  56. LiY. ZengX. LuD. YinM. ShanM. GaoY. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis.Hum. Reprod.202136495196410.1093/humrep/deaa363 33378529
    [Google Scholar]
  57. LiG. LinY. ZhangY. Endometrial stromal cell ferroptosis promotes angiogenesis in endometriosis.Cell Death Discov.2022812910.1038/s41420‑022‑00821‑z 35039492
    [Google Scholar]
  58. SunL. AmraeiR. RahimiN. NEDD4 regulates ubiquitination and stability of the cell adhesion molecule IGPR-1 via lysosomal pathway.J. Biomed. Sci.20212813510.1186/s12929‑021‑00731‑9 33962630
    [Google Scholar]
  59. BurneyR.O. GiudiceL.C. Pathogenesis and pathophysiology of endometriosis.Fertil. Steril.201298351151910.1016/j.fertnstert.2012.06.029 22819144
    [Google Scholar]
  60. AmantF. MoermanP. NevenP. TimmermanD. Van LimbergenE. VergoteI. Endometrial cancer.Lancet2005366948449150510.1016/S0140‑6736(05)67063‑8 16084259
    [Google Scholar]
  61. WuJ. ZhangL. WuS. LiuZ. Ferroptosis: Opportunities and challenges in treating endometrial cancer.Front. Mol. Biosci.2022992983210.3389/fmolb.2022.929832 35847989
    [Google Scholar]
  62. SampsonJ.A. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation.Am. J. Pathol.19273293110 19969738
    [Google Scholar]
  63. GuptaS. HarlevA. AgarwalA. GokulS. KumaresanD. Role of iron in the pathogenesis of endometriosis.Endometriosis.ChamSpringer2015374810.1007/978‑3‑319‑18308‑4_5
    [Google Scholar]
  64. LousseJ.C. DefrèreS. Van LangendoncktA. Iron storage is significantly increased in peritoneal macrophages of endometriosis patients and correlates with iron overload in peritoneal fluid.Fertil. Steril.20099151668167510.1016/j.fertnstert.2008.02.103 18396284
    [Google Scholar]
  65. MoenM.H. HalvorsenT.B. Histologic confirmation of endometriosis in different peritoneal lesions.Acta Obstet. Gynecol. Scand.199271533734210.3109/00016349209021069 1326207
    [Google Scholar]
  66. MaJ. ZhangH. ChenY. LiuX. TianJ. ShenW. The role of macrophage iron overload and ferroptosis in atherosclerosis.Biomolecules20221211170210.3390/biom12111702 36421722
    [Google Scholar]
  67. WyattJ. FernandoS.M. PowellS.G. The role of iron in the pathogenesis of endometriosis: A systematic review.Hum. Reprod. Open202320233hoad03310.1093/hropen/hoad033 37638130
    [Google Scholar]
  68. LiB. DuanH. WangS. LiY. Ferroptosis resistance mechanisms in endometriosis for diagnostic model establishment.Reprod. Biomed. Online202143112713810.1016/j.rbmo.2021.04.002 33992553
    [Google Scholar]
  69. DongX. XuL. WangS. Endometrial stromal cell autophagy-dependent ferroptosis caused by iron overload in ovarian endometriosis is inhibited by the ATF4-xCT pathway.Mol. Hum. Reprod.2023301gaad04610.1093/molehr/gaad046 38113413
    [Google Scholar]
  70. WuX.G. ChenJ.J. ZhouH.L. Identification and validation of the signatures of infiltrating immune cells in the eutopic endometrium endometria of women with endometriosis.Front. Immunol.20211267120110.3389/fimmu.2021.671201 34539624
    [Google Scholar]
  71. XieS. XiaL. SongY. LiuH. WangZ. ZhuX. Insights into the biological role of NEDD4L E3 ubiquitin ligase in human cancers.Front. Oncol.20211177464810.3389/fonc.2021.774648 34869021
    [Google Scholar]
  72. ZhangM. ZhangZ. TianX. NEDD4L in human tumors: Regulatory mechanisms and dual effects on anti-tumor and pro-tumor.Front. Pharmacol.202314129177310.3389/fphar.2023.1291773 38027016
    [Google Scholar]
  73. LeeJ. KimJ. ShinJ. KangY. ChoiJ. CheongH. ATG101 degradation by HUWE1-mediated ubiquitination impairs autophagy and reduces survival in cancer cells.Int. J. Mol. Sci.20212217918210.3390/ijms22179182 34502089
    [Google Scholar]
  74. SalahZ. CohenS. ItzhakiE. AqeilanR. NEDD4 E3 ligase inhibits the activity of the Hippo pathway by targeting LATS1 for degradation.Cell Cycle201312243817382310.4161/cc.26672 24107629
    [Google Scholar]
  75. XieY. ZhouX. LiJ. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway.Bioorg. Chem.202110910474410.1016/j.bioorg.2021.104744 33639365
    [Google Scholar]
  76. LiangC. WangQ.S. YangX. Homocysteine causes endothelial dysfunction via inflammatory factor-mediated activation of epithelial sodium channel (ENaC).Front. Cell Dev. Biol.2021967233510.3389/fcell.2021.672335 34222246
    [Google Scholar]
  77. YangB. KumarS. Nedd4 and Nedd4-2: Closely related ubiquitin-protein ligases with distinct physiological functions.Cell Death Differ.2010171687710.1038/cdd.2009.84 19557014
    [Google Scholar]
  78. SoodR. RitovG. BoltyanskyB. Spector-ChotinerA. Richter-LevinG. Barki-HarringtonL. Underwater trauma causes a long-term specific increase in the expression of cyclooxygenase-2 in the ventral CA1 of the hippocampus.Psychoneuroendocrinology201449626810.1016/j.psyneuen.2014.06.015 25058273
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240311438241011052341
Loading
/content/journals/cmm/10.2174/0115665240311438241011052341
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cell viability; endometrial stromal cells; endometriosis; ferroptosis; NEDD4; PTGS2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test