Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Delafossite materials have excellent properties, making them highly sought after for next-generation solar cells. They are based on abundant and non-toxic elements. Since environmental and economic factors are crucial in the pursuit of discovering a new solar energy harvester, extensive research has been conducted. This paper reviews various synthesis methods, crystal structure, and opto-electronic properties of delafossite materials. The calculated solar cell parameters, such as short-circuit current (Jsc), open-circuit voltage (Voc), and efficiency (η) of solar cells fabricated under diverse conditions, are reported. The findings indicate that these materials are ideal for use in solar cells, as they can function as photocathodes or photoanodes in p-type Dye-Sensitized Solar Cells (DSSCs) and also serve effectively in absorber layers and hole-transport layers. Their unique crystal structure, with a tunable band gap, allows for maximizing power conversion efficiency. However, there are still limitations in synthesizing nanoparticle structures to achieve desired properties, and improvements in various aspects and higher efficiency are still required.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X412834251010073005
2025-10-20
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X412834.html?itemId=/content/journals/cis/10.2174/012210299X412834251010073005&mimeType=html&fmt=ahah

References

  1. PrasadD. AnithaG. LeoL.M. KumarA. Theoretical analysis of earth-abundant solar cell based on green absorber CuFeO2.Opt. Quantum Electron.20235514126210.1007/s11082‑023‑05499‑w
    [Google Scholar]
  2. SoonminH. A review of metal oxide thin films in solar cell applications.Int. J. Thin Film Sci. Technol.2022111374510.18576/ijtfst/110105
    [Google Scholar]
  3. OniA.M. MohsinA.S.M. RahmanM.M. Hossain BhuianM.B. A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells.Energy Rep.2024113345336610.1016/j.egyr.2024.03.007
    [Google Scholar]
  4. ZhaoJ. WangA. GreenM.A. 24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates.Prog. Photovolt. Res. Appl.19997647147410.1002/(SICI)1099‑159X(199911/12)7:6<471::AID‑PIP298>3.0.CO;2‑7
    [Google Scholar]
  5. MasukoK. ShigematsuM. HashiguchiT. FujishimaD. KaiM. YoshimuraN. YamaguchiT. IchihashiY. MishimaT. MatsubaraN. YamanishiT. TakahamaT. TaguchiM. MaruyamaE. OkamotoS. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell.IEEE J. Photovolt.2014461433143510.1109/JPHOTOV.2014.2352151
    [Google Scholar]
  6. YoshikawaK. KawasakiH. YoshidaW. IrieT. KonishiK. NakanoK. UtoT. AdachiD. KanematsuM. UzuH. YamamotoK. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%.Nat. Energy2017251703210.1038/nenergy.2017.32
    [Google Scholar]
  7. AndreaniL.C. BozzolaA. KowalczewskiP. LiscidiniM. RedoriciL. Silicon solar cells: Toward the efficiency limits.Adv. Phys. X201941154830510.1080/23746149.2018.1548305
    [Google Scholar]
  8. GreenM.A. ZhouZ. Improved silicon solar cells by tuning angular response to solar trajectory.Nat. Commun.202516125110.1038/s41467‑024‑55681‑139747102
    [Google Scholar]
  9. LiaoK.H. SuC.Y. DingY.T. KooH.S. Microstructural characterization of CIGS formation using different selenization processes.Appl. Surf. Sci.201327013914410.1016/j.apsusc.2012.12.142
    [Google Scholar]
  10. SoltanmohammadS. ShafarmanW.N. Reaction pathway analysis of (AgxCu1−x)(In0.75Ga0.25)Se2 with x = 0.75 and 1.0.Sol. Energy Mater. Sol. Cells201818214215710.1016/j.solmat.2017.12.023
    [Google Scholar]
  11. XuM. YanS. LiangT. JiaJ. YuanS. KouD. ZhouZ. ZhouW. QiY. MengY. HanL. WuS. 16.48% Efficient solution-processed CIGS solar cells with crystal growth and defects engineering enabled by Ag doping strategy.J. Energy Chem.2025100596510.1016/j.jechem.2024.08.031
    [Google Scholar]
  12. MachínA. MárquezF. Advancements in photovoltaic cell materials: Silicon, organic, and perovskite solar cells.Materials2024175116510.3390/ma1705116538473635
    [Google Scholar]
  13. HuiW. KangX. WangB. LiD. SuZ. BaoY. GuL. ZhangB. GaoX. SongL. HuangW. Stable electron-transport-layer-free perovskite solar cells with over 22% power conversion efficiency.Nano Lett.20232362195220210.1021/acs.nanolett.2c0472036913436
    [Google Scholar]
  14. KangX. WangD. SunK. DongX. HuiW. WangB. GuL. LiM. BaoY. ZhangJ. GuoR. LiZ. JiangX. Müller-BuschbaumP. SongL. Unraveling the modification effect at NiO x /perovskite interfaces for efficient and stable inverted perovskite solar cells.J. Mater. Chem. A Mater. Energy Sustain.20231142229822299110.1039/D3TA05069F
    [Google Scholar]
  15. LiM. BaoY. HuiW. SunK. GuL. KangX. WangD. WangB. DengH. GuoR. LiZ. JiangX. Müller-BuschbaumP. SongL. HuangW. In Situ Surface Reconstruction toward Planar Heterojunction for Efficient and Stable FAPbI 3 Quantum Dot Solar Cells.Adv. Mater.2024366230989010.1002/adma.20230989038011853
    [Google Scholar]
  16. ZhangJ.X. ZhaoZ.Y. A comprehensive review on the preparation and applications of delafossite CuAlO2 optoelectronic functional materials.Mater. Sci. Semicond. Process.202316710781910.1016/j.mssp.2023.107819
    [Google Scholar]
  17. HaradaT. OkadaY. Metallic delafossite thin films for unique device applications.APL Mater.202210707090210.1063/5.0097269
    [Google Scholar]
  18. LiuK. JiangY. RanG. LiuF. ZhangW. ZhuX. 19.7% efficiency binary organic solar cells achieved by selective core fluorination of nonfullerene electron acceptors.Joule20248383585110.1016/j.joule.2024.01.005
    [Google Scholar]
  19. RogersA.F. Delafossite from Kimberly, Nevada.Am. Mineral.192276102103
    [Google Scholar]
  20. MackenzieA.P. The properties of ultrapure delafossite metals.Rep. Prog. Phys.201780303250110.1088/1361‑6633/aa50e528079027
    [Google Scholar]
  21. AhmedJ. MaoY. Delafossite CuAlO 2 nanoparticles with electrocatalytic activity toward oxygen and hydrogen evolution reactions.ACS Symposium Seriesvol. 1213 LiuJ. L. BashirS. Washington, DCAmerican Chemical Society2015577210.1021/bk‑2015‑1213.ch004
    [Google Scholar]
  22. SzymanskiN.J. WaltersL.N. HellmanO. GallD. KhareS.V. Dynamical stabilization in delafossite nitrides for solar energy conversion.J. Mater. Chem. A Mater. Energy Sustain.2018642208522086010.1039/C8TA07536K
    [Google Scholar]
  23. Muñoz-GarcíaA.B. CaputoL. SchiavoE. BaianoC. MaddalenaP. PavoneM. Ab initio Study of Anchoring Groups for CuGaO2 Delafossite-Based p-Type Dye Sensitized Solar Cells.Front Chem.2019715810.3389/fchem.2019.0015830984735
    [Google Scholar]
  24. YuM. NatuG. JiZ. WuY. p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO 2 Nanoplates with Saturation Photovoltages Exceeding 460 mV.J. Phys. Chem. Lett.2012391074107810.1021/jz300360326288038
    [Google Scholar]
  25. AhmedJ. BlakelyC.K. PrakashJ. BrunoS.R. YuM. WuY. PoltavetsV.V. Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications.J. Alloys Compd.201459127527910.1016/j.jallcom.2013.12.199
    [Google Scholar]
  26. YuM. DraskovicT.I. WuY. Cu(i)-based delafossite compounds as photocathodes in p-type dye-sensitized solar cells.Phys. Chem. Chem. Phys.201416115026503310.1039/c3cp55457k24477758
    [Google Scholar]
  27. Roudgar-AmoliM. AlizadehA. AbediniE. ShariatiniaZ. Delafossite CuCoO 2/ZnO derived from ZIF-8 heterojunctions as efficient photoelectrodes for dye-sensitized solar cells.RSC Advances20231322148251484010.1039/D3RA01595E37197189
    [Google Scholar]
  28. YuS.M. ZhaoZ.Y. Tailoring doping locations and types for high‐performance CuFeO 2 ‐based photocatalysts.J. Am. Ceram. Soc.2023106127582759510.1111/jace.19401
    [Google Scholar]
  29. Dunlap-ShohlW.A. DaunisT.B. WangX. WangJ. ZhangB. BarreraD. YanY. HsuJ.W.P. MitziD.B. Room-temperature fabrication of a delafossite CuCrO 2 hole transport layer for perovskite solar cells.J. Mater. Chem. A Mater. Energy Sustain.20186246947710.1039/C7TA09494A
    [Google Scholar]
  30. ZiarH. A global statistical assessment of designing silicon-based solar cells for geographical markets.Joule2024861667169010.1016/j.joule.2024.02.023
    [Google Scholar]
  31. ZanattaA.R. The Shockley–Queisser limit and the conversion efficiency of silicon-based solar cells.Results in Optics2022910032010.1016/j.rio.2022.100320
    [Google Scholar]
  32. ÇirişA. BaşolB.M. AtasoyY. KaracaA. TomakinM. KüçükömeroğluT. BacaksızE. Effect of ultra-thin CdSexTe1−x interface layer on parameters of CdTe solar cells.Sol. Energy202223412813610.1016/j.solener.2022.01.073
    [Google Scholar]
  33. BouabdelliM.W. RogtiF. MaacheM. RabehiA. Performance enhancement of CIGS thin-film solar cell.Optik (Stuttg.)202021616494810.1016/j.ijleo.2020.164948
    [Google Scholar]
  34. AlharbiF.H. KaisS. Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence.Renew. Sustain. Energy Rev.2015431073108910.1016/j.rser.2014.11.101
    [Google Scholar]
  35. RühleS. Tabulated values of the Shockley–Queisser limit for single junction solar cells.Sol. Energy201613013914710.1016/j.solener.2016.02.015
    [Google Scholar]
  36. AftabuzzamanM. SarkerS. LuC. KimH.K. In-depth understanding of the energy loss and efficiency limit of dye-sensitized solar cells under outdoor and indoor conditions.J. Mater. Chem. A Mater. Energy Sustain.2021944248302484810.1039/D1TA03309C
    [Google Scholar]
  37. GuX. LaiX. ZhangY. WangT. TanW.L. McNeillC.R. LiuQ. SonarP. HeF. LiW. ShanC. KyawA.K.K. Organic Solar Cell With Efficiency Over 20% and V OC Exceeding 2.1 V Enabled by Tandem With All‐Inorganic Perovskite and Thermal Annealing‐Free Process.Adv. Sci. (Weinh.)2022928220044510.1002/advs.20220044535876031
    [Google Scholar]
  38. ZhangH. JiX. YaoH. FanQ. YuB. LiJ. Review on efficiency improvement effort of perovskite solar cell.Sol. Energy202223342143410.1016/j.solener.2022.01.060
    [Google Scholar]
  39. SomN.N. SharmaV. MankadV. AttygalleM.L.C. JhaP.K. Role of CuAlO2 as an absorber layer for solar energy converter.Sol. Energy201919379980510.1016/j.solener.2019.09.098
    [Google Scholar]
  40. HadjabM. GuskovaO. BennacerH. ZianeM.I. LarbiA.H. SaeedM.A. Ground-state properties of p-type delafossite transparent conducting oxides 2H-CuMO2 (M=Al, Sc and Y): DFT calculations.Mater. Today Commun.20223210399510.1016/j.mtcomm.2022.103995
    [Google Scholar]
  41. BenkoF.A. KoffybergF.P. Opto-electronic properties of CuAlO2.J. Phys. Chem. Solids1984451575910.1016/0022‑3697(84)90101‑X
    [Google Scholar]
  42. YanagiH. InoueS. UedaK. KawazoeH. HosonoH. HamadaN. Electronic structure and optoelectronic properties of transparent p -type conducting CuAlO2.J. Appl. Phys.20008874159416310.1063/1.1308103
    [Google Scholar]
  43. KumarM. PerssonC. Structural, electronic and optical properties of silver delafossite oxides: A first-principles study with hybrid functional.Physica B2013422202710.1016/j.physb.2013.04.035
    [Google Scholar]
  44. ZhuJ. MuS. Defect engineering in carbon‐based electrocatalysts: Insight into intrinsic carbon defects.Adv. Funct. Mater.20203025200109710.1002/adfm.202001097
    [Google Scholar]
  45. SequedaI.N. MeléndezA.M. Understanding the role of copper vacancies in photoelectrochemical co 2 reduction on cuprous oxide.J. Phys. Chem. Lett.202213163667367310.1021/acs.jpclett.2c0075135438506
    [Google Scholar]
  46. FengY. WuJ. ChiQ. LiW. YuY. FeiW. Defects and aliovalent doping engineering in electroceramics.Chem. Rev.202012031710178710.1021/acs.chemrev.9b0050731899631
    [Google Scholar]
  47. ZhaoZ.Y. ZhangJ.X. ChenX.L. New insights into intrinsic point defects of delafossite CuAlO 2 as optoelectronic materials.J. Am. Ceram. Soc.2022105127535754710.1111/jace.18717
    [Google Scholar]
  48. BenreguiaN. RekhilaG. YounesA. AbdiA. TrariM. Optical and electrical properties of the delafossite CuCrO2 synthesized by co-precipitation.Inorg. Chem. Commun.202416211215410.1016/j.inoche.2024.112154
    [Google Scholar]
  49. ChfiiH. BouichA. SoucaseB.M. The use of copper-based delafossite to improve hydrogen production performance: A review.Hydrogen202451395810.3390/hydrogen5010004
    [Google Scholar]
  50. KumarS. DengZ. LiuS. MengG. Recent advances in p-type delafossite ABO2 based chemiresistive gas sensors.Sens. Actuators B Chem.202543513760610.1016/j.snb.2025.137606
    [Google Scholar]
  51. ChengZ. ZhuJ. XuX. TanY. GaoZ. LiQ. LiuJ. WangL. Delafossite-based electrode materials: Design, synthesis and their application in electrocatalysis.J. Mater. Chem. A Mater. Energy Sustain.20251374794481310.1039/D4TA06862A
    [Google Scholar]
  52. El IdrissiM. MeiB. Abd-LefdilM. AtourkiL. Making solar hydrogen: A review of the challenges and strategies of synthesizing cufeo2 photocathodes for photoelectrochemical water splitting.Molecules2025305115210.3390/molecules3005115240076374
    [Google Scholar]
  53. PabstA. NOTES ON THE STRUCTURE OF DELAFOSSITE.Am. Mineral.194623539546
    [Google Scholar]
  54. MarquardtM.A. AshmoreN.A. CannD.P. Crystal chemistry and electrical properties of the delafossite structure.Thin Solid Films2006496114615610.1016/j.tsf.2005.08.316
    [Google Scholar]
  55. MoreiraM. AfonsoJ. CrepelliereJ. LenobleD. Lunca-PopaP. A review on the p-type transparent Cu–Cr–O delafossite materials.J. Mater. Sci.20225753114314210.1007/s10853‑021‑06815‑z
    [Google Scholar]
  56. SheetsW.C. StamplerE.S. BertoniM.I. SasakiM. MarksT.J. MasonT.O. PoeppelmeierK.R. Silver delafossite oxides.Inorg. Chem.20084772696270510.1021/ic702197h18269235
    [Google Scholar]
  57. SiedliskaK. PikulaT. SurowiecZ. PanekR. IdczakR. TranV.H. JartychE. Crystal structure and hyperfine interactions of delafossite (CuFeO 2 ) synthesized hydrothermally.Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater.202177457057610.1107/S2052520621005072
    [Google Scholar]
  58. DanielU. RaduB. NicolzeV. Photovoltaic Performance of (Al, Mg)-Doped CuCrO2 for p-type Dye-sensitized Solar Cells Application.Nanosci. Nanotechnol.201661A717610.5923/c.nn.201601.14
    [Google Scholar]
  59. KatoS. SuzukiS. OgasawaraM. Synthesis and reversible oxidation/reduction behavior of delafossite-type CuCr1−x Al x O2.J. Mater. Sci.20175218107181072510.1007/s10853‑017‑1263‑7
    [Google Scholar]
  60. Schorne-PintoJ. CassayreL. PresmanesL. BarnabéA. Insights on the stability and cationic nonstoichiometry of CuFeO 2 Delafossite.Inorg. Chem.20195896431644410.1021/acs.inorgchem.9b0065131009207
    [Google Scholar]
  61. AbrariM. GhanaatshoarM. MalvajerdiS.S. GholamhosseiniS. HosseiniA. SunH. MohseniS.M. Investigating various metal contacts for p-type delafossite α-CuGaO2 to fabricate ultraviolet photodetector.Sci. Rep.2023131825910.1038/s41598‑023‑35458‑037217774
    [Google Scholar]
  62. ClaytonJ.E. CannD.P. AshmoreN. Synthesis and processing of AgInO2 delafossite compounds by cation exchange reactions.Thin Solid Films2002411114014610.1016/S0040‑6090(02)00203‑1
    [Google Scholar]
  63. KumarS. MarinelS. MiclauM. MartinC. Fast synthesis of CuCrO2 delafossite by monomode microwave heating.Mater. Lett.201270404310.1016/j.matlet.2011.11.091
    [Google Scholar]
  64. XiongD. ZhangQ. VermaS.K. LiH. ChenW. ZhaoX. Use of delafossite oxides CuCr1-xGaxO2 nanocrystals in p-type dye-sensitized solar cell.J. Alloys Compd.201666237438010.1016/j.jallcom.2015.12.044
    [Google Scholar]
  65. ChownA. Synthetic optimization and electrochemical studies of delafossite cucro2 for solar energy conversion and storage applications.2022Available from: https://etd.auburn.edu// handle/10415/8343
  66. IngramB.J. GonzálezG.B. MasonT.O. ShahriariD.Y. BarnabèA. KoD. PoeppelmeierK.R. Transport and defect mechanisms in cuprous delafossites. 1. comparison of hydrothermal and standard solid-state synthesis in CuAlO 2.Chem. Mater.200416265616562210.1021/cm048983c
    [Google Scholar]
  67. RobleM. RojasS.D. WheatleyR. WallentowitzS. CabreraA.L. Diaz-DroguettD.E. Hydrothermal improvement for 3R-CuFeO2 delafossite growth by control of mineralizer and reaction atmosphere.J. Solid State Chem.201927131432510.1016/j.jssc.2019.01.014
    [Google Scholar]
  68. DingJ. SuiY. FuW. YangH. LiuS. ZengY. ZhaoW. SunP. GuoJ. ChenH. LiM. Synthesis and photoelectric characterization of delafossite conducting oxides CuAlO2 laminar crystal thin films via sol–gel method.Appl. Surf. Sci.2010256216441644610.1016/j.apsusc.2010.04.032
    [Google Scholar]
  69. TonookaK. ShimokawaK. NishimuraO. Properties of copper–aluminum oxide films prepared by solution methods.Thin Solid Films2002411112913310.1016/S0040‑6090(02)00201‑8
    [Google Scholar]
  70. ZhouC. BanerjeeA. ForneroE.L. XiZ. TongX. StavitskiE. QuX. MasonS.E. StacchiolaD.J. LiuM. Pulsed laser deposition of delafossite oxide thin films on YSZ (001) substrates as solar water splitting photocathodes.Environ. Sci. Nano202512124124710.1039/D4EN00706A
    [Google Scholar]
  71. JoshiT. SentyT.R. TrappenR. ZhouJ. ChenS. FerrariP. BorisovP. SongX. HolcombM.B. BristowA.D. CabreraA.L. LedermanD. Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition.J. Appl. Phys.2015117101390810.1063/1.4905424
    [Google Scholar]
  72. LiS.Z. LiuJ. WangX.Z. YanB.W. LiH. LiuJ.M. Epitaxial growth of delafossite CuFeO2 thin films by pulse laser deposition.Physica B2012407132412241510.1016/j.physb.2012.03.037
    [Google Scholar]
  73. SidikU. KimJ.H. KimH.K. LeeH.Y. LeeJ.Y. Structures and characteristics of delafossite CuCr 1− x O 2 thin films prepared by pulsed laser deposition.Micro & Nano Lett.201491285485710.1049/mnl.2014.0385
    [Google Scholar]
  74. IbukiS. YanagiH. UedaK. KawazoeH. HosonoH. Preparation of n -type conductive transparent thin films of AgInO2:Sn with delafossite-type structure by pulsed laser deposition.J. Appl. Phys.20008853067306910.1063/1.1287404
    [Google Scholar]
  75. VaradarajanV. NortonD.P. CuGaO2 thin film synthesis using hydrogen-assisted pulsed laser deposition.Appl. Phys., A Mater. Sci. Process.200685211712010.1007/s00339‑006‑3667‑0
    [Google Scholar]
  76. JohnL. MrinaleniR.S. AmaladassE.P. PanS. PrabhuE. SivaramanN. GnanasekarK.I. Electrical conductivity, carrier concentration, mobility and XPS studies on thin films of metallic PdCoO2 delafossite.Appl. Phys., A Mater. Sci. Process.2024130422410.1007/s00339‑024‑07365‑2
    [Google Scholar]
  77. MugnierE. BarnabéA. PresmanesL. TailhadesP. Thin films preparation by rf-sputtering of copper/iron ceramic targets with Cu/Fe=1: From nanocomposites to delafossite compounds.Thin Solid Films200851671453145610.1016/j.tsf.2007.05.030
    [Google Scholar]
  78. BarnabéA. ThimontY. LalanneM. PresmanesL. TailhadesP. p-Type conducting transparent characteristics of delafossite Mg-doped CuCrO 2 thin films prepared by RF-sputtering.J. Mater. Chem. C Mater. Opt. Electron. Devices20153236012602410.1039/C5TC01070E
    [Google Scholar]
  79. SaikumarA.K. SundareshS. NehateS.D. SundaramK.B. Preparation and characterization of radio frequency sputtered delafossite p-type copper gallium oxide (p-CuGaO 2 ) Thin Films.ECS J. Solid State Sci. Technol.202211202300510.1149/2162‑8777/ac5000
    [Google Scholar]
  80. SundareshS. BharathA.H. SundaramK.B. Synthesis and characterization of radio-frequency-sputtered delafossite copper indium oxide (CuInO 2 ) Thin Films.ECS J. Solid State Sci. Technol.202312404301010.1149/2162‑8777/acccb0
    [Google Scholar]
  81. OtabeT. UedaK. KudohA. HosonoH. KawazoeH. n -type electrical conduction in transparent thin films of delafossite-type AgInO2.Appl. Phys. Lett.19987291036103810.1063/1.120957
    [Google Scholar]
  82. BharathA.H. SaikumarA.K. SundaramK.B. Deposition and Optical Characterization of Sputter Deposited p-Type Delafossite CuGaO2 Thin Films Using Cu2O and Ga2O3 Targets.Materials2024177160910.3390/ma1707160938612123
    [Google Scholar]
  83. Lunca PopaP. CrêpellièreJ. LeturcqR. LenobleD. Electrical and optical properties of Cu–Cr–O thin films fabricated by chemical vapour deposition.Thin Solid Films201661219420110.1016/j.tsf.2016.05.052
    [Google Scholar]
  84. MahapatraS. ShivashankarS.A. Low‐Pressure metal–organic chemical vapor deposition of transparent and p‐Type Conducting CuCrO 2 Thin Films with High Conductivity.Chem. Vap. Depos.20039523824010.1002/cvde.200304147
    [Google Scholar]
  85. ZhangY. TuttF. EvansG.N. SharmaP. HaugstadG. KaiserB. RambergerJ. BayliffS. TaoY. MannoM. Garcia-BarriocanalJ. ChaturvediV. FernandesR.M. BirolT. SeyfriedW.E.Jr LeightonC. Crystal-chemical origins of the ultrahigh conductivity of metallic delafossites.Nat. Commun.2024151139910.1038/s41467‑024‑45239‑638360692
    [Google Scholar]
  86. ScanlonD.O. WalshA. Polymorph engineering of Cu M O 2 ( M = Al, Ga, Sc, Y) semiconductors for solar energy applications: From delafossite to wurtzite.Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater.201571670270610.1107/S205252061501838726634726
    [Google Scholar]
  87. ShiX.H. SunJ.X. XiongC.H. SunL. Exponential-type density of states with clearly cutting tail for organic semiconductors.Org. Electron.201630606610.1016/j.orgel.2015.11.023
    [Google Scholar]
  88. DanielU. AnamariaD. SebarchieviciaI. MiclauM. Photovoltaic Performance of Co-doped CuCrO 2 for p-type Dye-sensitized Solar Cells Application.Energy Procedia201711249750310.1016/j.egypro.2017.03.1129
    [Google Scholar]
  89. KeerthiK MasuzawaT NairB G SaitoI OkanoK JohnsN PhilipR R Heterojunction between the delafossite TCO n-copper indium oxide and p-Si for solar cell applications.DAE SOLID STATE PHYSICS SYMPOSIUM 2015Uttar Pradesh, India, vol. 1731, May 23 2016, pp. 080006.10.1063/1.4947884
    [Google Scholar]
/content/journals/cis/10.2174/012210299X412834251010073005
Loading
/content/journals/cis/10.2174/012210299X412834251010073005
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Delafossite; Photocurrent; Photovoltaic; Renewable resource; Solar cell; Solar efficiency
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test