Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

The excessive exploitation of antibiotics for the treatment of bacterial illnesses has resulted in the emergence of several strains that are resistant to different drugs. Due to the widespread occurrence of antibiotic resistance and the emergence of bacterial strains that are resistant to various drugs, significant efforts are being made to identify appropriate alternative medicines to combat harmful microorganisms. Given the observed link between biofilm formation and antibiotic resistance, recent efforts have been directed towards a promising strategy that aims to control and prevent biofilm formation. This strategy involves targeting and inhibiting the quorum sensing system, which has been extensively shown to play a central role in biofilm formation. The conventional approach to controlling infectious disorders involves the use of substances that are designed to either kill or inhibit the growth of bacteria. Bacterial resistance to antibiotics poses a significant challenge to public health. This therapeutic target has been extensively explored globally. However, the scientific data on it are not up-to-date, and only recent studies have begun to explore its potential as a target for combating infectious diseases. An important issue with this strategy is the commonly observed emergence of resistance to antimicrobial agents. This paper aimed to present a comprehensive overview of the quorum sensing system in bacteria, focusing on its role in biofilm formation and the development of antibiotic resistance. Additionally, it provides an update on the significance of targeting this system with natural substances for therapeutic purposes.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X355078241230061234
2025-01-09
2025-11-29
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X355078.html?itemId=/content/journals/cis/10.2174/012210299X355078241230061234&mimeType=html&fmt=ahah

References

  1. McMasterR.W. MorrisonC.J. KoborM.S. Epigenetics: A new model for intracellular parasite–host cell regulation.Trends Parasitol.201632751552110.1016/j.pt.2016.04.00227142564
    [Google Scholar]
  2. TroskoJ. Evolution of microbial quorum sensing to human global quorum sensing: An insight into how gap junctional intercellular communication might be linked to the global metabolic disease crisis.Biology2016522910.3390/biology502002927314399
    [Google Scholar]
  3. BouyahyaA. DakkaN. TouysE.A. AbriniJ. BakriY. Medicinal plant products targeting quorum sensing for combating bacterial infections.Asian Pac. J. Trop. Med.201710872974310.1016/j.apjtm.2017.07.02128942821
    [Google Scholar]
  4. KohC.L. SamC.K. YinW.F. TanL. KrishnanT. ChongY. ChanK.G. Plant-derived natural products as sources of anti-quorum sensing compounds.Sensors20131356217622810.3390/s13050621723669710
    [Google Scholar]
  5. SarkarA. SahaR. SahaS. BhowmikR. ChatterjeeA. PaulA. MajiA. ShaharyarM.A. KarmakarS. SarkarB. MaityT.K. Transesterification, GC-MS profiling, and in vitro antimicrobial potential of oil obtained from seeds of Citrus maxima (Burm.) Merr.Ind. Crops Prod.202218911576410.1016/j.indcrop.2022.115764
    [Google Scholar]
  6. KhareT. AnandU. DeyA. AssarafY.G. ChenZ.S. LiuZ. KumarV. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens.Front. Pharmacol.20211272072610.3389/fphar.2021.72072634366872
    [Google Scholar]
  7. AlibiS. SelmaB.W. VivasR.J. SmachM.A. TouatiR. BoukadidaJ. NavasJ. MansourB.H. Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates.Curr. Res. Transl. Med.2020682596610.1016/j.retram.2020.01.00132192922
    [Google Scholar]
  8. MohammedM.J. AnandU. AltemimiA.B. TripathiV. GuoY. SinghP.A. Phenolic composition, antioxidant capacity and antibacterial activity of white wormwood (Artemisia herba-alba).Plants202110116410.3390/plants1001016433467047
    [Google Scholar]
  9. ChamkhiI. OmariE.N. BenaliT. BouyahyaA. Quorum sensing and plant-bacteria interaction: Role of quorum sensing in the rhizobacterial community colonization in the rhizosphere.ACS Symposium Series DhimanSS American Chemical SocietyWashington, DC202013915310.1021/bk‑2020‑1374.ch008
    [Google Scholar]
  10. PatwardhanS.B. PanditC. PanditS. VermaD. LahiriD. NagM. RayR.R. JhaP. PrasadR. Illuminating the signalomics of microbial biofilm on plant surfaces.Biocatal. Agric. Biotechnol.20234710253710.1016/j.bcab.2022.102537
    [Google Scholar]
  11. ShresthaA. GrimmM. OjiroI. KrumwiedeJ. SchikoraA. Impact of quorum sensing molecules on plant growth and immune system.Front. Microbiol.202011154510.3389/fmicb.2020.0154532765447
    [Google Scholar]
  12. ChurchillM.E.A. ChenL. Structural basis of acyl-homoserine lactone-dependent signaling.Chem. Rev.20111111688510.1021/cr100081721125993
    [Google Scholar]
  13. AmaraN. KromB.P. KaufmannG.F. MeijlerM.M. Macromolecular inhibition of quorum sensing: Enzymes, antibodies, and beyond.Chem. Rev.2011111119520810.1021/cr100101c21087050
    [Google Scholar]
  14. OkadaM. SatoI. ChoS.J. IwataH. NishioT. DubnauD. SakagamiY. Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX.Nat. Chem. Biol.200511232410.1038/nchembio70916407988
    [Google Scholar]
  15. LyonG.J. WrightJ.S. MuirT.W. NovickR.P. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry20024131100951010410.1021/bi026049u12146974
    [Google Scholar]
  16. VadakkanK. ChoudhuryA.A. GunasekaranR. HemapriyaJ. VijayanandS. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression.J. Genet. Eng. Biotechnol.201816223925210.1016/j.jgeb.2018.07.00130733731
    [Google Scholar]
  17. SaenzH.L. AugsburgerV. VuongC. JackR.W. GötzF. OttoM. Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone.Arch. Microbiol.2000174645245510.1007/s00203000022311195102
    [Google Scholar]
  18. LiY.H. TianX. Quorum sensing and bacterial social interactions in biofilms.Sensors20121232519253810.3390/s12030251922736963
    [Google Scholar]
  19. SlamtiL. LereclusD. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group.J. Bacteriol.200518731182118710.1128/JB.187.3.1182‑1187.200515659693
    [Google Scholar]
  20. DunnyG.M. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: Cell–cell signalling, gene transfer, complexity and evolution.Philos. Trans. R. Soc. Lond. B Biol. Sci.200736214831185119310.1098/rstb.2007.204317360276
    [Google Scholar]
  21. GominetM. SlamtiL. GiloisN. RoseM. LereclusD. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence.Mol. Microbiol.200140496397510.1046/j.1365‑2958.2001.02440.x11401703
    [Google Scholar]
  22. MaR. QiuS. JiangQ. SunH. XueT. CaiG. SunB. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus.Int. J. Med. Microbiol.20173074-525726710.1016/j.ijmm.2017.03.00328416278
    [Google Scholar]
  23. NiN. LiM. WangJ. WangB. Inhibitors and antagonists of bacterial quorum sensing.Med. Res. Rev.20092916512410.1002/med.2014518956421
    [Google Scholar]
  24. ZhaoX. YuZ. DingT. Quorum-sensing regulation of antimicrobial resistance in bacteria.Microorganisms20208342510.3390/microorganisms803042532192182
    [Google Scholar]
  25. VashisthaA. SharmaN. NanajiY. KumarD. SinghG. BarnwalR.P. YadavA.K. Quorum sensing inhibitors as therapeutics: Bacterial biofilm inhibition.Bioorg. Chem.202313610655110.1016/j.bioorg.2023.10655137094480
    [Google Scholar]
  26. ZhouL. ZhangY. GeY. ZhuX. PanJ. Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation.Front. Microbiol.20201158964010.3389/fmicb.2020.58964033178172
    [Google Scholar]
  27. LiuL. ZengX. ZhengJ. ZouY. QiuS. DaiY. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review.Microbiol. Res.202226212710210.1016/j.micres.2022.12710235792523
    [Google Scholar]
  28. LiJ. LiJ. MengJ. SunK. Understanding of signaling molecule controlled anammox through regulating C/N ratio.Bioresour. Technol.202031512386310.1016/j.biortech.2020.12386332717518
    [Google Scholar]
  29. FuquaC. ParsekM.R. GreenbergE.P. Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing.Annu. Rev. Genet.200135143946810.1146/annurev.genet.35.102401.09091311700290
    [Google Scholar]
  30. KimJ. ParkH.D. ChungS. Microfluidic approaches to bacterial biofilm formation.Molecules20121789818983410.3390/molecules1708981822895027
    [Google Scholar]
  31. ZhangX. LiY. YanH. CaiK. LiH. WuZ. WuJ. YangX. JiangH. WangQ. QuG. ZhaoX. Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade.Front. Plant Sci.20221399187410.3389/fpls.2022.99187436237500
    [Google Scholar]
  32. VargasH.G. HernándezS.J. HernandezS.S. RodríguezV.A. SaldivarP.R. IqbalH. Electrochemical biosensors: A solution to pollution detection with reference to environmental contaminants.Biosensors2018822910.3390/bios802002929587374
    [Google Scholar]
  33. LiX. ZhangG. ZhuY. BiJ. HaoH. HouH. Effect of the luxI/R gene on AHL-signaling molecules and QS regulatory mechanism in Hafnia alvei H4.AMB Express20199119710.1186/s13568‑019‑0917‑z31807954
    [Google Scholar]
  34. WatersC.M. BasslerB.L. Quorum sensing: Cell-to-cell communication in bacteria.Annu. Rev. Cell Dev. Biol.200521131934610.1146/annurev.cellbio.21.012704.13100116212498
    [Google Scholar]
  35. GhoshR DasA MallikS Inhibition of quorum sensing in pseudomonas aeruginosa: A review.Ind. J. Pharm. Sci.201981579780610.36468/pharmaceutical‑sciences.573
    [Google Scholar]
  36. ThomasonM.K. VoichekM. DarD. AddisV. FitzgeraldD. GottesmanS. SorekR. GreenbergE.P. A rhlI 5′ UTR-derived sRNA regulates RhlR-dependent quorum sensing in Pseudomonas aeruginosa.MBio2019105e02253-1910.1128/mBio.02253‑1931594819
    [Google Scholar]
  37. VenturiV. SubramoniS. DaigleS.A. AhmerB.M.M. Methods to study solo/orphan quorum-sensing receptors.Quorum Sensing. Springer New York, New York. LeoniL. RampioniG. NY201814515910.1007/978‑1‑4939‑7309‑5_12
    [Google Scholar]
  38. PatelH.K. MorenoS.Z.R. DegrassiG. SubramoniS. GonzálezJ.F. VenturiV. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants.Front. Plant Sci.2013444710.3389/fpls.2013.0044724273546
    [Google Scholar]
  39. DaigleS.A. DyszelJ.L. GonzalezJ.F. AliM.M. AhmerB.M.M. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae.Front. Cell. Infect. Microbiol.201554710.3389/fcimb.2015.0004726075189
    [Google Scholar]
  40. CostertonJ.W. StewartP.S. GreenbergE.P. Bacterial biofilms: A common cause of persistent infections.Science199928454181318132210.1126/science.284.5418.131810334980
    [Google Scholar]
  41. StoodleyH.L. CostertonJ.W. StoodleyP. Bacterial biofilms: From the Natural environment to infectious diseases.Nat. Rev. Microbiol.2004229510810.1038/nrmicro82115040259
    [Google Scholar]
  42. FlemmingH.C. WingenderJ. The biofilm matrix.Nat. Rev. Microbiol.20108962363310.1038/nrmicro241520676145
    [Google Scholar]
  43. BazakaO. BazakaK. Surface modification of biomaterials for biofilm control.Biomaterials and Medical Device - Associated Infections.Elsevier201510313210.1533/9780857097224.2.103
    [Google Scholar]
  44. McCartyS. WoodsE. PercivalS.L. Biofilms.Biofilms in Infection Prevention and Control.Elsevier201414316310.1016/B978‑0‑12‑397043‑5.00009‑8
    [Google Scholar]
  45. OluwoleO.M. Biofilm: Formation and natural products’ approach to control - A review.Afr. J. Infect. Dis.2022162597110.21010/Ajid.v16i2S.736124328
    [Google Scholar]
  46. FlemmingH.C. Hullebuschv.E.D. NeuT.R. NielsenP.H. SeviourT. StoodleyP. WingenderJ. WuertzS. The biofilm matrix: Multitasking in a shared space.Nat. Rev. Microbiol.2023212708610.1038/s41579‑022‑00791‑036127518
    [Google Scholar]
  47. ZhangW. LiC. Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications.Front. Microbiol.20166153510.3389/fmicb.2015.0153526779175
    [Google Scholar]
  48. StoodleyP. BoyleJ.D. DeBeerD. ScottL.H.M. Evolving perspectives of biofilm structure.Biofouling1999141759010.1080/08927019909378398
    [Google Scholar]
  49. ObandoM.C. SerraD.O. Dissecting cell heterogeneities in bacterial biofilms and their implications for antibiotic tolerance.Curr. Opin. Microbiol.20247810245010.1016/j.mib.2024.10245038422558
    [Google Scholar]
  50. AlotaibiG.F. Factors influencing bacterial biofilm formation and development.American J. Biomed. Sci. Res.202112661762610.34297/AJBSR.2021.12.001820
    [Google Scholar]
  51. YuS. WeiQ. ZhaoT. GuoY. MaL.Z. A survival strategy for Pseudomonas aeruginosa that uses exopolysaccharides to sequester and store iron to stimulate Psl-dependent biofilm formation.Appl. Environ. Microbiol.201682216403641310.1128/AEM.01307‑1627565622
    [Google Scholar]
  52. VetrivelA. RamasamyM. VetrivelP. NatchimuthuS. ArunachalamS. KimG-S. MurugesanR. Pseudomonas aeruginosa biofilm formation and its control.Biologics20211331233610.3390/biologics1030019
    [Google Scholar]
  53. HettaH.F. RamadanY.N. RashedZ.I. AlharbiA.A. AlsharefS. AlkindyT.T. AlkhamaliA. AlbalawiA.S. BattahB. DonaduM.G. Quorum sensing inhibitors: An alternative strategy to win the battle against multidrug-resistant (MDR) bacteria.Molecules20242915346610.3390/molecules2915346639124871
    [Google Scholar]
  54. DincerS. UsluM.F. DelikA. Antibiotic resistance in biofilm.Bacterial Biofilms. DincerS. ÖzdenefeS.M. ArkutA. IntechOpen2020
    [Google Scholar]
  55. IvanovaK. FernandesM.M. FranceskoA. MendozaE. GuezguezJ. BurnetM. TzanovT. Quorum-quenching and matrix-degrading enzymes in multilayer coatings synergistically prevent bacterial biofilm formation on urinary catheters.ACS Appl. Mater. Interfaces2015749270662707710.1021/acsami.5b0948926593217
    [Google Scholar]
  56. SouthernK.W. ClancyJ.P. RanganathanS. Aerosolized agents for airway clearance in cystic fibrosis.Pediatr. Pulmonol.201954685886410.1002/ppul.2430630884217
    [Google Scholar]
  57. ChenZ. JiH. LiuC. BingW. WangZ. QuX. A multinuclear metal complex based DNase-mimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms.Angew. Chem. Int. Ed.20165536107321073610.1002/anie.20160529627484616
    [Google Scholar]
  58. AlhedeM. BjarnsholtT. GivskovM. AlhedeM. Pseudomonas aeruginosa biofilms.Advances in Applied Microbiology.Elsevier2014140
    [Google Scholar]
  59. SimõesM. Antimicrobial strategies effective against infectious bacterial biofilms.Curr. Med. Chem.201118142129214510.2174/09298671179565621621517762
    [Google Scholar]
  60. UruénC. EscuinC.G. TommassenJ. JaimeM.R.C. ArenasJ. Biofilms as promoters of bacterial antibiotic resistance and tolerance.Antibiotics2020101310.3390/antibiotics1001000333374551
    [Google Scholar]
  61. BanerjeeT. SarkarA. AliS.Z. BhowmikR. KarmakarS. HalderA.K. GhoshN. Bioprotective role of phytocompounds against the pathogenesis of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis: Unravelling underlying molecular mechanisms.Planta Med.202490967570710.1055/a‑2277‑480538458248
    [Google Scholar]
  62. Souzad.E.L. Albuquerqued.T.M.R. Santosd.A.S. MassaN.M.L. de Brito AlvesJ.L. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities – A review.Crit. Rev. Food Sci. Nutr.201959101645165910.1080/10408398.2018.142528529377718
    [Google Scholar]
  63. RioD.D. MateosR.A. SpencerJ.P.E. TognoliniM. BorgesG. CrozierA. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases.Antioxid. Redox Signal.201318141818189210.1089/ars.2012.458122794138
    [Google Scholar]
  64. ZacchinoS.A. ButassiE. LibertoM.D. RaimondiM. PostigoA. SortinoM. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs.Phytomedicine201737274810.1016/j.phymed.2017.10.01829174958
    [Google Scholar]
  65. LimaM.C. de SousaP.C. PradaF.C. HarelJ. DubreuilJ.D. Souzad.E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria.Microb. Pathog.201913025927010.1016/j.micpath.2019.03.02530917922
    [Google Scholar]
  66. MajdanikM.M. KępaM. WojtyczkaR.D. IdzikD. WąsikT.J. Phenolic compounds diminish antibiotic resistance of Staphylococcus Aureus clinical strains.Int. J. Environ. Res. Public Health20181510232110.3390/ijerph1510232130360435
    [Google Scholar]
  67. MakarewiczM. DrożdżI. TarkoT. ChodakD.A. The interactions between polyphenols and microorganisms, especially gut microbiota.Antioxidants202110218810.3390/antiox1002018833525629
    [Google Scholar]
  68. ShahzadM. MillhouseE. CulshawS. EdwardsC.A. RamageG. CombetE. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation.Food Funct.20156371972910.1039/C4FO01087F25585200
    [Google Scholar]
  69. LiuB. ZhouC. ZhangZ. RolandJ.D. LeeB.P. Antimicrobial property of halogenated catechols.Chem. Eng. J.202140312634010.1016/j.cej.2020.12634032848507
    [Google Scholar]
  70. TaguriT. TanakaT. KounoI. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure.Biol. Pharm. Bull.200629112226223510.1248/bpb.29.222617077519
    [Google Scholar]
  71. CuevaC. MingoS. GonzálezM.I. BustosI. RequenaT. Campod.R. ÁlvarezM.P.J. BartoloméB. ArribasM.M.V. Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens.Lett. Appl. Microbiol.201254655756310.1111/j.1472‑765X.2012.03248.x22449241
    [Google Scholar]
  72. AiresA. MarquesE. CarvalhoR. RosaE. SaavedraM. Evaluation of biological value and appraisal of polyphenols and glucosinolates from organic baby-leaf salads as antioxidants and antimicrobials against important human pathogenic bacteria.Molecules20131844651466810.3390/molecules1804465123603948
    [Google Scholar]
  73. SarjitA. WangY. DykesG.A. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions.Food Microbiol.20154622723310.1016/j.fm.2014.08.00225475290
    [Google Scholar]
  74. BorgesA. FerreiraC. SaavedraM.J. SimõesM. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.Microb. Drug Resist.201319425626510.1089/mdr.2012.024423480526
    [Google Scholar]
  75. SundaramoorthyN.S. MitraK. GaneshJ.S. MakalaH. LothaR. BhanuvalliS.R. UlaganathanV. TiruV. SivasubramanianA. NagarajanS. Ferulic acid derivative inhibits NorA efflux and in combination with ciprofloxacin curtails growth of MRSA in vitro and in vivo.Microb. Pathog.2018124546210.1016/j.micpath.2018.08.02230118803
    [Google Scholar]
  76. NowackaN. NowakR. DrozdM. OlechM. LosR. MalmA. Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms.PLoS One20151010e014035510.1371/journal.pone.014035526468946
    [Google Scholar]
  77. ChoiJ.G. MunS.H. ChaharH.S. BharajP. KangO.H. KimS.G. ShinD.W. KwonD.Y. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems.PLoS One201497e10269710.1371/journal.pone.010269725048362
    [Google Scholar]
  78. MadikizelaB. AderogbaM.A. StadenV.J. Isolation and characterization of antimicrobial constituents of Searsia chirindensis L. (Anacardiaceae) leaf extracts.J. Ethnopharmacol.2013150260961310.1016/j.jep.2013.09.01624060408
    [Google Scholar]
  79. WangS.S. WangD.M. PuW.J. LiD.W. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species.BMC Complement. Altern. Med.201313132110.1186/1472‑6882‑13‑32124252124
    [Google Scholar]
  80. HakimL.K. YazdanianM. AlamM. AbbasiK. TebyaniyanH. TahmasebiE. KhayatanD. SeifalianA. RanjbarR. YazdanianA. Biocompatible and biomaterials application in drug delivery system in oral cavity.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/901122634812267
    [Google Scholar]
  81. ChengC.T. CastroG. LiuC.H. LauP. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer.Clin. Chim. Acta2019492121910.1016/j.cca.2019.01.02730711524
    [Google Scholar]
  82. YazdanianM. RostamzadehP. RahbarM. AlamM. AbbasiK. TahmasebiE. TebyaniyanH. RanjbarR. SeifalianA. YazdanianA. The potential application of green-synthesized metal nanoparticles in dentistry: A comprehensive review.Bioinorg. Chem. Appl.202220221231191010.1155/2022/231191035281331
    [Google Scholar]
  83. YazdanianM. RostamzadehP. AlamM. AbbasiK. TahmasebiE. TebyaniyanH. RanjbarR. SeifalianA. MoghaddamM.M. KahnamoeiM.B. Evaluation of antimicrobial and cytotoxic effects of Echinacea and Arctium extracts and Zataria essential oil.AMB Express20221217510.1186/s13568‑022‑01417‑735705727
    [Google Scholar]
  84. MoradiS.Z. MomtazS. BayramiZ. FarzaeiM.H. AbdollahiM. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders.Front. Bioeng. Biotechnol.2020823810.3389/fbioe.2020.0023832318551
    [Google Scholar]
  85. BanerjeeT. SarS. SahaS. Herbal medicines for the treatment of liver cirrhosis.Role of Herbal Medicines. DharaA.K. MandalS.C. Springer Nature Singapore, Singapore202318520910.1007/978‑981‑99‑7703‑1_10
    [Google Scholar]
  86. VikramA. JayaprakashaG.K. JesudhasanP.R. PillaiS.D. PatilB.S. Suppression of bacterial cell–cell signalling, biofilm formation and type III secretion system by citrus flavonoids.J. Appl. Microbiol.2010109251552710.1111/j.1365‑2672.2010.04677.x20163489
    [Google Scholar]
  87. LeeJ.H. ParkJ.H. ChoH.S. JooS.W. ChoM.H. LeeJ. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus.Biofouling201329549149910.1080/08927014.2013.78869223668380
    [Google Scholar]
  88. MatsunagaT. NakaharaA. MinnatulK.M. NoiriY. EbisuS. KatoA. AzakamiH. The inhibitory effects of catechins on biofilm formation by the periodontopathogenic bacterium, Eikenella corrodens. Biosci. Biotechnol. Biochem.201074122445245010.1271/bbb.10049921150103
    [Google Scholar]
  89. VandeputteO.M. KiendrebeogoM. RajaonsonS. DialloB. MolA. JaziriE.M. BaucherM. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1.Appl. Environ. Microbiol.201076124325310.1128/AEM.01059‑0919854927
    [Google Scholar]
  90. PlyutaV. ZaitsevaJ. LobakovaE. ZagoskinaN. KuznetsovA. KhmelI. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa.Acta Pathol. Microbiol. Scand. Suppl.2013121111073108110.1111/apm.1208323594262
    [Google Scholar]
  91. BorgesA. SerraS. AbreuC.A. SaavedraM.J. SalgadoA. SimõesM. Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity.Biofouling201430218319510.1080/08927014.2013.85254224344870
    [Google Scholar]
  92. HuberB. EberlL. FeuchtW. PolsterJ. Influence of polyphenols on bacterial biofilm formation and quorum-sensing.Z. Naturforsch. C J. Biosci.20035811-1287988410.1515/znc‑2003‑11‑122414713169
    [Google Scholar]
  93. QiuJ. WangD. XiangH. FengH. JiangY. XiaL. DongJ. LuJ. YuL. DengX. Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates.PLoS One201053e973610.1371/journal.pone.000973620305813
    [Google Scholar]
  94. UpadhyayA. UpadhyayaI. JohnyK.A. VenkitanarayananK. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes.Food Microbiol.2013361798910.1016/j.fm.2013.04.01023764223
    [Google Scholar]
  95. KuźmaŁ. RóżalskiM. WalenckaE. RóżalskaB. WysokińskaH. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci.Phytomedicine2007141313510.1016/j.phymed.2005.10.00817190643
    [Google Scholar]
  96. WalenckaE. RozalskaS. WysokinskaH. RozalskiM. KuzmaL. RozalskaB. Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity.Planta Med.200773654555110.1055/s‑2007‑96717917650545
    [Google Scholar]
  97. CartagenaE. ColomO.Á. NeskeA. ValdezJ.C. BardónA. Effects of plant lactones on the production of biofilm of Pseudomonas aeruginosa.Chem. Pharm. Bull.2007551222510.1248/cpb.55.2217202695
    [Google Scholar]
  98. VikramA. JesudhasanP.R. JayaprakashaG.K. PillaiS.D. PatilB.S. Citrus limonoids interfere with Vibrio harveyi cell–cell signalling and biofilm formation by modulating the response regulator LuxO.Microbiology201115719911010.1099/mic.0.041228‑020864476
    [Google Scholar]
  99. ChoH.S. LeeJ.H. RyuS.Y. JooS.W. ChoM.H. LeeJ. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.J. Agric. Food Chem.201361297120712610.1021/jf400931323819562
    [Google Scholar]
  100. RenD. ZuoR. BarriosG.A.F. BedzykL.A. EldridgeG.R. PasmoreM.E. WoodT.K. Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid.Appl. Environ. Microbiol.20057174022403410.1128/AEM.71.7.4022‑4034.200516000817
    [Google Scholar]
  101. HuJ.F. GaroE. GoeringM.G. PasmoreM. YooH.D. EsserT. SestrichJ. CreminP.A. HoughG.W. PerroneP. LeeY.S.L. LeN.T. JohnsonO.M. CostertonJ.W. EldridgeG.R. Bacterial biofilm inhibitors from Diospyros dendo. J. Nat. Prod.200669111812010.1021/np049600s16441080
    [Google Scholar]
  102. NoghabiA.S. kargarG.P. BagherzadeG. BeyzaeiH. Comparative study of antioxidant and antimicrobial activity of berberine-derived Schiff bases, nitro-berberine and amino-berberine.Heliyon2023912e2278310.1016/j.heliyon.2023.e2278338058428
    [Google Scholar]
  103. AlharthiS. PopatA. ZioraZ.M. MoyleP.M. Sortase A inhibitor protein nanoparticle formulations demonstrate antibacterial synergy when combined with antimicrobial peptides.Molecules2023285211410.3390/molecules2805211436903360
    [Google Scholar]
  104. XiaS. MaL. WangG. YangJ. ZhangM. WangX. SuJ. XieM. In vitro antimicrobial activity and the mechanism of berberine against methicillin-resistant Staphylococcus aureus isolated from bloodstream infection patients.Infect. Drug Resist.2022151933194410.2147/IDR.S35707735469308
    [Google Scholar]
  105. BarrosC.H.N. CaseyE. A review of nanomaterials and technologies for enhancing the antibiofilm activity of natural products and phytochemicals.ACS Appl. Nano Mater.2020398537855610.1021/acsanm.0c01586
    [Google Scholar]
  106. ZhouH. WangW. CaiL. YangT. Potentiation and mechanism of berberine as an antibiotic adjuvant against multidrug-resistant bacteria.Infect. Drug Resist.2023167313732610.2147/IDR.S43125638023403
    [Google Scholar]
  107. ZhangC. LiZ. PanQ. FanL. PanT. ZhuF. PanQ. ShanL. ZhaoL. Berberine at sub-inhibitory concentration inhibits biofilm dispersal in Staphylococcus aureus. Microbiology2022168900124310.1099/mic.0.00124336178801
    [Google Scholar]
  108. GaoS. ZhangS. ZhangS. Enhanced in vitro antimicrobial activity of amphotericin B with berberine against dual‐species biofilms of Candida albicans and Staphylococcus aureus.J. Appl. Microbiol.202113041154117210.1111/jam.1487232996236
    [Google Scholar]
  109. AksoyC.S. AvciF.G. UgurelO.M. AtasB. SayarN.A. AkbulutS.B. Potentiating the activity of berberine for Staphylococcus aureus in a combinatorial treatment with thymol.Microb. Pathog.202014910454210.1016/j.micpath.2020.10454233010366
    [Google Scholar]
  110. ZhouX.Y. YeX.G. HeL.T. ZhangS.R. WangR.L. ZhouJ. HeZ.S. In vitro characterization and inhibition of the interaction between ciprofloxacin and berberine against multidrug-resistant Klebsiella pneumonia e.J. Antibiot.2016691074174610.1038/ja.2016.1526932407
    [Google Scholar]
  111. LiX. SongY. WangL. KangG. WangP. YinH. HuangH. A potential combination therapy of berberine hydrochloride with antibiotics against multidrug-resistant Acinetobacter baumannii. Front. Cell. Infect. Microbiol.20211166043110.3389/fcimb.2021.66043133842399
    [Google Scholar]
  112. GaoW.W. GopalaL. BheemanaboinaR.R.Y. ZhangG.B. LiS. ZhouC.H. Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii.Eur. J. Med. Chem.2018146153710.1016/j.ejmech.2018.01.03829396362
    [Google Scholar]
  113. AhmadiF. KhalvatiB. EslamiS. The inhibitory effect of thioridazine on adeb efflux pump gene expression in multidrug-resistant acinetobacter baumannii isolates using real time PCR.Avicenna J. Med. Biotechnol.202214213210.18502/ajmb.v14i2.8884
    [Google Scholar]
  114. HermanA. HermanA.P. Herbal products and their active constituents used alone and in combination with antibiotics against multidrug-resistant bacteria.Planta Med.202389216818210.1055/a‑1890‑555935995069
    [Google Scholar]
  115. BandyopadhyayS. PatraP.H. MahantiA. MondalD.K. DandapatP. BandyopadhyayS. SamantaI. LodhC. BeraA.K. BhattacharyyaD. SarkarM. BaruahK.K. Potential antibacterial activity of berberine against multi drug resistant enterovirulent Escherichia coli isolated from yaks (Poephagus grunniens) with haemorrhagic diarrhoea.Asian Pac. J. Trop. Med.20136431531910.1016/S1995‑7645(13)60063‑223608335
    [Google Scholar]
  116. MitchellG. LafranceM. BoulangerS. SéguinD.L. GuayI. GattusoM. MarsaultE. BouarabK. MalouinF. Tomatidine acts in synergy with aminoglycoside antibiotics against multiresistant Staphylococcus aureus and prevents virulence gene expression.J. Antimicrob. Chemother.201267355956810.1093/jac/dkr51022129590
    [Google Scholar]
  117. SoltaniR. FazeliH. NajafiB.R. JelokhanianA. Evaluation of the synergistic effect of tomatidine with several antibiotics against standard and clinical isolates of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli.Iran. J. Pharm. Res.201716129029610.22037/ijpr.2017.201428496482
    [Google Scholar]
  118. DwivediG.R. MauryaA. YadavD.K. SinghV. KhanF. GuptaM.K. SinghM. DarokarM.P. SrivastavaS.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli.J. Biomol. Struct. Dyn.20193751307132510.1080/07391102.2018.145865429595093
    [Google Scholar]
  119. HammerK.A. CarsonC.F. RileyT.V. Antimicrobial activity of essential oils and other plant extracts.J. Appl. Microbiol.199986698599010.1046/j.1365‑2672.1999.00780.x10438227
    [Google Scholar]
  120. KerekesE.B. VidácsA. TakóM. PetkovitsT. VágvölgyiC. HorváthG. BalázsV.L. KrischJ. Anti-biofilm effect of selected essential oils and main components on mono- and polymicrobic bacterial cultures.Microorganisms20197934510.3390/microorganisms709034531547282
    [Google Scholar]
  121. SattariM. BigdeliM. DerakhshanS. Effect of cumin ( Cuminum cyminum ) seed essential oil on biofilm formation and plasmid integrity of Klebsiella pneumoniae.Pharmacogn. Mag.2010621576110.4103/0973‑1296.5996720548937
    [Google Scholar]
  122. FilocheS.K. SomaK. SissonsC.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate.Oral Microbiol. Immunol.200520422122510.1111/j.1399‑302X.2005.00216.x15943766
    [Google Scholar]
  123. CáceresM. HidalgoW. StashenkoE. TorresR. OrtizC. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria.Antibiotics20209414710.3390/antibiotics904014732235590
    [Google Scholar]
  124. NuryastutiT. van der MeiH.C. BusscherH.J. IravatiS. AmanA.T. KromB.P. Effect of cinnamon oil on icaA expression and biofilm formation by Staphylococcus epidermidis. Appl. Environ. Microbiol.200975216850685510.1128/AEM.00875‑0919749058
    [Google Scholar]
  125. Oliveirad.M.M.M. BrugneraD.F. Nascimentod.J.A. BatistaN.N. PiccoliR.H. Cinnamon essential oil and cinnamaldehyde in the control of bacterial biofilms formed on stainless steel surfaces.Eur. Food Res. Technol.2012234582183210.1007/s00217‑012‑1694‑y
    [Google Scholar]
  126. FilogônioC.F.B. SoaresR.V. HortaM.C.R. PenidoC.V.S.R. CruzR.A. Effect of vegetable oil (Brazil nut oil) and mineral oil (liquid petrolatum) on dental biofilm control.Braz. Oral Res.201125655656110.1590/S1806‑8324201100060001422147238
    [Google Scholar]
  127. SzczepanskiS. LipskiA. Essential oils show specific inhibiting effects on bacterial biofilm formation.Food Control201436122422910.1016/j.foodcont.2013.08.023
    [Google Scholar]
  128. RosatoA. SblanoS. SalvagnoL. CarocciA. ClodoveoM.L. CorboF. FracchiollaG. Anti-biofilm inhibitory synergistic effects of combinations of essential oils and antibiotics.Antibiotics202091063710.3390/antibiotics910063732987638
    [Google Scholar]
  129. JakobsenT.H. Gennipv.M. PhippsR.K. ShanmughamM.S. ChristensenL.D. AlhedeM. SkindersoeM.E. RasmussenT.B. FriedrichK. UtheF. JensenP.Ø. MoserC. NielsenK.F. EberlL. LarsenT.O. TannerD. HøibyN. BjarnsholtT. GivskovM. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing.Antimicrob. Agents Chemother.20125652314232510.1128/AAC.05919‑1122314537
    [Google Scholar]
  130. VijayakumarK. RamanathanT. Musa acuminata and its bioactive metabolite 5-Hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro.J. Ethnopharmacol.202024611224210.1016/j.jep.2019.11224231533077
    [Google Scholar]
  131. SrinivasanR. DeviK.R. KannappanA. PandianS.K. RaviA.V. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro.J. Ethnopharmacol.201619359260310.1016/j.jep.2016.10.01727721053
    [Google Scholar]
  132. KumarL. ChhibberS. KumarR. KumarM. HarjaiK. Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa.Fitoterapia2015102849510.1016/j.fitote.2015.02.00225704369
    [Google Scholar]
  133. RaoraneC.J. LeeJ.H. KimY.G. RajasekharanS.K. ContrerasG.R. LeeJ. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol.20191099010.3389/fmicb.2019.0099031134028
    [Google Scholar]
  134. RasamiravakaT. JedrzejowskiA. KiendrebeogoM. RajaonsonS. RandriamampiononaD. RabemanantsoaC. AndriantsimahavandyA. RasamindrakotrokaA. DuezP. JaziriE.M. VandeputteO.M. Endemic malagasy dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1.Microbiology2013159Pt_592493810.1099/mic.0.064378‑023449917
    [Google Scholar]
  135. BhargavaN. SinghS.P. SharmaA. SharmaP. CapalashN. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids.Future Microbiol.201510121953196810.2217/fmb.15.10726582430
    [Google Scholar]
  136. ZhouJ.W. LuoH.Z. JiangH. JianT.K. ChenZ.Q. JiaA.Q. Hordenine: A novel quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa.J. Agric. Food Chem.20186671620162810.1021/acs.jafc.7b0503529353476
    [Google Scholar]
  137. XiangH. CaoF. MingD. ZhengY. DongX. ZhongX. MuD. LiB. ZhongL. CaoJ. WangL. MaH. WangT. WangD. Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development.Appl. Microbiol. Biotechnol.2017101176671668110.1007/s00253‑017‑8403‑528710559
    [Google Scholar]
  138. ShehabeldineA.M. AshourR.M. OkbaM.M. SaberF.R. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation.J. Ethnopharmacol.202025411266910.1016/j.jep.2020.11266932087316
    [Google Scholar]
  139. LuL. HuW. TianZ. YuanD. YiG. ZhouY. ChengQ. ZhuJ. LiM. Developing natural products as potential anti-biofilm agents.Chin. Med.20191411110.1186/s13020‑019‑0232‑230936939
    [Google Scholar]
  140. ShamimA. AliA. IqbalZ. MirzaM.A. AqilM. KawishS.M. SiddiquiA. KumarV. NaseefP.P. AlshadidiA.A.F. KuruniyanS.M. Natural medicine a promising candidate in combating microbial biofilm.Antibiotics202312229910.3390/antibiotics1202029936830210
    [Google Scholar]
  141. MishraR. PandaA.K. MandalD.S. ShakeelM. BishtS.S. KhanJ. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens.Front. Microbiol.20201156632510.3389/fmicb.2020.56632533193155
    [Google Scholar]
  142. LinD.M. KoskellaB. LinH.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance.World J. Gastrointest. Pharmacol. Ther.20178316217310.4292/wjgpt.v8.i3.16228828194
    [Google Scholar]
  143. VázquezR. GarcíaP. Synergy between two chimeric lysins to kill Streptococcus pneumoniae. Front. Microbiol.201910125110.3389/fmicb.2019.0125131231338
    [Google Scholar]
  144. ŁubowskaN. PiechowiczL. Staphylococcus aureus biofilm and the role of bacteriophages in its eradication.Postepy Hig. Med. Dosw.20187210110710.5604/01.3001.0011.5965
    [Google Scholar]
  145. BieleckaT.G. DydeckaA. NecelA. BlochS. FaleńczykN.B. WęgrzynG. WęgrzynA. Bacteriophage-derived depolymerases against bacterial biofilm.Antibiotics202110217510.3390/antibiotics1002017533578658
    [Google Scholar]
  146. PolatE. KangK. Natural photosensitizers in antimicrobial photodynamic therapy.Biomedicines20219658410.3390/biomedicines906058434063973
    [Google Scholar]
  147. JuárezC.I. ContrerasG.R. GuadarramaV.N. HernándezS.M. VázquezM.M. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa.Arch. Med. Res.201344748849410.1016/j.arcmed.2013.10.00424126126
    [Google Scholar]
  148. ChongY.M. YinW.F. HoC.Y. MustafaM.R. HadiA.H.A. AwangK. NarrimaP. KohC.L. AppletonD.R. ChanK.G. Malabaricone C from Myristica cinnamomea exhibits anti-quorum sensing activity.J. Nat. Prod.201174102261226410.1021/np100872k21910441
    [Google Scholar]
  149. BjarnsholtT. JensenP.Ø. RasmussenT.B. ChristophersenL. CalumH. HentzerM. HougenH.P. RygaardJ. MoserC. EberlL. HøibyN. GivskovM. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections.Microbiology2005151123873388010.1099/mic.0.27955‑016339933
    [Google Scholar]
  150. HarjaiK. KumarR. SinghS. Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa.FEMS Immunol. Med. Microbiol.201058216116810.1111/j.1574‑695X.2009.00614.x19878318
    [Google Scholar]
  151. BodetC. GrenierD. ChandadF. OfekI. SteinbergD. WeissE.I. Potential oral health benefits of cranberry.Crit. Rev. Food Sci. Nutr.200848767268010.1080/1040839070163621118663617
    [Google Scholar]
  152. FuB. WuQ. DangM. BaiD. GuoQ. ShenL. DuanK. Inhibition of Pseudomonas aeruginosa biofilm formation by traditional chinese medicinal herb Herba patriniae.BioMed Res. Int.2017201711010.1155/2017/958470328377931
    [Google Scholar]
  153. LeeJ.H. KimY.G. RyuS.Y. ChoM.H. LeeJ. Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation.Int. J. Food Microbiol.2014174475510.1016/j.ijfoodmicro.2013.12.03024457153
    [Google Scholar]
  154. HwangI. LeeJ. JinH.G. WooE.R. LeeD.G. Amentoflavone stimulates mitochondrial dysfunction and induces apoptotic cell death in Candida albicans.Mycopathologia2012173420721810.1007/s11046‑011‑9503‑x22210020
    [Google Scholar]
  155. LeeH.J. LeeD.G. Urgent need for novel antibiotics in Republic of Korea to combat multidrug-resistant bacteria.Korean J. Intern. Med.202237227128010.3904/kjim.2021.52735272440
    [Google Scholar]
  156. LahiriD. DashS. DuttaR. NagM. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants.J. Biosci.20194425210.1007/s12038‑019‑9868‑431180065
    [Google Scholar]
  157. SalmiC. LoncleC. VidalN. LetourneuxY. FantiniJ. MarescaM. TaïebN. PagèsJ.M. BrunelJ.M. Squalamine: An appropriate strategy against the emergence of multidrug resistant gram-negative bacteria?PLoS One200837e276510.1371/journal.pone.000276518648511
    [Google Scholar]
  158. TominagaK. HiguchiK. HamasakiN. HamaguchiM. TakashimaT. TanigawaT. WatanabeT. FujiwaraY. TezukaY. NagaokaT. KadotaS. IshiiE. KobayashiK. ArakawaT. In vivo action of novel alkyl methyl quinolone alkaloids against Helicobacter pylori.J. Antimicrob. Chemother.200250454755210.1093/jac/dkf15912356800
    [Google Scholar]
  159. BoberekJ.M. StachJ. GoodL. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine.PLoS One2010510e1374510.1371/journal.pone.001374521060782
    [Google Scholar]
  160. ZhangX. GuoF. ShaoH. ZhengX. Clinical translation of polymyxin-based combination therapy: Facts, challenges and future opportunities.J. Infect.201774211813010.1016/j.jinf.2016.11.01527998750
    [Google Scholar]
  161. SharmaM. ManoharlalR. PuriN. PrasadR. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans.Biosci. Rep.201030639140410.1042/BSR2009015120017731
    [Google Scholar]
  162. MajedyA.Y. DuhaidahawiA.D. AzawiA.K. AmieryA.A. KadhumA. MohamadA. Coumarins as potential antioxidant agents complemented with suggested mechanisms and approved by molecular modeling studies.Molecules201621213510.3390/molecules2102013526805811
    [Google Scholar]
  163. MonfaloutiE.H. KartahE.B. Enhancing polyphenol bioavailability through nanotechnology: Current trends and challenges.Exploring Natural Phenolic Compounds - Recent Progress and Practical Applications.Working TitleIntechOpen202410.5772/intechopen.1005764
    [Google Scholar]
  164. rahmaniE.S. ErrabitiB. MatencioA. TrottaF. LatracheH. KoraichiS.I. ElabedS. Plant-derived bioactive compounds for the inhibition of biofilm formation: A comprehensive review.Environ. Sci. Pollut. Res. Int.20243124348593488010.1007/s11356‑024‑33532‑238744766
    [Google Scholar]
  165. BrackmanG. DefoirdtT. MiyamotoC. BossierP. CalenberghV.S. NelisH. CoenyeT. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR.BMC Microbiol.20088114910.1186/1471‑2180‑8‑14918793453
    [Google Scholar]
  166. TruchadoP. BastidaG.J.A. LarrosaM. IbáñezC.I. EspínJ.C. BarberánT.F.A. ConesaG.M.T. AllendeA. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones.J. Agric. Food Chem.201260368885889410.1021/jf301365a22533445
    [Google Scholar]
  167. ManefieldM. RasmussenT.B. HenzterM. AndersenJ.B. SteinbergP. KjellebergS. GivskovM. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover.Microbiology200214841119112710.1099/00221287‑148‑4‑111911932456
    [Google Scholar]
  168. ZhangL. LiangE. ChengY. MahmoodT. GeF. ZhouK. BaoM. LvL. LiL. YiJ. LuC. TanY. Is combined medication with natural medicine a promising therapy for bacterial biofilm infection?Biomed. Pharmacother.202012811018410.1016/j.biopha.2020.11018432450528
    [Google Scholar]
  169. KumarL. BisenM. HarjaiK. ChhibberS. AzizovS. LalhlenmawiaH. KumarD. Advances in nanotechnology for biofilm inhibition.ACS Omega2023824213912140910.1021/acsomega.3c0223937360468
    [Google Scholar]
  170. OdomT.W. Nano Letters 2020.Nano Lett.2020201110.1021/acs.nanolett.9b0508431849227
    [Google Scholar]
/content/journals/cis/10.2174/012210299X355078241230061234
Loading
/content/journals/cis/10.2174/012210299X355078241230061234
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test