Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Ferroptosis, a unique form of programmed cell death characterized by lipid peroxidation and iron accumulation, has emerged as a critical factor in the development and progression of metabolic disorders. This review explores the role of ferroptosis in various pathological conditions, including obesity, type-2 diabetes, renal and adrenal injury, and cardiometabolic complications. The interplay between oxidative stress, lipid metabolism, and ferroptosis highlights its contribution to cellular dysfunction and tissue damage in these metabolic disorders. Furthermore, the potential of nutritional and pharmacological interventions to modulate ferroptosis pathways is examined, with a focus on antioxidants, iron chelators, and diet-based strategies. Understanding the mechanism and therapeutic implications of ferroptosis provides a foundation for an innovative approach to combat metabolic disorders. Future research is essential to uncover biomarkers, refine therapeutic strategies, and translate these findings into clinical practice.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X394730250912071440
2025-09-23
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X394730.html?itemId=/content/journals/cis/10.2174/012210299X394730250912071440&mimeType=html&fmt=ahah

References

  1. GaoM. YiJ. ZhuJ. MinikesA.M. MonianP. ThompsonC.B. JiangX. Role of mitochondria in ferroptosis.Mol. Cell2019732354363.e310.1016/j.molcel.2018.10.04230581146
    [Google Scholar]
  2. LeeE. SongC.H. BaeS.J. HaK.T. KarkiR. Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis.Exp. Mol. Med.20235581632164310.1038/s12276‑023‑01069‑y37612410
    [Google Scholar]
  3. ChenX. KangR. KroemerG. TangD. Broadening horizons: The role of ferroptosis in cancer.Nat. Rev. Clin. Oncol.202118528029610.1038/s41571‑020‑00462‑033514910
    [Google Scholar]
  4. YanH.F. ZouT. TuoQ.Z. XuS. LiH. BelaidiAA. LeiP. Ferroptosis: mechanisms and links with diseases.Signal Transduct. Target Ther.2021610.1038/s41392‑020‑00428‑9
    [Google Scholar]
  5. YangX. LiuY. WangZ. JinY. GuW. Ferroptosis as a new tool for tumor suppression through lipid peroxidation.Commun. Biol.202471147510.1038/s42003‑024‑07180‑839521912
    [Google Scholar]
  6. EndaleH.T. TesfayeW. MengstieT.A. ROS induced lipid peroxidation and their role in ferroptosis.Front. Cell Dev. Biol.202311122604410.3389/fcell.2023.122604437601095
    [Google Scholar]
  7. FengS. TangD. WangY. LiX. BaoH. TangC. DongX. LiX. YangQ. YanY. YinZ. ShangT. ZhengK. HuangX. WeiZ. WangK. QiS. The mechanism of ferroptosis and its related diseases.Mol. Biomed.2023413310.1186/s43556‑023‑00142‑237840106
    [Google Scholar]
  8. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB. StockwellB.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.04222632970
    [Google Scholar]
  9. FengH. SchorppK. JinJ. Transferrin receptor is a specific ferroptosis marker.Cell Rep.2020301034113423.e710.1016/j.celrep.2020.02.04932160546
    [Google Scholar]
  10. WardD.M. KaplanJ. Ferroportin-mediated iron transport: Expression and regulation.Biochim. Biophys. Acta Mol. Cell Res.2012182391426143310.1016/j.bbamcr.2012.03.00422440327
    [Google Scholar]
  11. DietzJ.V. FoxJ.L. KhalimonchukO. Down the iron path: Mitochondrial iron homeostasis and beyond.Cells2021109219810.3390/cells1009219834571846
    [Google Scholar]
  12. SunY. ChenP. ZhaiB. ZhangM. XiangY. FangJ. XuS. GaoY. ChenX. SuiX. LiG. The emerging role of ferroptosis in inflammation.Biomed. Pharmacother.202012711010810.1016/j.biopha.2020.11010832234642
    [Google Scholar]
  13. ZhangY. WangD. PengM. TangL. OuyangJ. XiongF. GuoC. TangY. ZhouY. LiaoQ. WuX. WangH. YuJ. LiY. LiX. LiG. ZengZ. TanY. XiongW. Single‐cell RNA sequencing in cancer research.J. Exp. Clin. Cancer Res.20214018110.1186/s13046‑021‑01874‑133648534
    [Google Scholar]
  14. LiuD.S. DuongC.P. HauptS. K.G. HouseC.M. AzarW.J. PearsonH.B. FisherO.M. ReadM. GuerraG.R. HauptY. Inhibiting the system xC−/glutathione axis selectively targets cancers with mutant-p53 accumulation.Nat. Commun.2017811484410.1038/ncomms14844
    [Google Scholar]
  15. JiangL. KonN. LiT. WangS.J. SuT. HibshooshH. BaerR. GuW. Ferroptosis as a p53-mediated activity during tumour suppression.Nature20155207545576210.1038/nature1434425799988
    [Google Scholar]
  16. LiuX. ChenC. HanD. ZhouW. CuiY. TangX. XiaoC. WangY. GaoY. SLC7A11/GPX4 inactivation‐mediated ferroptosis contributes to the pathogenesis of triptolide‐induced cardiotoxicity.Oxid. Med. Cell. Longev.202220221319260710.1155/2022/319260735757509
    [Google Scholar]
  17. SuzukiH. TashiroS. SunJ. DoiH. SatomiS. IgarashiK. Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene.J. Biol. Chem.200327849492464925310.1074/jbc.M30676420014504288
    [Google Scholar]
  18. SunJ. BrandM. ZenkeY. TashiroS. GroudineM. IgarashiK. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network.Proc. Natl. Acad. Sci. USA200410161461146610.1073/pnas.030808310014747657
    [Google Scholar]
  19. ShimadaK. SkoutaR. KaplanA. YangW.S. HayanoM. DixonS.J. BrownL.M. ValenzuelaC.A. WolpawA.J. StockwellB.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis.Nat. Chem. Biol.201612749750310.1038/nchembio.207927159577
    [Google Scholar]
  20. WuJ. MinikesA.M. GaoM. BianH. LiY. StockwellB.R. ChenZ.N. JiangX. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling.Nature2019572776940240610.1038/s41586‑019‑1426‑631341276
    [Google Scholar]
  21. SunT. ChiJ.T. Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: The therapeutic implications.Genes Dis.20218324124910.1016/j.gendis.2020.05.00433997171
    [Google Scholar]
  22. LiuJ. SongX. KuangF. ZhangQ. XieY. KangR. KroemerG. TangD. NUPR1 is a critical repressor of ferroptosis.Nat. Commun.202112164710.1038/s41467‑021‑20904‑233510144
    [Google Scholar]
  23. ZengF. NijiatiS. TangL. YeJ. ZhouZ. ChenX. Ferroptosis detection: From approaches to applications.Angew. Chem. Int. Ed.20236235e20230037910.1002/anie.20230037936828775
    [Google Scholar]
  24. HentzeM.W. MuckenthalerM.U. GalyB. CamaschellaC. Two to tango: Regulation of Mammalian iron metabolism.Cell20101421243810.1016/j.cell.2010.06.02820603012
    [Google Scholar]
  25. HentzeM.W. MuckenthalerM.U. AndrewsN.C. Balancing acts.Cell2004117328529710.1016/S0092‑8674(04)00343‑515109490
    [Google Scholar]
  26. YuY. JiangL. WangH. ShenZ. ChengQ. ZhangP. WangJ. WuQ. FangX. DuanL. WangS. WangK. AnP. ShaoT. ChungR.T. ZhengS. MinJ. WangF. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis.Blood2020136672673910.1182/blood.201900290732374849
    [Google Scholar]
  27. YangJ. LiQ. FengY. ZengY. Iron deficiency and iron deficiency anemia: Potential risk factors in bone loss.Int. J. Mol. Sci.2023248689110.3390/ijms2408689137108056
    [Google Scholar]
  28. DickinsonB.C. ChangC.J. Chemistry and biology of reactive oxygen species in signaling or stress responses.Nat. Chem. Biol.20117850451110.1038/nchembio.60721769097
    [Google Scholar]
  29. ShahR. ShchepinovM.S. PrattD.A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis.ACS Cent. Sci.20184338739610.1021/acscentsci.7b0058929632885
    [Google Scholar]
  30. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/508084331737171
    [Google Scholar]
  31. LiuY. LuS. The diversified role of mitochondria in ferroptosis in cancer.Cell Death Dis.202314851910.1038/s41419‑023‑06045‑y
    [Google Scholar]
  32. SongX. HaoX. ZhuB.T. Role of mitochondrial reactive oxygen species in chemically-induced ferroptosis.Free Radic. Biol. Med.202422347349210.1016/j.freeradbiomed.2024.07.00638992393
    [Google Scholar]
  33. TangD. ChenX. KangR. KroemerG. Ferroptosis: molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  34. ShawG.C. CopeJ.J. LiL. CorsonK. HerseyC. AckermannG.E. GwynnB. LambertA.J. WingertR.A. TraverD. TredeN.S. BarutB.A. ZhouY. MinetE. DonovanA. BrownlieA. BalzanR. WeissM.J. PetersL.L. KaplanJ. ZonL.I. PawB.H. Mitoferrin is essential for erythroid iron assimilation.Nature200644070809610010.1038/nature0451216511496
    [Google Scholar]
  35. SatreM. MatteiS. AubryL. GaudetP. PelosiL. BrandolinG. KleinG. Mitochondrial carrier family: Repertoire and peculiarities of the cellular slime mould Dictyostelium discoideum.Biochimie20078991058106910.1016/j.biochi.2007.03.00417442478
    [Google Scholar]
  36. RouaultT.A. The role of iron regulatory proteins in mammalian iron homeostasis and disease.Nat. Chem. Biol.20062840641410.1038/nchembio80716850017
    [Google Scholar]
  37. RichardsonD.R. HuangM.L.H. WhitnallM. BeckerE.M. PonkaP. Suryo RahmantoY. The ins and outs of mitochondrial iron-loading: The metabolic defect in Friedreich’s ataxia.J. Mol. Med. (Berl.)201088432332910.1007/s00109‑009‑0565‑x19997898
    [Google Scholar]
  38. MarquesE. KramerR. RyanD.G. Multifaceted mitochondria in innate immunity.npj Metab. Health. Dis.202421610.1038/s44324‑024‑00008‑3
    [Google Scholar]
  39. HershkoC. Pathogenesis and management of iron toxicity in thalassemia.Ann. N. Y. Acad. Sci.2010120211910.1111/j.1749‑6632.2010.05544.x20712765
    [Google Scholar]
  40. D’AutréauxB. ToledanoM.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis.Nat. Rev. Mol. Cell Biol.200781081382410.1038/nrm225617848967
    [Google Scholar]
  41. KumfuS. ChattipakornS. FucharoenS. ChattipakornN. Mitochondrial calcium uniporter blocker prevents cardiac mitochondrial dysfunction induced by iron overload in thalassemic mice.Biometals20122561167117510.1007/s10534‑012‑9579‑x22910858
    [Google Scholar]
  42. JinH.S. SuhH.W. KimS.J. JoE.K. Mitochondrial control of innate immunity and inflammation.Immune Netw.2017172778810.4110/in.2017.17.2.7728458619
    [Google Scholar]
  43. HarringtonJ.S. RyterS.W. PlatakiM. PriceD.R. ChoiA.M.K. Mitochondria in health, disease, and aging.Physiol. Rev.202310342349242210.1152/physrev.00058.202137021870
    [Google Scholar]
  44. PetitF. DrecourtA. DussiotM. ZangarelliC. HermineO. MunnichA. RötigA. Defective palmitoylation of transferrin receptor triggers iron overload in Friedreich ataxia fibroblasts.Blood2021137152090210210.1182/blood.202000698733529321
    [Google Scholar]
  45. González-DomínguezÁ. Visiedo-GarcíaF.M. Domínguez-RiscartJ. González-DomínguezR. MateosR.M. Lechuga-SanchoA.M. Iron metabolism in obesity and metabolic syndrome.Int. J. Mol. Sci.20202115552910.3390/ijms2115552932752277
    [Google Scholar]
  46. AbbaspourN. HurrellR. KelishadiR. Review on iron and its importance for human health.J. Res. Med. Sci.201419216417424778671
    [Google Scholar]
  47. JiF. LeeH. KimJ-H. Regulation of ferroptosis in obesity: Muscle type-specific effects of dietary restriction and exercise.bioRxiv202410.1101/2024.08.04.605473
    [Google Scholar]
  48. ZhangS. SunZ. JiangX. LuZ. DingL. LiC. TianX. WangQ. Ferroptosis increases obesity: Crosstalk between adipocytes and the neuroimmune system.Front. Immunol.202213104993610.3389/fimmu.2022.104993636479119
    [Google Scholar]
  49. HeL.P. ZhouZ.X. LiC.P. Narrative review of ferroptosis in obesity.J. Cell. Mol. Med.202327792092610.1111/jcmm.1770136871273
    [Google Scholar]
  50. NishizawaH. MatsumotoM. YamanakaM. IrikuraR. NakajimaK. TadaK. NakayamaY. KonishiM. ItohN. FunayamaR. NakayamaK. IgarashiK. BACH1 inhibits senescence, obesity, and short lifespan by ferroptotic FGF21 secretion.Cell Rep.202443711440310.1016/j.celrep.2024.11440338943639
    [Google Scholar]
  51. StanicS. BardovaK. JanovskaP. RossmeislM. KopeckyJ. ZouharP. Prolonged FGF21 treatment increases energy expenditure and induces weight loss in obese mice independently of UCP1 and adrenergic signaling.Biochem. Pharmacol.202422111604210.1016/j.bcp.2024.11604238325495
    [Google Scholar]
  52. MiaoR. FangX. ZhangY. WeiJ. ZhangY. TianJ. Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: Mechanisms and therapeutic opportunities.npj Metab. Health. Dis.2023210.1038/s41419‑023‑05708‑0
    [Google Scholar]
  53. ElumalaiS. KarunakaranU. MoonJ.S. WonK.C. Ferroptosis signaling in pancreatic β-Cells: Novel insights & therapeutic targeting.Int. J. Mol. Sci.202223221367910.3390/ijms23221367936430158
    [Google Scholar]
  54. HorowitzM.P. GreenamyreJ.T. Mitochondrial iron metabolism and its role in neurodegeneration.J. Alzheimers Dis.201020S2S551S56810.3233/JAD‑2010‑100354
    [Google Scholar]
  55. PatelD. SaxenaB. Decoding osteoporosis: Understanding the disease, exploring current and new therapies and emerging targets.J. Orthop. Res.20254410047210.1016/j.jorep.2024.100472
    [Google Scholar]
  56. ChenX. LiuC. YuR. GanZ. ZhangZ. ChenZ. LiuY. WuD. YuX. LiuC. CaoY. Interaction between ferroptosis and TNF‐α: Impact in obesity‐related osteoporosis.FASEB J.2023376e2294710.1096/fj.202201958R37199646
    [Google Scholar]
  57. LuJ. YangJ. ZhengY. ChenX. FangS. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence.Sci. Rep.2019911613010.1038/s41598‑019‑52513‑x
    [Google Scholar]
  58. OkyayE. ErtugrulC. AcarB. SismanA.R. OnvuralB. OzaksoyD. Comparative evaluation of serum levels of main minerals and postmenopausal osteoporosis.Maturitas201376432032510.1016/j.maturitas.2013.07.01524011991
    [Google Scholar]
  59. LinF. Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury.Cell Death Dis.202213327110.1038/s41419‑022‑04708‑w
    [Google Scholar]
  60. ShaoC. ChenY. YangT. ZhaoH. LiD. Mesenchymal stem cell derived exosomes suppress neuronal cell ferroptosis via lncGm36569/miR-5627-5p/FSP1 axis in acute spinal cord injury.Stem Cell Rev. Rep.20221831127114210.1007/s12015‑022‑10327‑x35257299
    [Google Scholar]
  61. LiuJ. RenZ. YangL. ZhuL. liY. BieC. LiuH. JiY. ChenD. ZhuM. KuangW. The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells.Cell Death Discov.2022819910.1038/s41420‑022‑00902‑z35249107
    [Google Scholar]
  62. GeW. JieJ. YaoJ. LiW. ChengY. LuW. Advanced glycation end products promote osteoporosis by inducing ferroptosis in osteoblasts.Mol. Med. Rep.202225414010.3892/mmr.2022.1265635211757
    [Google Scholar]
  63. WangX. MaH. SunJ. ZhengT. ZhaoP. LiH. YangM. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis.Biol. Trace Elem. Res.2022200129830710.1007/s12011‑021‑02627‑z33594527
    [Google Scholar]
  64. YangR.Z. XuW.N. ZhengH.L. ZhengX.F. LiB. JiangL.S. JiangS.D. Exosomes derived from vascular endothelial cells antagonize glucocorticoid‐induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts.J. Cell. Physiol.202123696691670510.1002/jcp.3033133590921
    [Google Scholar]
  65. XiongY. ChenL. YanC. EndoY. MiB. LiuG. The lncRNA Rhno1/miR-6979-5p/BMP2 axis modulates osteoblast differentiation.Int. J. Biol. Sci.20201691604161510.7150/ijbs.3893032226305
    [Google Scholar]
  66. QuX. SunZ. WangY. OngH.S. Zoledronic acid promotes osteoclasts ferroptosis by inhibiting FBXO9-mediated p53 ubiquitination and degradation.PeerJ20219e1251010.7717/peerj.1251035003915
    [Google Scholar]
  67. SunF. ZhouJ. LiuZ. JiangZ. PengH. Dexamethasone induces ferroptosis via P53/SLC7A11/GPX4 pathway in glucocorticoid-induced osteonecrosis of the femoral head.Biochem. Biophys. Res. Commun.202260214915510.1016/j.bbrc.2022.02.11235276555
    [Google Scholar]
  68. LiuJ. LouC. ZhenC. WangY. ShangP. LvH. Iron plays a role in sulfasalazine-induced ferroptosis with autophagic flux blockage in K7M2 osteosarcoma cells.Metallomics2022145mfac02710.1093/mtomcs/mfac02735441682
    [Google Scholar]
  69. RuQ. LiY. XieW. DingY. ChenL. XuG. WuY. WangF. Fighting age-related orthopedic diseases: Focusing on ferroptosis.Bone Res.20231111210.1038/s41413‑023‑00247‑y
    [Google Scholar]
  70. BennettR.M. Synovial iron deposition in osteoarthritis and rheumatoid arthritis.J. Rheumatol.1980745837420347
    [Google Scholar]
  71. ChenY. XuW. YangH. ShaoM. XuS. DengJ. GaoX. LiuH. ShuaiZ. XuS. PanF. Serum levels of hepcidin in rheumatoid arthritis and its correlation with disease activity and anemia: A meta-analysis.Immunol. Invest.2021502-324325810.1080/08820139.2020.174273132216485
    [Google Scholar]
  72. CylwikB. GruszewskaE. Gindzienska-SieskiewiczE. Kowal-BieleckaO. ChrostekL. Serum profile of transferrin isoforms in rheumatoid arthritis treated with biological drugs.Clin. Biochem.201974313510.1016/j.clinbiochem.2019.10.00531672652
    [Google Scholar]
  73. ElsheemyM.S. HasaninA.H. MansourA. MehrezS.I. Abdel-BaryM. Etanercept improved anemia and decreased hepcidin gene expression in a rat model of rheumatoid arthritis.Biomed. Pharmacother.201911210874010.1016/j.biopha.2019.10874030970527
    [Google Scholar]
  74. BaoJ. YanY. ZuoD. ZhuoZ. SunT. LinH. HanZ. ZhaoZ. YuH. Iron metabolism and ferroptosis in diabetic bone loss: from mechanism to therapy.Front. Nutr.202310117857310.3389/fnut.2023.117857337215218
    [Google Scholar]
  75. JiangM. WuS. XieK. ZhouG. ZhouW. BaoP. The significance of ferroptosis in renal diseases and its therapeutic potential.Heliyon20241016e3588210.1016/j.heliyon.2024.e3588239220983
    [Google Scholar]
  76. WeigandI. SchreinerJ. RöhrigF. Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type II ferroptosis induction.Cell Death Dis.202011319210.1038/s41419‑020‑2385‑4
    [Google Scholar]
  77. WangJ. WangY. LiuY. CaiX. HuangX. FuW. WangL. QiuL. LiJ. SunL. Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model.Cell Death Discov.20228112710.1038/s41420‑022‑00931‑835318301
    [Google Scholar]
  78. HosohataK. HarnsirikarnT. ChokesuwattanaskulS. Ferroptosis: A potential therapeutic target in acute kidney injury.Int. J. Mol. Sci.20222312658310.3390/ijms2312658335743026
    [Google Scholar]
  79. YueL. YangY.R. MaW.X. WangH.Y. FanQ.W. WangY.Y. LiC. WangJ. HuZ.M. WangX.F. LiF.H. LiuM.M. JinJ. ShiC. WenJ.G. Epigallocatechin gallate attenuates gentamicin-induced nephrotoxicity by suppressing apoptosis and ferroptosis.Molecules20222723856410.3390/molecules2723856436500657
    [Google Scholar]
  80. NiL. YuanC. WuX. Targeting ferroptosis in acute kidney injury.Cell Death Dis.202213218210.1038/s41419‑022‑04628‑9
    [Google Scholar]
  81. YangW.S. StockwellB.R. Ferroptosis: Death by lipid peroxidation.Trends Cell Biol.201626316517610.1016/j.tcb.2015.10.01426653790
    [Google Scholar]
  82. FangX. WangH. HanD. XieE. YangX. WeiJ. GuS. GaoF. ZhuN. YinX. ChengQ. ZhangP. DaiW. ChenJ. YangF. YangH.T. LinkermannA. GuW. MinJ. WangF. Ferroptosis as a target for protection against cardiomyopathy.Proc. Natl. Acad. Sci. USA201911672672268010.1073/pnas.182102211630692261
    [Google Scholar]
  83. Friedmann AngeliJ.P. KryskoD.V. ConradM. Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion.Nat. Rev. Cancer201919740541410.1038/s41568‑019‑0149‑1
    [Google Scholar]
  84. FangX. ArdehaliH. MinJ. WangF. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease.Nat. Rev. Cardiol.202220172310.1038/s41569‑022‑00735‑4
    [Google Scholar]
  85. ZhouL. HanS. GuoJ. QiuT. ZhouJ. ShenL. Ferroptosis - A new dawn in the treatment of organ ischemia–reperfusion injury.Cells20221122365310.3390/cells1122365336429080
    [Google Scholar]
  86. PanY. WangX. LiuX. ShenL. ChenQ. ShuQ. Targeting ferroptosis as a promising therapeutic strategy for ischemia-reperfusion injury.Antioxidants20221111219610.3390/antiox1111219636358568
    [Google Scholar]
  87. KaganV.E. MaoG. QuF. AngeliJ.P.F. DollS. CroixC.S. DarH.H. LiuB. TyurinV.A. RitovV.B. KapralovA.A. AmoscatoA.A. JiangJ. AnthonymuthuT. MohammadyaniD. YangQ. PronethB. Klein-SeetharamanJ. WatkinsS. BaharI. GreenbergerJ. MallampalliR.K. StockwellB.R. TyurinaY.Y. ConradM. BayırH. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.Nat. Chem. Biol.2017131819010.1038/nchembio.223827842066
    [Google Scholar]
  88. YangW.S. SriRamaratnamR. WelschM.E. ShimadaK. SkoutaR. ViswanathanV.S. CheahJ.H. ClemonsP.A. ShamjiA.F. ClishC.B. BrownL.M. GirottiA.W. CornishV.W. SchreiberS.L. StockwellB.R. Regulation of ferroptotic cancer cell death by GPX4.Cell20141561-231733110.1016/j.cell.2013.12.01024439385
    [Google Scholar]
  89. BeattyA. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1.Nat. Commun.2021121224410.1038/s41467‑021‑22471‑y
    [Google Scholar]
  90. ShiP. SongC. QiH. RenJ. RenP. WuJ. XieY. ZhangM. SunH. CaoY. Up-regulation of IRF3 is required for docosahexaenoic acid suppressing ferroptosis of cardiac microvascular endothelial cells in cardiac hypertrophy rat.J. Nutr. Biochem.202210410897210.1016/j.jnutbio.2022.10897235227883
    [Google Scholar]
  91. YuanZ. LiuT. WangH. XueL. WangJ. Fatty acids metabolism: The bridge between ferroptosis and ionizing radiation.Front. Cell Dev. Biol.2021967561710.3389/fcell.2021.67561734249928
    [Google Scholar]
  92. MunteanuC. SchwartzB. Interactions between dietary antioxidants, dietary fiber and the gut microbiome: Their putative role in inflammation and cancer.Int. J. Mol. Sci.20242515825010.3390/ijms2515825039125822
    [Google Scholar]
  93. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  94. Malek-EsfandiariZ. Rezvani-NoghaniA. SohrabiT. MokaberiP. Amiri-TehranizadehZ. ChamaniJ. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway.J. Fluoresc.20233341537155710.1007/s10895‑023‑03169‑436787038
    [Google Scholar]
/content/journals/cis/10.2174/012210299X394730250912071440
Loading
/content/journals/cis/10.2174/012210299X394730250912071440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Atherosclerosis; Chronic kidney disease; Diabetes; Mitochondrial ROS; Osteogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test