Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

One of the biggest risks to humans’ social progress is global warming. It is a classic example of how the climate is changing globally and has had a significant impact on social life and production in numerous ways. Since agriculture is the basis of human survival, it is especially susceptible to weather change, such as changing temperature, precipitation, wind speed, and other environmental factors. In addition, crop yield cycles, the frequency of severe climate events, and the patterns of pest sickness have an impact on harvest production and quality. By altering temperature regimes, rainfall patterns, and the frequency of extreme climate events, global climate change has had a significant impact on agricultural production. The possible outcomes of these changes are reduced harvest, increased insects and diseases, and disruption in the water supply. According to research, high temperatures lead to shortening of agricultural growth cycles, while erratic rainfall tends to push planting back and reduce harvests. The development of climate-resilient crop cultivars, effective water management techniques, such as drip irrigation, and diversification strategies, like intercropping, are just a few of the adaptive strategies that have been employed in response to these challenges. All of these strategies have demonstrated promise in stabilizing yields under changing climate conditions. This paper has examined the most recent developments in this field, providing an overview of how agricultural practices contribute to global climate change and their influence on it, and suggested potential solutions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X386260250911065904
2025-10-20
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X386260.html?itemId=/content/journals/cis/10.2174/012210299X386260250911065904&mimeType=html&fmt=ahah

References

  1. Monthly global climate report for annual.2022Available from: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202313
  2. LeeH. CalvinK. DasguptaD. KrinnerG. MukherjiA. ThorneP. TrisosC. RomeroJ. AldunceP. BarretK. BlancoG. Climate Change 2023: Synthesis Report, Summary for Policymakers.IPCCGeneva, Switzerland2023
    [Google Scholar]
  3. TollefsonJ. Earth is warmer than it's been in 125,000 years, says landmark climate report.Nature20215967871171172
    [Google Scholar]
  4. KarkiS. BurtonP. MackeyB. The experiences and perceptions of farmers about the impacts of climate change and variability on crop production: A review.Clim. Dev.2020121809510.1080/17565529.2019.1603096
    [Google Scholar]
  5. AnnieM. PalR. GawaiA.S. SharmaA. Assessing the impact of climate change on agricultural production using crop simulation model.Int. J. Environ. Clim. Change202313753855010.9734/ijecc/2023/v13i71906
    [Google Scholar]
  6. WuY. MengS. LiuC. GaoW. LiangX.Z. A bibliometric analysis of research for climate impact on agriculture.Front. Sustain. Food Syst.20237119130510.3389/fsufs.2023.1191305
    [Google Scholar]
  7. MonteleoneB. BorzíI. BonaccorsoB. MartinaM. Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves.Nat. Hazards202311632761279610.1007/s11069‑022‑05791‑0
    [Google Scholar]
  8. YangQ. DuT. LiN. LiangJ. JavedT. WangH. GuoJ. LiuY. Bibliometric analysis on the impact of climate change on crop pest and disease.Agronomy202313392010.3390/agronomy13030920
    [Google Scholar]
  9. EekhoutJ.P.C. de VenteJ. Global impact of climate change on soil erosion and potential for adaptation through soil conservation.Earth Sci. Rev.202222610392110.1016/j.earscirev.2022.103921
    [Google Scholar]
  10. FuentesM. CárdenasJ.P. OlivaresG. RasmussenE. SalazarS. UrbinaC. VidalG. LawlerD. Global digital analysis for science diplomacy on climate change and sustainable development.Sustainability202315221574710.3390/su152215747
    [Google Scholar]
  11. HeathS.C. Navigating psychosocial dimensions: Understanding the intersections of adaptation strategies and well-being outcomes in the context of climate change.Curr. Opin. Environ. Sustain.20257210149310.1016/j.cosust.2024.101493
    [Google Scholar]
  12. KabatoW. GetnetG.T. SinoreT. NemethA. MolnárZ. Towards climate-smart agriculture: Strategies for sustainable agricultural production, food security, and greenhouse gas reduction.Agronomy202515356510.3390/agronomy15030565
    [Google Scholar]
  13. KumlerA. KravitzB. DraxlC. VimmerstedtL. BentonB. LundquistJ.K. MartinM. BuckH.J. WangH. LennardC. TaoL. Potential effects of climate change and solar radiation modification on renewable energy resources.Renew. Sustain. Energy Rev.202520711493410.1016/j.rser.2024.114934
    [Google Scholar]
  14. LuoY. LiuS. ZhangY. ZengM. ZhaoD. Digital pathways to resilience: Assessing the impact of digitalization on agricultural production resilience in China.China Econ. Rev.20259010237510.1016/j.chieco.2025.102375
    [Google Scholar]
  15. BolanS. PadhyeL.P. JasemizadT. GovarthananM. KarmegamN. WijesekaraH. AmarasiriD. HouD. ZhouP. BiswalB.K. BalasubramanianR. WangH. SiddiqueK.H.M. RinklebeJ. KirkhamM.B. BolanN. Impacts of climate change on the fate of contaminants through extreme weather events.Sci. Total Environ.202490916838810.1016/j.scitotenv.2023.16838837956854
    [Google Scholar]
  16. BibiF. RahmanA. An overview of climate change impacts on agriculture and their mitigation strategies.Agriculture2023138150810.3390/agriculture13081508
    [Google Scholar]
  17. VatistasC. AvgoustakiD.D. BartzanasT. A systematic literature review on controlled-environment agriculture: How vertical farms and greenhouses can influence the sustainability and footprint of urban microclimate with local food production.Atmosphere2022138125810.3390/atmos13081258
    [Google Scholar]
  18. Benitez-AlfonsoY. SoanesB.K. ZimbaS. SinanajB. GermanL. SharmaV. BohraA. KolesnikovaA. DunnJ.A. MartinA.C. Khashi u RahmanM. Saati-SantamaríaZ. García-FraileP. FerreiraE.A. FrazãoL.A. CowlingW.A. SiddiqueK.H.M. PandeyM.K. FarooqM. VarshneyR.K. ChapmanM.A. BoeschC. Daszkowska-GolecA. FoyerC.H. Enhancing climate change resilience in agricultural crops.Curr. Biol.20233323R1246R126110.1016/j.cub.2023.10.02838052178
    [Google Scholar]
  19. AlamA Climate change impact, agriculture, and society: An overview.Climate Change, Agriculture and SocietySpringer202331310.1007/978‑3‑031‑28251‑5_1
    [Google Scholar]
  20. PrajapatiH.A. YadavK. HanamasagarY. KumarM.B. KhanT. BelagallaN. ThomasV. JabeenA. GomadhiG. MalathiG. Impact of climate change on global agriculture: Challenges and adaptation.Int. J. Environ. Clim. Change202414437237910.9734/ijecc/2024/v14i44123
    [Google Scholar]
  21. YuanX. LiS. ChenJ. YuH. YangT. WangC. HuangS. ChenH. AoX. Impacts of global climate change on agricultural production: A comprehensive review.Agronomy2024147136010.3390/agronomy14071360
    [Google Scholar]
  22. TanQ. LiuY. DaiL. PanT. Shortened key growth periods of soybean observed in China under climate change.Sci. Rep.2021111819710.1038/s41598‑021‑87618‑933854171
    [Google Scholar]
  23. OzkaynakE. Effects of air temperature and hours of sunlight on the length of the vegetation period and the yield of some field crops.Ekol. Cevre Derg.20132287586310.5053/ekoloji.2013.878
    [Google Scholar]
  24. MinoliS. JägermeyrJ. AssengS. UrfelsA. MüllerC. Global crop yields can be lifted by timely adaptation of growing periods to climate change.Nat. Commun.2022131707910.1038/s41467‑022‑34411‑536400762
    [Google Scholar]
  25. LiX. TanL. LiY. QiJ. FengP. LiB. Li LiuD. ZhangX. MarekG.W. ZhangY. LiuH. SrinivasanR. ChenY. Effects of global climate change on the hydrological cycle and crop growth under heavily irrigated management – A comparison between CMIP5 and CMIP6.Comput. Electron. Agric.202220210740810.1016/j.compag.2022.107408
    [Google Scholar]
  26. AhmadQ.A. MoorsE. BiemansH. ShaheenN. MasihI. ur Rahman HashmiM.Z. Climate-induced shifts in irrigation water demand and supply during sensitive crop growth phases in South Asia.Clim. Change20231761115010.1007/s10584‑023‑03629‑7
    [Google Scholar]
  27. LeskC. CoffelE. WinterJ. RayD. ZscheischlerJ. SeneviratneS.I. HortonR. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields.Nat. Food20212968369110.1038/s43016‑021‑00341‑637117467
    [Google Scholar]
  28. JägermeyrJ. MüllerC. RuaneA.C. ElliottJ. BalkovicJ. CastilloO. FayeB. FosterI. FolberthC. FrankeJ.A. FuchsK. GuarinJ.R. HeinkeJ. HoogenboomG. IizumiT. JainA.K. KellyD. KhabarovN. LangeS. LinT.S. LiuW. MialykO. MinoliS. MoyerE.J. OkadaM. PhillipsM. PorterC. RabinS.S. ScheerC. SchneiderJ.M. SchynsJ.F. SkalskyR. SmeraldA. StellaT. StephensH. WebberH. ZabelF. RosenzweigC. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models.Nat. Food202121187388510.1038/s43016‑021‑00400‑y37117503
    [Google Scholar]
  29. ZhuP. BurneyJ. ChangJ. JinZ. MuellerN.D. XinQ. XuJ. YuL. MakowskiD. CiaisP. Warming reduces global agricultural production by decreasing cropping frequency and yields.Nat. Clim. Chang.202212111016102310.1038/s41558‑022‑01492‑5
    [Google Scholar]
  30. RezaeiE.E. WebberH. AssengS. BooteK. DurandJ.L. EwertF. MartreP. MacCarthyD.S. Climate change impacts on crop yields.Nat. Rev. Earth Environ.202341283184610.1038/s43017‑023‑00491‑0
    [Google Scholar]
  31. AssengS. MartreP. MaioranoA. RötterR.P. O’LearyG.J. FitzgeraldG.J. GirousseC. MotzoR. GiuntaF. BabarM.A. ReynoldsM.P. KheirA.M.S. ThorburnP.J. WahaK. RuaneA.C. AggarwalP.K. AhmedM. BalkovičJ. BassoB. BiernathC. BindiM. CammaranoD. ChallinorA.J. De SanctisG. DumontB. Eyshi RezaeiE. FereresE. FerriseR. Garcia-VilaM. GaylerS. GaoY. HoranH. HoogenboomG. IzaurraldeR.C. JablounM. JonesC.D. KassieB.T. KersebaumK.C. KleinC. KoehlerA.K. LiuB. MinoliS. Montesino San MartinM. MüllerC. Naresh KumarS. NendelC. OlesenJ.E. PalosuoT. PorterJ.R. PriesackE. RipocheD. SemenovM.A. StöckleC. StratonovitchP. StreckT. SupitI. TaoF. Van der VeldeM. WallachD. WangE. WebberH. WolfJ. XiaoL. ZhangZ. ZhaoZ. ZhuY. EwertF. Climate change impact and adaptation for wheat protein.Glob. Change Biol.201925115517310.1111/gcb.1448130549200
    [Google Scholar]
  32. JanmohammadiM. SabaghniaN. Strategies to alleviate the unusual effects of climate change on crop production: A thirsty and warm future, low crop quality. A review.Biologija202369210.6001/biologija.2023.69.2.1
    [Google Scholar]
  33. ZhuC. KobayashiK. LoladzeI. ZhuJ. JiangQ. XuX. LiuG. SeneweeraS. EbiK.L. DrewnowskiA. FukagawaN.K. ZiskaL.H. Carbon dioxide (CO 2 ) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries.Sci. Adv.201845eaaq101210.1126/sciadv.aaq101229806023
    [Google Scholar]
  34. ZhangD. LiuJ. LiD. BatchelorW.D. WuD. ZhenX. JuH. Future climate change impacts on wheat grain yield and protein in the North China Region.Sci. Total Environ.202390216614710.1016/j.scitotenv.2023.16614737562625
    [Google Scholar]
  35. SunC. JiangZ. LiW. HouQ. LiL. Changes in extreme temperature over China when global warming stabilized at 1.5 °C and 2.0 °C.Sci. Rep.2019911498210.1038/s41598‑019‑50036‑z31628358
    [Google Scholar]
  36. NewmanR. NoyI. The global costs of extreme weather that are attributable to climate change.Nat. Commun.2023141610310.1038/s41467‑023‑41888‑137775690
    [Google Scholar]
  37. CarvalhoA.L. SantosD.V. MarengoJ.A. CoutinhoS.M.V. MaiaS.M.F. Impacts of extreme climate events on Brazilian agricultural production.Sustentabilidade em Debate202011319722410.18472/SustDeb.v11n3.2020.33814
    [Google Scholar]
  38. SchmittJ. OffermannF. SöderM. FrühaufC. FingerR. Extreme weather events cause significant crop yield losses at the farm level in German agriculture.Food Policy202211210235910.1016/j.foodpol.2022.102359
    [Google Scholar]
  39. LeskC. AndersonW. RigdenA. CoastO. JägermeyrJ. McDermidS. DavisK.F. KonarM. Compound heat and moisture extreme impacts on global crop yields under climate change.Nat. Rev. Earth Environ.202231287288910.1038/s43017‑022‑00368‑8
    [Google Scholar]
  40. MalikA. LiM. LenzenM. FryJ. LiyanapathiranaN. BeyerK. BoylanS. LeeA. RaubenheimerD. GeschkeA. ProkopenkoM. Impacts of climate change and extreme weather on food supply chains cascade across sectors and regions in Australia.Nat. Food20223863164310.1038/s43016‑022‑00570‑337118599
    [Google Scholar]
  41. LalR MongerC NaveL SmithP The role of soil in regulation of climate.Philos Trans R Soc Lond B Biol Sci202137618342021008410.1098/rstb.2021.008434365818
    [Google Scholar]
  42. TomazA PalmaP AlvarengaP GonçalvesMC Soil salinity risk in a climate change scenario and its effect on crop yield.Climate Change and Soil InteractionsElsevier202035139610.1016/B978‑0‑12‑818032‑7.00013‑8
    [Google Scholar]
  43. FurtakK. WolińskaA. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture – A review.Catena202323110737810.1016/j.catena.2023.107378
    [Google Scholar]
  44. BonfanteA TerribileF BoumaJ Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: An Italian case study.SOIL20195111410.5194/soil‑5‑1‑2019
    [Google Scholar]
  45. SünnemannM BeugnonR BreitkreuzC BuscotF CesarzS JonesA LehmannA LochnerA OrgiazziA ReitzT RilligMC Climate change and cropland management compromise soil integrity and multifunctionality.Commun Earth Environ20234139410.1038/s43247‑023‑01047‑2
    [Google Scholar]
  46. TabariH. Climate change impact on flood and extreme precipitation increases with water availability.Sci. Rep.20201011376810.1038/s41598‑020‑70816‑232792563
    [Google Scholar]
  47. DaiA. ZhaoT. ChenJ. Climate change and drought: A precipitation and evaporation perspective.Curr. Clim. Change Rep.20184330131210.1007/s40641‑018‑0101‑6
    [Google Scholar]
  48. Cardoso PereiraS. Marta-AlmeidaM. CarvalhoA.C. RochaA. Extreme precipitation events under climate change in the Iberian Peninsula.Int. J. Climatol.20204021255127810.1002/joc.6269
    [Google Scholar]
  49. Kyei-MensahC. KyerematenR. Adu-AcheampongS. Impact of rainfall variability on crop production within the Worobong Ecological Area of Fanteakwa District, Ghana.Adv. Agric.2019201911710.1155/2019/7930127
    [Google Scholar]
  50. NugrohoS. FebriamansyahR. NurhamidahN. GunawanD. Assessment of extreme precipitation for developing agricultural adaptation strategy in the selo watershed area.Int. J. Adv. Sci. Eng. Inf. Technol.20231351889189710.18517/ijaseit.13.5.19082
    [Google Scholar]
  51. SchneiderL. RebetezM. RasmannS. The effect of climate change on invasive crop pests across biomes.Curr. Opin. Insect Sci.20225010089510.1016/j.cois.2022.10089535240333
    [Google Scholar]
  52. ChalonerT.M. GurrS.J. BebberD.P. Plant pathogen infection risk tracks global crop yields under climate change.Nat. Clim. Chang.202111871071510.1038/s41558‑021‑01104‑8
    [Google Scholar]
  53. SinghB.K. Delgado-BaquerizoM. EgidiE. GuiradoE. LeachJ.E. LiuH. TrivediP. Climate change impacts on plant pathogens, food security and paths forward.Nat. Rev. Microbiol.2023211064065610.1038/s41579‑023‑00900‑737131070
    [Google Scholar]
  54. WangC. WangX. JinZ. MüllerC. PughT.A.M. ChenA. WangT. HuangL. ZhangY. LiL.X.Z. PiaoS. Occurrence of crop pests and diseases has largely increased in China since 1970.Nat. Food202131576510.1038/s43016‑021‑00428‑037118481
    [Google Scholar]
  55. SubediB. PoudelA. AryalS. The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security.J. Agric. Food Res.20231410073310.1016/j.jafr.2023.100733
    [Google Scholar]
  56. LabordeD. MamunA. MartinW. PiñeiroV. VosR. Agricultural subsidies and global greenhouse gas emissions.Nat. Commun.2021121260110.1038/s41467‑021‑22703‑133972533
    [Google Scholar]
  57. GerberP.J. SteinfeldH. HendersonB. MottetA. OpioC. DijkmanJ. FalcucciA. TempioG. Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities.Food and Agriculture Organization of the United NationsRome2013
    [Google Scholar]
  58. ChatautG. BhattaB. JoshiD. SubediK. KafleK. Greenhouse gases emission from agricultural soil: A review.J. Agric. Food Res.20231110053310.1016/j.jafr.2023.100533
    [Google Scholar]
  59. YanX. AkiyamaH. YagiK. AkimotoH. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental panel on climate change guidelines.Global Biogeochem. Cycles20092322008GB00329910.1029/2008GB003299
    [Google Scholar]
  60. GaoY. Cabrera SerrenhoA. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions.Nat. Food20234217017810.1038/s43016‑023‑00698‑w37117855
    [Google Scholar]
  61. WinklerK. FuchsR. RounsevellM. HeroldM. Global land use changes are four times greater than previously estimated.Nat. Commun.2021121250110.1038/s41467‑021‑22702‑233976120
    [Google Scholar]
  62. BaratiA.A. ZhoolidehM. AzadiH. LeeJ.H. ScheffranJ. Interactions of land-use cover and climate change at global level: How to mitigate the environmental risks and warming effects.Ecol. Indic.202314610982910.1016/j.ecolind.2022.109829
    [Google Scholar]
  63. WiesmeierM. UrbanskiL. HobleyE. LangB. von LützowM. Marin-SpiottaE. van WesemaelB. RabotE. LießM. Garcia-FrancoN. WollschlägerU. VogelH-J. Kögel-KnabnerI. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales.Geoderma201933314916210.1016/j.geoderma.2018.07.026
    [Google Scholar]
  64. AbbassK. QasimM.Z. SongH. MurshedM. MahmoodH. YounisI. A review of the global climate change impacts, adaptation, and sustainable mitigation measures.Environ. Sci. Pollut. Res. Int.20222928425394255910.1007/s11356‑022‑19718‑635378646
    [Google Scholar]
  65. YuH. CuiY. LiS. KangS. YaoZ. WeiZ. Estimation of the deep drainage for irrigated cropland based on satellite observations and deep neural networks.Remote Sens. Environ.202329811381910.1016/j.rse.2023.113819
    [Google Scholar]
  66. WangC. LiS. WuM. JanssonP.E. ZhangW. HeH. XingX. YangD. HuangS. KangD. HeY. Modelling water and energy fluxes with an explicit representation of irrigation under mulch in a maize field.Agric. For. Meteorol.202232610914510.1016/j.agrformet.2022.109145
    [Google Scholar]
  67. LiuK. HarrisonM.T. YanH. LiuD.L. MeinkeH. HoogenboomG. WangB. PengB. GuanK. JaegermeyrJ. WangE. ZhangF. YinX. ArchontoulisS. NieL. BadeaA. ManJ. WallachD. ZhaoJ. BenjumeaA.B. FahadS. TianX. WangW. TaoF. ZhangZ. RötterR. YuanY. ZhuM. DaiP. NieJ. YangY. ZhangY. ZhouM. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates.Nat. Commun.202314176510.1038/s41467‑023‑36129‑436765112
    [Google Scholar]
  68. PixleyK.V. Falck-ZepedaJ.B. PaarlbergR.L. PhillipsP.W.B. Slamet-LoedinI.H. DhuggaK.S. CamposH. GuttersonN. Genome-edited crops for improved food security of smallholder farmers.Nat. Genet.202254436436710.1038/s41588‑022‑01046‑735393597
    [Google Scholar]
  69. YangX. XiongJ. DuT. JuX. GanY. LiS. XiaL. ShenY. PacenkaS. SteenhuisT.S. SiddiqueK.H.M. KangS. Butterbach-BahlK. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health.Nat. Commun.202415119810.1038/s41467‑023‑44464‑938172570
    [Google Scholar]
  70. LiL. ZhangY. ZhouT. WangK. WangC. WangT. YuanL. AnK. ZhouC. LüG. Mitigation of China’s carbon neutrality to global warming.Nat. Commun.2022131531510.1038/s41467‑022‑33047‑936085326
    [Google Scholar]
  71. AjagekarA. MattsonN.S. YouF. Energy-efficient ai-based control of semi-closed greenhouses leveraging robust optimization in deep reinforcement learning.Adv. Appl. Energy2023910011910.1016/j.adapen.2022.100119
    [Google Scholar]
  72. HuG. YouF. Renewable energy-powered semi-closed greenhouse for sustainable crop production using model predictive control and machine learning for energy management.Renew. Sustain. Energy Rev.202216811279010.1016/j.rser.2022.112790
    [Google Scholar]
  73. SharathKumarM. HeuvelinkE. MarcelisL.F.M. Vertical farming: Moving from genetic to environmental modification.Trends Plant Sci.202025872472710.1016/j.tplants.2020.05.01232565021
    [Google Scholar]
  74. van DeldenS.H. SharathKumarM. ButturiniM. GraamansL.J.A. HeuvelinkE. KaciraM. KaiserE. KlamerR.S. KlerkxL. KootstraG. LoeberA. SchoutenR.E. StanghelliniC. van IeperenW. VerdonkJ.C. Vialet-ChabrandS. WolteringE.J. van de ZeddeR. ZhangY. MarcelisL.F.M. Current status and future challenges in implementing and upscaling vertical farming systems.Nat. Food202121294495610.1038/s43016‑021‑00402‑w37118238
    [Google Scholar]
  75. YalçınR.A. ErtürkH. Improving crop production in solar illuminated vertical farms using fluorescence coatings.Biosyst. Eng.2020193253610.1016/j.biosystemseng.2020.02.007
    [Google Scholar]
  76. GebreegziherW.G. Soilless culture technology to transform vegetable farming, reduce land pressure and degradation in drylands.Cogent Food Agric.202392226510610.1080/23311932.2023.2265106
    [Google Scholar]
  77. BarrettG.E. AlexanderP.D. RobinsonJ.S. BraggN.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems – A review.Sci. Hortic.201621222023410.1016/j.scienta.2016.09.030
    [Google Scholar]
  78. AvşarC. Sustainable transition in the fertilizer industry: Alternative routes to low-carbon fertilizer production.Int. J. Environ. Sci. Technol.202421117837784810.1007/s13762‑024‑05607‑7
    [Google Scholar]
  79. Babcock-JacksonL KonovalovaT KrogmanJP BirdR DíazLL Sustainable fertilizers: Publication landscape on wastes as nutrient sources, wastewater treatment processes for nutrient recovery, biorefineries, and green ammonia synthesis.J Agric Food Chem202371228265829610.1021/acs.jafc.3c0045437219570
    [Google Scholar]
  80. WeiX. XieB. WanC. SongR. ZhongW. XinS. SongK. Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices.Agronomy202414360910.3390/agronomy14030609
    [Google Scholar]
  81. AhsanT. TianP.C. GaoJ. WangC. LiuC. HuangY.Q. Effects of microbial agent and microbial fertilizer input on soil microbial community structure and diversity in a peanut continuous cropping system.J. Adv. Res.2023•••10.1016/j.jare.2023.11.02838030126
    [Google Scholar]
  82. GaneshK.N. ZhangD. MillerS.J. RossenK. ChirikP.J. KozlowskiM.C. ZimmermanJ.B. BrooksB.W. SavageP.E. AllenD.T. Voutchkova-KostalA.M. Green chemistry: A framework for a sustainable future.Organometallics202140121801180510.1021/acs.organomet.1c00343
    [Google Scholar]
  83. ChenC. PanJ. LamS.K. A review of precision fertilization research.Environ. Earth Sci.2014714073408010.1007/s12665‑013‑2792‑2
    [Google Scholar]
  84. FengN. HuangY. TianJ. WangY. MaY. ZhangW. Effects of a rainwater harvesting system on the soil water, heat and growth of apricot in rain-fed orchards on the Loess Plateau.Sci. Rep.2024141926910.1038/s41598‑024‑58667‑738649378
    [Google Scholar]
  85. DingW. WangF. DongY. JinK. CongC. HanJ. GeW. Effects of rainwater harvesting system on soil moisture in rain-fed orchards on the Chinese Loess Plateau.Agric. Water Manage.202124310649610.1016/j.agwat.2020.106496
    [Google Scholar]
  86. ZhangW. ShengJ. LiZ. WeindorfD.C. HuG. XuanJ. ZhaoH. Integrating rainwater harvesting and drip irrigation for water use efficiency improvements in apple orchards of northwest China.Sci. Hortic.202127510972810.1016/j.scienta.2020.109728
    [Google Scholar]
  87. QasemN.A.A. MohammedR.H. LawalD.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review.NPJ Clean Water2021413610.1038/s41545‑021‑00127‑0
    [Google Scholar]
  88. AhmedM. MavukkandyM.O. GiwaA. ElektorowiczM. KatsouE. KhelifiO. NaddeoV. HasanS.W. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy.NPJ Clean Water2022511210.1038/s41545‑022‑00154‑5
    [Google Scholar]
  89. WuZ. ZhuZ. ZhangX. ZhouL. ZhangK. WuP. New insights into carbon capture and re-direction technologies for wastewater resource recovery: A critical review.J. Water Process Eng.20245910510510.1016/j.jwpe.2024.105105
    [Google Scholar]
  90. LeonelL.P. TonettiA.L. Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology.Sci. Total Environ.202177514583310.1016/j.scitotenv.2021.145833
    [Google Scholar]
  91. OforiS. PuškáčováA. RůžičkováI. WannerJ. Treated wastewater reuse for irrigation: Pros and cons.Sci. Total Environ.202176014402610.1016/j.scitotenv.2020.14402633341618
    [Google Scholar]
  92. SharmaA. HazarikaM. HeisnamP. PandeyH. DevadasV.S. WangsuM. Controlled Environment Ecosystem: A plant growth system to combat climate change through soilless culture.Crop Design.202310004410.1016/j.cropd.2023.100044
    [Google Scholar]
  93. NelsonM. Biosphere 2’s lessons about living on earth and in space.Space Sci. Technol.202120211-411110.34133/2021/8067539
    [Google Scholar]
  94. DongC. ShaoL. FuY. WangM. XieB. YuJ. LiuH. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems.Acta Astronaut.201511110210910.1016/j.actaastro.2015.02.021
    [Google Scholar]
  95. HallwrightJ. HandmerJ. Progressing the integration of climate change adaptation and disaster risk management in Vanuatu and beyond.Clim. Risk Manage.20213110026910.1016/j.crm.2020.100269
    [Google Scholar]
  96. JenningsS. ChallinorA. SmithP. MacdiarmidJ.I. PopeE. ChapmanS. BradshawC. ClarkH. VetterS. FittonN. KingR. MwamakambaS. MadzivhandilaT. MashingaidzeI. ChombaC. NawikoM. NyhodoB. MazibukoN. YekiP. KuwaliP. KambwiriA. KaziV. KiamaA. SongoleA. CoskeranH. QuinnC. SalluS. DougillA. WhitfieldS. KuninB. MeebeloN. JamaliA. KantandeD. MakundiP. MbunguW. KayulaF. WalkerS. ZimbaS. Galani YamdeuJ.H. KapuluN. GaldosM.V. EzeS. TripathiH. SaitS. KepinskiS. LikoyaE. GreatheadH. SmithH.E. MahopM.T. HarwattH. MuzammilM. HorganG. BentonT. Stakeholder-driven transformative adaptation is needed for climate-smart nutrition security in sub-Saharan Africa.Nat. Food202451374710.1038/s43016‑023‑00901‑y38168785
    [Google Scholar]
/content/journals/cis/10.2174/012210299X386260250911065904
Loading
/content/journals/cis/10.2174/012210299X386260250911065904
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test