Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Introduction

Biofilms are complex microbial communities, exhibiting antibiotic resistance that makes their inhibition difficult. Iron availability is known to affect biofilm formation. Biofilm inhibition can be achieved by altering iron concentrations. One aspect of this study involved the evaluation of the effects of iron salts such as ferric ammonium citrate (FAC), ferrous sulfate (FeSO), and chelating agents like ethylenediaminetetraacetic acid (EDTA) on biofilm formation. In addition, the study explored the effect of bioactive compounds from natural sources, including plant extracts and food waste derivatives, for biofilm inhibition and control.

Methods

This study investigated the effect of iron salts on biofilm formation in and Additionally, methanolic extracts of food wastes of onion, potato, sweet lime, and banana peels were screened for their antimicrobial and anti-biofilm activity. Biofilm quantification was performed using crystal violet (CV) staining assays.

Results

50 μM of Ferrous sulphate and EDTA was used, which significantly inhibited biofilm formation in both ATCC 25923 and DH5α FAC increased DH5α biofilm formation by 27%, while decreasing ATCC 25923 biofilms by 48%. In contrast, the addition of Ferrous Sulphate led to a 61.12% reduction in DH5α biofilm. EDTA, an iron chelator, significantly reduced biofilm formation in both ATCC 25923 and DH5α by 64% and 63%, respectively. Food waste extracts exhibited varying degrees of biofilm inhibition: hot onion extract showed a 63% reduction in DH5α biofilm, while its cold counterpart reduced DH5α and ATCC 25923 biofilms by 36% and 27%, respectively. Cold banana extracts inhibited DH5α biofilm by 72%, and potato extracts (hot and cold) reduced DH5α biofilm by 76.30% and 77.70%, and ATCC 25923 by 59% and 32.04%, respectively. Sweet lime hot extract reduced ATCC 25923 biofilms by 42.30%, whereas its cold extract led to enhanced biofilm formation.

Discussion

The findings demonstrate that both iron modulation and natural bioactive compounds derived from food wastes affect the dynamics of biofilms differently in Gram-positive and Gram-negative bacteria. Iron limitation and chelation effectively disrupted biofilm establishment, while metabolites from food wastes exerted additional inhibitory effects, highlighting an eco-friendly approach to biofilm control. The variations in the effects of different extracts suggest that the stability of bioactive compounds and temperature play crucial roles in biofilm inhibition.

Conclusion

In this study, it was observed that iron modulation and the use of bioactive compounds derived from food waste can effectively inhibit biofilm formation. These findings suggest sustainable strategies for biofilm control and could aid in developing alternative antimicrobial approaches.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X416323251006232733
2025-10-16
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X416323.html?itemId=/content/journals/cis/10.2174/012210299X416323251006232733&mimeType=html&fmt=ahah

References

  1. RodgeS. KulkarniG. MahaleP. JoshiS. DhanawadeS. Combating biofilm formation by modulating iron concentration, usingnanoparticles and plant extracts.Curr Indian Sci2023110.2174/012210299X265522231006041656
    [Google Scholar]
  2. GarrettT.R. BhakooM. ZhangZ. Bacterial adhesion and biofilms on surfaces.Prog Nat Sci20081891049105610.1016/j.pnsc.2008.04.001
    [Google Scholar]
  3. ZhaoA. SunJ. LiuY. Understanding bacterial biofilms: From definition to treatment strategies.Front Cell Infect Microbiol202313113794710.3389/fcimb.2023.113794737091673
    [Google Scholar]
  4. JeffersonK.K. What drives bacteria to produce a biofilm?FEMS Microbiol Lett2004236216317310.1111/j.1574‑6968.2004.tb09643.x15251193
    [Google Scholar]
  5. FlemmingH.C. NeuT.R. WozniakD.J. The EPS matrix: the “house of biofilm cells”.J Bacteriol2007189227945794710.1128/JB.00858‑0717675377
    [Google Scholar]
  6. FoleyI. GilbertP. Antibiotic resistance of biofilms.Biofouling199610433134610.1080/0892701960938629022115185
    [Google Scholar]
  7. Mattila-SandholmT. WirtanenG. Biofilm formation in the industry: A review.Food Rev Int19928457360310.1080/87559129209540953
    [Google Scholar]
  8. JamalM. AhmadW. AndleebS. JalilF. ImranM. NawazM.A. HussainT. AliM. RafiqM. KamilM.A. Bacterial biofilm and associated infections.J Chin Med Assoc201881171110.1016/j.jcma.2017.07.01229042186
    [Google Scholar]
  9. ShikumaN.J. HadfieldM.G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae.Biofouling2010261394610.1080/0892701090328281420390555
    [Google Scholar]
  10. EnningD. GarrelfsJ. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem.Appl Environ Microbiol20148041226123610.1128/AEM.02848‑1324317078
    [Google Scholar]
  11. GalarisD. BarboutiA. PantopoulosK. Iron homeostasis and oxidative stress: An intimate relationship.Biochim Biophys Acta Mol Cell Res201918661211853510.1016/j.bbamcr.2019.11853531446062
    [Google Scholar]
  12. WilliamsM.T. YeeE. LarsonG.W. ApicheE.A. Rama DamodaranA. Bhagi-DamodaranA. Metalloprotein enabled redox signal transduction in microbes.Curr Opin Chem Biol20237610233110.1016/j.cbpa.2023.10233137311385
    [Google Scholar]
  13. CornelisP. WeiQ. AndrewsS.C. VinckxT. Iron homeostasis and management of oxidative stress response in bacteria.Metallomics20113654054910.1039/c1mt00022e21566833
    [Google Scholar]
  14. EscolarL. Pérez-MartínJ. de LorenzoV. Opening the iron box: Transcriptional metalloregulation by the Fur protein.J Bacteriol1999181206223622910.1128/JB.181.20.6223‑6229.199910515908
    [Google Scholar]
  15. MuskD.J. BankoD.A. HergenrotherP.J. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa.Chem Biol200512778979610.1016/j.chembiol.2005.05.00716039526
    [Google Scholar]
  16. MuskD.J. HergenrotherP.J. Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung.J Appl Microbiol2008105238038810.1111/j.1365‑2672.2008.03751.x18284482
    [Google Scholar]
  17. HadiS. ShawkatM. SultanR. Antimicrobial, antibiofilm and antiplasmid activity of fruit peel extracts on bacterial dental caries.Int J Pharm Sci Rev Res201744212661272
    [Google Scholar]
  18. BakkiyarajD. NandhiniJ.R. MalathyB. PandianS.K. The anti-biofilm potential of pomegranate ( Punica granatum L.) extract against human bacterial and fungal pathogens.Biofouling201329892993710.1080/08927014.2013.82082523906229
    [Google Scholar]
  19. ShettyS. Mahin-Syed-IsmailP. VargheseS. Thomas-GeorgeB. Antimicrobial effects of citrus sinensis peel extracts against dental caries bacteria: An in vitro study.J Clin Exp Dent2016201610.4317/jced.52493
    [Google Scholar]
  20. O’TooleG.A. Microtiter dish biofilm formation assay.J Vis Exp2011243747243710.3791/243721307833
    [Google Scholar]
  21. ShaoX. XieY. ZhangY. DengX. Biofilm formation assay in Pseudomonas syringae. Bio Protoc2019910e323710.21769/BioProtoc.323733654766
    [Google Scholar]
  22. SyalK. Novel method for quantitative estimation of biofilms.Curr Microbiol201774101194119910.1007/s00284‑017‑1304‑028710512
    [Google Scholar]
  23. BaldassarriL. BertucciniL. AmmendoliaM.G. ArciolaC.R. MontanaroL. Effect of iron limitation on slime production by Staphylococcus aureus.Eur J Clin Microbiol Infect Dis200120534334510.1007/PL0001127411453596
    [Google Scholar]
  24. MathurT. SinghalS. KhanS. UpadhyayD.J. FatmaT. RattanA. Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods.Indian J Med Microbiol2006241252910.1016/S0255‑0857(21)02466‑X16505551
    [Google Scholar]
  25. MoreiraJ.M.R. GomesL.C. AraújoJ.D.P. MirandaJ.M. SimõesM. MeloL.F. MergulhãoF.J. The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in microtiter plates.Chem Eng Sci20139419219910.1016/j.ces.2013.02.045
    [Google Scholar]
  26. Cahyo KumoroA. HasanM. SinghH. Effects of solvent properties on the soxhlet extraction of diterpenoid lactones from Andrographis Paniculata leaves.Sci Asia200935330610.2306/scienceasia1513‑1874.2009.35.306
    [Google Scholar]
  27. DhawanD. GuptaJ. Comparison of different solvents for phytochemical extraction potential from datura metel plant leaves.Int J Biol Chem2016111172210.3923/ijbc.2017.17.22
    [Google Scholar]
  28. AdhamA.N. Comparative antimicrobial activity of peel and juice extract of citrus fruits growing in Kurdistan/Iraq.Am J Microbiol Res201535155159
    [Google Scholar]
  29. ArageM. EgualeT. GidayM. Evaluation of antibacterial activity and acute toxicity of methanol extracts of Artemisia absinthium, Datura stramonium, and Solanum anguivi. Infect Drug Resist2022151267127610.2147/IDR.S35928035355620
    [Google Scholar]
  30. GuptaG. SaxenaS. BaranwalM. ReddyM.S. In vitro evaluation of bioactive properties of banana sap.Biologia (Bratisl)202277102989300010.1007/s11756‑022‑01159‑835814925
    [Google Scholar]
  31. HasijaS. IbrahimG. WadiaA. Antimicrobial activity of Citrus sinensis (Orange), Citrus limetta (Sweet Lime) and Citrus limon (Lemon) peel oil on selected food borne pathogens.Int J Life Sci Res2015333539
    [Google Scholar]
  32. CruzC.D. ShahS. TammelaP. Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains.BMC Microbiol201818117310.1186/s12866‑018‑1321‑630390625
    [Google Scholar]
  33. CroesS. DeurenbergR.H. BoumansM.L.L. BeisserP.S. NeefC. StobberinghE.E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage.BMC Microbiol20099122910.1186/1471‑2180‑9‑22919863820
    [Google Scholar]
  34. CostaJ.C.M. EspeschitI.F. PieriF.A. BenjaminL.A. MoreiraM.A.S. Increase in biofilm formation by Escherichia coli under conditions that mimic the mastitic mammary gland.Cienc Rural201444466667110.1590/S0103‑84782014000400015
    [Google Scholar]
  35. LadeH. ParkJ.H. ChungS.H. KimI.H. KimJ.M. JooH.S. KimJ.S. Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media.J Clin Med2019811185310.3390/jcm811185331684101
    [Google Scholar]
  36. SheP. WangY. LiuY. TanF. ChenL. LuoZ. WuY. Effects of exogenous glucose on Pseudomonas aeruginosa biofilm formation and antibiotic resistance.MicrobiologyOpen2019812e93310.1002/mbo3.93331532581
    [Google Scholar]
  37. KwasnyS.M. OppermanT.J. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery.Curr Protocols Pharmacol2010501810.1002/0471141755.ph13a08s5022294365
    [Google Scholar]
  38. Dauros-SingorenkoP. WilesS. SwiftS. Staphylococcus aureus biofilms and their response to a relevant in vivo iron source.Front Microbiol20201150952510.3389/fmicb.2020.50952533408695
    [Google Scholar]
  39. SwarupaV. ChaudhuryA. SarmaP. V. G. K. Iron enhances the peptidyl deformylase activity and biofilm formation in Staphylococcus Aureus. Biotech2018813210.1007/s13205‑017‑1050‑9
    [Google Scholar]
  40. HancockV. DahlM. KlemmP. Abolition of biofilm formation in urinary tract Escherichia coli and Klebsiella isolates by metal interference through competition for fur.Appl Environ Microbiol201076123836384110.1128/AEM.00241‑1020418434
    [Google Scholar]
  41. BaninE. BradyK.M. GreenbergE.P. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm.Appl Environ Microbiol20067232064206910.1128/AEM.72.3.2064‑2069.200616517655
    [Google Scholar]
  42. CavaliereR. BallJ.L. TurnbullL. WhitchurchC.B. The biofilm matrix destabilizers, EDTA and DN aseI, enhance the susceptibility of nontypeable Hemophilus influenzae biofilms to treatment with ampicillin and ciprofloxacin.MicrobiologyOpen20143455756710.1002/mbo3.18725044339
    [Google Scholar]
  43. WuY. OuttenF.W. IscR. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression.J Bacteriol200919141248125710.1128/JB.01086‑0819074392
    [Google Scholar]
  44. LinM.H. ShuJ.C. HuangH.Y. ChengY.C. Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS One201273e3438810.1371/journal.pone.003438822479621
    [Google Scholar]
  45. JohnsonM. CockayneA. WilliamsP.H. MorrisseyJ.A. Iron-responsive regulation of biofilm formation in staphylococcus aureus involves fur-dependent and fur-independent mechanisms.J Bacteriol2005187238211821510.1128/JB.187.23.8211‑8215.200516291697
    [Google Scholar]
  46. TiwariP. KaurM. KaurH. Phytochemical Screening and Extraction: A Review.Int Pharm Sci2011198106
    [Google Scholar]
  47. ToubaE.P. ZakariaM. TaherehE. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.Microb Pathog201252212512910.1016/j.micpath.2011.11.00122138549
    [Google Scholar]
  48. YimH.S. ChyeF.Y. RaoV. LowJ.Y. MatanjunP. HowS.E. HoC.W. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology.J Food Sci Technol201350227528310.1007/s13197‑011‑0349‑524425917
    [Google Scholar]
  49. SantasJ. AlmajanoM.P. CarbóR. Antimicrobial and antioxidant activity of crude onion ( Allium cepa, L.) extracts.Int J Food Sci Technol201045240340910.1111/j.1365‑2621.2009.02169.x
    [Google Scholar]
  50. De SotilloD.R. HadleyM. Wolf-HallC. Potato peel extract a nonmutagenic antioxidant with potential antimicrobial activity.J Food Sci199863590791010.1111/j.1365‑2621.1998.tb17924.x
    [Google Scholar]
  51. PurkayasthaS. DahiyaP. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates.Indian J Pharm Sci201274544345010.4103/0250‑474X.10842023716873
    [Google Scholar]
  52. SharmaK. MahatoN. LeeY.R. Systematic study on active compounds as antibacterial and antibiofilm agent in aging onions.J Food Drug Anal201826251852810.1016/j.jfda.2017.06.00929567221
    [Google Scholar]
  53. MitraA. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing.Cell Surf20241210013310.1016/j.tcsw.2024.10013339634722
    [Google Scholar]
  54. TallaR.M. TamfuA.N. WakeuB.N.K. CeylanO. MbazoaC.D. KapcheG.D.W.F. LentaB.N. SewaldN. WandjiJ. BMC Complement Med Ther202323130010.1186/s12906‑023‑04115‑437620848
    [Google Scholar]
  55. Uddin MahamudA.G.M.S. NaharS. AshrafudoullaM. ParkS.H. HaS.D. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry.Crit Rev Food Sci Nutr20246461736176310.1080/10408398.2022.211920136066482
    [Google Scholar]
  56. UdumaO. UmeyorC.E. OkonU.V. UronnachiE.M. NwakileC.D. Stability studies on the aqueous extract of the fresh leaves of Combretum micranthum G. Don used as antibacterial agent.J Chem Chem Eng201265417424
    [Google Scholar]
/content/journals/cis/10.2174/012210299X416323251006232733
Loading
/content/journals/cis/10.2174/012210299X416323251006232733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test