Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Floating drug delivery systems are significant for gastric retention characteristics and improving the absorption and bioavailability of drugs. Several polymers have been used in such systems as drug carriers. Biopolymers, including alginate, chitosan, guar gum, and gelatin obtained from plant or animal sources have also been applied in such systems. Such biopolymers are biocompatible and biodegradable and provide suitable characteristics for swelling and hydrogel formation. The present review summarizes several biopolymers used in floating drug delivery including their sources, structure, and recent research studies for gastric retention.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X388740250507055605
2025-01-01
2025-09-03
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X388740.html?itemId=/content/journals/cis/10.2174/012210299X388740250507055605&mimeType=html&fmt=ahah

References

  1. SarawadeA. RatnaparkhiM.P. ChaudhariS. Floating drug delivery system: An overview.Int. J. Res. Dev. Pharm. L.20143511061115
    [Google Scholar]
  2. VasaveV.S. A Rivew On: floating drug delivery system.World J. Pharm. Res.202412264166910.20959/wjpr20232‑26983
    [Google Scholar]
  3. ThakurS. RamyaK. ShahD.K. RajK. Floating drug delivery system.J. Drug Deliv. Ther.2021113-S12513010.22270/jddt.v11i3‑S.4828
    [Google Scholar]
  4. ZahidS.A. MajazQ. DeshmukhR. ImranS. KhanG. J. SalimM.S. Floating Drug Delivery System: A Review.Int. J. of Pharm. Sci.2024231219123110.5281/zenodo.10894743
    [Google Scholar]
  5. LodhH. SheebaF.R. PallaviN. PardheH.A. PallaviN. Floating drug delivery system: A brief review.2020.Am. J. Pharm.Tech. Res.2020410312210.46624/ajptr.2020.v10.i4.010
    [Google Scholar]
  6. PetrakisI.E. KogerakisN. VrachassotakisN. StiakakisI. ZacharioudakisG. ChalkiadakisG. Hyperglycemia attenuates erythromycin-induced acceleration of solid-phase gastric emptying in healthy subjects.Abdom. Imaging200227330931410.1007/s00261‑001‑0058‑z12173362
    [Google Scholar]
  7. SilangR. RegaladoM. ChengT.H. WessonD.E. Prokinetic agents increase plasma albumin in hypoalbuminemic chronic dialysis patients with delayed gastric emptying.Am. J. Kidney Dis.200137228729310.1053/ajkd.2001.2129111157368
    [Google Scholar]
  8. GargS. SharmaS. Gastroretentive drug delivery system: An overview.Int. J. Pharm. Sci. Res.200323
    [Google Scholar]
  9. Thomas, S.; Gopi, S.; Amalraj, A., Eds.; Biopolymers and their Industrial Applications From Plant, Animal, and Marine Sources, to Functional Products.1st edElsevier202010.1016/C2018‑0‑05189‑0
    [Google Scholar]
  10. RahimS.A. CarterP.A. ElkordyA.A. Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug.Drug Des. Devel. Ther.2015991843185725848220
    [Google Scholar]
  11. TongX. PanW. SuT ZhangM DongW QiX. Recent advances in natural polymer-based drug delivery systems.React Funct Polym202014810450110.1016/j.reactfunctpolym.2020.104501
    [Google Scholar]
  12. AbourehabM.A.S. RajendranR.R. SinghA. PramanikS. ShrivastavP. AnsariM.J. ManneR. AmaralL.S. DeepakA. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art.Int. J. Mol. Sci.20222316903510.3390/ijms2316903536012297
    [Google Scholar]
  13. SenO. MannaS. NandiG. JanaS. JanaS. Recent advances in alginate based gastroretentive technologies for drug delivery applications.Med. Nov. Technol.20231810023610.1016/j.medntd.2023.100236
    [Google Scholar]
  14. GrøndahlL. LawrieG. AnithaA. ShejwalkarA. Applications of alginate biopolymer in drug delivery.Biointegration of Medical Implant Materials.Woodhead Publishing202037540310.1016/B978‑0‑08‑102680‑9.00014‑7
    [Google Scholar]
  15. RahmanMd Sources, extractions, and applications of alginate: A review.Discover Appl. Sci.20246443 10.1007/s42452‑024‑06151‑2
    [Google Scholar]
  16. KrukK. WinnickaK. Alginates combined with natural polymers as valuable drug delivery platforms.Mar. Drugs20222111110.3390/md2101001136662184
    [Google Scholar]
  17. KumarA. KothariA. KumarP. SinghA. TripathiK. GairollaJ. PaiM. OmarB.J. Introduction to alginate: Biocompatible, biodegradable, antimicrobial nature and various applications.Alginate - Applications and Future Perspectives.IntechOpen202312110.5772/intechopen.110650
    [Google Scholar]
  18. Abka-khajoueiR. TounsiL. ShahabiN. PatelA.K. AbdelkafiS. MichaudP. Structures, properties and applications of alginates.Mar. Drugs202220636410.3390/md2006036435736167
    [Google Scholar]
  19. MurataY. SasakiN. MiyamotoE. KawashimaS. Use of floating alginate gel beads for stomach-specific drug delivery.Eur. J. Pharm. Biopharm.200050222122610.1016/S0939‑6411(00)00110‑710962231
    [Google Scholar]
  20. KaushikK. ChaurasiaD. ChaurasiaH. MishraS. Development and characterization of floating alginate beads for gastroretentive drug delivery system.Acta Pharm. Sci.2011534551562
    [Google Scholar]
  21. Christe Sonia MaryM. SasikumarS. Sodium alginate/starch blends loaded with ciprofloxacin hydrochloride as a floating drug delivery system - in vitro evaluation.Iran. J. Chem. Chem. Eng.2015342
    [Google Scholar]
  22. HishamF. Maziati AkmalM.H. AhmadF. AhmadK. SamatN. Biopolymer chitosan: Potential sources, extraction methods, and emerging applications.Ain Shams Eng. J.202415210242410.1016/j.asej.2023.102424
    [Google Scholar]
  23. AinurofiqA. Putri Febrina SariA. MardhiyahA. Sakinatun NisaF. Luthfiani AzkaR. Kania PutriS. Listiyani SaputriV. Chitosan as floating-mucoadhesive polymers in gastroretentive drug delivery.Sci. Eng. Health. Studies.2023172301000210.69598/sehs.17.23010002
    [Google Scholar]
  24. PellisA. GuebitzG.M. NyanhongoG.S. Chitosan: sources, processing and modification techniques.Gels20228739310.3390/gels807039335877478
    [Google Scholar]
  25. Jiménez-GómezC.P. CeciliaJ.A. Chitosan: A natural biopolymer with a Wide and varied range of applications.Molecules20202517398110.3390/molecules2517398132882899
    [Google Scholar]
  26. SouzaM.P.C. SábioR.M. RibeiroT.C. SantosA.M. MeneguinA.B. ChorilliM. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems.Int. J. Biol. Macromol.202015980482210.1016/j.ijbiomac.2020.05.10432425271
    [Google Scholar]
  27. JosephS.M. KrishnamoorthyS. ParanthamanR. MosesJ.A. AnandharamakrishnanC. A review on source-specific chemistry, functionality, and applications of chitin and chitosan.Carbohydrate. Polymer. Technol. Appl.2021210003610.1016/j.carpta.2021.100036
    [Google Scholar]
  28. AranazI. AlcántaraA.R. CiveraM.C. AriasC. ElorzaB. Heras CaballeroA. AcostaN. Chitosan: An overview of its properties and applications polymers.Polymers20211319325610.3390/polym13193256
    [Google Scholar]
  29. SharmaS. NandaA. SinghL. Gastro-retentive drug delivery system: An overview.Int. J. Res. Pharm. Biomed. Sci.201123954958
    [Google Scholar]
  30. ChavdaH. PatelC. Chitosan superporous hydrogel composite-based floating drug delivery system: A newer formulation approach.J. Pharm. Bioallied Sci.20102212413110.4103/0975‑7406.6701021814446
    [Google Scholar]
  31. SarojiniS. KumarA.P. PradeepD. ManavalanR. JayanthiB. Formulation and evaluation of albumin chitosan floating microspheres containing clarithromycin and estimation by spectrophotometric method.Res. J. Pharm. Biol. Chem. Sci.201012207214
    [Google Scholar]
  32. SvirskisD. SeyfoddinA. ChalabiS. In KimJ.H. LangfordC. PainterS. Al-KassasR. Development of mucoadhesive floating hollow beads of acyclovir with gastroretentive properties.Pharm. Dev. Technol.201419557157610.3109/10837450.2013.81353923859639
    [Google Scholar]
  33. PetriD.F.S. Xanthan gum: A versatile biopolymer for biomedical and technological applications.J. Appl. Polym. Sci.201513223app.4203510.1002/app.42035
    [Google Scholar]
  34. PalanirajA. JayaramanV. Production, recovery and applications of xanthan gum by Xanthomonas campestris.J. Food Eng.2011106111210.1016/j.jfoodeng.2011.03.035
    [Google Scholar]
  35. TaoF. WangX. MaC. YangC. TangH. GaiZ. XuP. Genome sequence of Xanthomonas campestris JX, an industrially productive strain for Xanthan gum.J. Bacteriol.2012194174755475610.1128/JB.00965‑1222887662
    [Google Scholar]
  36. LayekB. A comprehensive review of xanthan gum-based oral drug delivery systems.Int. J. Mol. Sci.202425181014310.3390/ijms25181014339337626
    [Google Scholar]
  37. ChaturvediS. KulshresthaS. BhardwajK. JangirR. A review on properties and applications of Xanthan Gum.Microbial Polymers.Springer20218710710.1007/978‑981‑16‑0045‑6_4
    [Google Scholar]
  38. NgJ.Y. ObuobiS. ChuaM.L. ZhangC. HongS. KumarY. GokhaleR. EeP.L.R. Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine: A review.Carbohydr. Polym.202024111634510.1016/j.carbpol.2020.11634532507219
    [Google Scholar]
  39. FurtadoI.F.S.P.C. SydneyE.B. RodriguesS.A. SydneyA.C.N. Xanthan gum: Applications, challenges, and advantages of this asset of biotechnological origin.Biotechnol. Research. Innov.202261e20220410.4322/biori.202205
    [Google Scholar]
  40. KaushikA. TiwariA. GaurA. Role of excipients and polymeric advancements in preparation of floating drug delivery systems.Int. J. Pharm. Investig.20155111210.4103/2230‑973X.14721925599027
    [Google Scholar]
  41. RoweR.C. SheskeyP.J. QuinnM.E. Handbook of Pharmaceutical Excipients.6th edLondon, UKPharmaceutical Press200910.4236/ce.2012.37B020
    [Google Scholar]
  42. BlynskayaE.V. TishkovS.V. VinogradovV.P. AlekseevK.V. MarakhovaA.I. VetcherA.A. Polymeric excipients in the technology of floating drug delivery systems.Pharmaceutics20221412277910.3390/pharmaceutics1412277936559272
    [Google Scholar]
  43. LavanyaM. JayaS. ChinnaEswaraiahM. Design, development and in-vitro characterization of floating tablets of propranolol hydrochloride.Res. J. Pharm. Technol.202013115088509410.5958/0974‑360X.2020.00891.4
    [Google Scholar]
  44. BudayaU.D. SuriniS. Development of co-processed excipients of xanthan gum and acacia gum as a controlled release matrix for famotidine floating tablets.Int. J. Appl. Pharm.2020119219610.22159/ijap.2020.v12s1.FF044
    [Google Scholar]
  45. KhanK.A.U.R. NaeemM. AliA. RehmanN.U. NawazZ. AkramM.R. KhanJ.A. Assessment of guar and xanthan gum based floating drug delivery system containing mefenamic acid.Acta Pol. Pharm.20167351287129729638069
    [Google Scholar]
  46. KulkarniN. WakteP. NaikJ. Development of floating chitosan-xanthan beads for oral controlled release of glipizide.Int. J. Pharm. Investig.201552738010.4103/2230‑973X.15338125838991
    [Google Scholar]
  47. WadherK.J. ButeS.W. UmekarM.J. Formulation and evaluation of gastroretantive floating tablet using carbopol with xanthan gum and guar gum.Int. J. Chemtech Res.20171012300308
    [Google Scholar]
  48. PatilS. JagdaleS. KelaS. DivekarV. Formulation and evaluation of xanthan gum based floating tablet of tramadol hydrochloride.Int. J. Curr. Res. Rev.201241717218010.31782/2231‑2196
    [Google Scholar]
  49. SoumyaR.S. GhoshS. AbrahamE.T. Preparation and characterization of guar gum nanoparticles.Int. J. Biol. Macromol.201046226726910.1016/j.ijbiomac.2009.11.00319941891
    [Google Scholar]
  50. NasrollahzadehM. SajjadiM. SajadiS.M. IssaabadiZ. Green Nanotechnology.Interface Science and Technology.Elsevier201914519810.1016/B978‑0‑12‑813586‑0.00005‑5
    [Google Scholar]
  51. YoonS.J. ChuD.C. Raj JunejaL. Chemical and physical properties, safety and application of partially hydrolized guar gum as dietary fiber.J. Clin. Biochem. Nutr.20084211710.3164/jcbn.200800118231623
    [Google Scholar]
  52. BahadurS. ManishaS. BaghelP. YaduK. NaurangeT. An overview on various types of gastroretentive drug delivery system. ScienceRise.Pharm. Sci.2020641310.15587/2519‑4852.2020.211931
    [Google Scholar]
  53. MunusamyR. ShanmugasundharamS. Enhanced gastric residence time of acyclovir by floating raft formulation using box-behnken design.Heliyon2024102e2430110.1016/j.heliyon.2024.e2430138293518
    [Google Scholar]
  54. KarosiyaS.R. VaidyaV.M. BhajipaleN.S. RadkeR.S. Formulation and evaluation of gastroretentive floating microspheres loaded with Lamivudine.J. Drug Deliv. Ther.2022124-S172210.22270/jddt.v12i4‑S.5462
    [Google Scholar]
  55. TekadeB.W. JadhaoU.T. PatilS.G. PatilV.R. Formulation and in vitro evaluation of floating tablets of cefpodoxime proxetil.Int. J. Curr. Pharm. Res.201796182210.22159/ijcpr.2017v9i6.23422
    [Google Scholar]
  56. TaiC. BouissilS. GantumurE. CarranzaM.S. YoshiiA. SakaiS. PierreG. MichaudP. DelattreC. Use of anionic polysaccharides in the development of 3D bioprinting technology.Appl. Sci.2019913259610.3390/app9132596
    [Google Scholar]
  57. Roman-BennA. ContadorC.A. LiM.W. LamH.M. Ah-HenK. UlloaP.E. RavanalM.C. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues.Food Chem. Adv.2023210019210.1016/j.focha.2023.100192
    [Google Scholar]
  58. MandalU.K. ChatterjeeB. SenjotiF.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update.Asian J. Pharm. Sci.201611557558410.1016/j.ajps.2016.04.007
    [Google Scholar]
  59. PrajapatiS.T. PatelC.N. PatelL.D. Polymers for floating drug delivery system.System. Review. Pharm.2011211710.4103/0975‑8453.83431
    [Google Scholar]
  60. MilanoF. MasiA. MadaghieleM. SanninoA. SalvatoreL. GalloN. Current trends in gelatin-based drug delivery systems.Pharmaceutics2023155149910.3390/pharmaceutics1505149937242741
    [Google Scholar]
  61. ElzoghbyA.O. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research.J. Control. Release201317231075109110.1016/j.jconrel.2013.09.01924096021
    [Google Scholar]
  62. MouzamM.I. DehghanM.H.G. AsifS. SahujiT. ChudiwalP. Preparation of a novel floating ring capsule-type dosage form for stomach specific delivery.Saudi Pharm. J.2011192859310.1016/j.jsps.2011.01.00423960746
    [Google Scholar]
  63. AliK.A. ChakrabortyR. RoyS.K. GhosalK. Design and development of Ondansetron-loaded polysaccharide-based buoyant formulation for improved gastric retention and drug release, using both natural and semi-synthetic polymers.Int. J. Biol. Macromol.2025305Pt 114110510.1016/j.ijbiomac.2025.14110539956232
    [Google Scholar]
/content/journals/cis/10.2174/012210299X388740250507055605
Loading
/content/journals/cis/10.2174/012210299X388740250507055605
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test