Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

The presence of synthetic dyes like Congo Red in wastewater poses serious and persistent environmental health hazards as a result of their toxicity and stability. Therefore, developing an efficient and reusable adsorbents for the elimination of dye is quite important in order to address water pollution challenges.

Objective

The study aims to classify the efficacy of sodium borohydride-reduced Bent/Fe NPs and crude bentonite in removing Congo Red dye from aqueous solutions.

Methods

Sodium Borohydride was utilized in order to synthesize Bent/Fe NPs, dragging its reducing capacities in order to enhance its adsorption properties. Batch adsorption experiments were performed in order to estimate the removal efficacy under multiple conditions consisting of initial dye concentration, pH and contact time. Adsorption isotherms and kinetics were analyzed using Freundlich and pseudo-second-order models.

Results

Bent/Fe NPs exhibited significant removal efficiency, reaching up to 91.97% removal of Congo Red dye with an initial concentration of 40 mg/L in alkaline conditions. Adsorption data was found to align well with the Freundlich isotherm model, signifying heterogeneous adsorption sites. It also fitted well with pseudo-second-order kinetic model indicating that chemisorption is the dominant mechanism taking place. Also, the adsorbent displayed excellent reusability, preserving substantial efficiency up to three cycles.

Conclusion

Sodium borohydride reduced Bent/Fe NPs offer an assuring, efficient and reusable solution for Congo Red dye removal from aqueous solution. The high adsorption capacity and, its affinity with alkaline conditions and its excellent reusability make them a feasible choice for wastewater treatment applications.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X370390250429053029
2025-01-01
2025-08-13
The full text of this item is not currently available.

References

  1. AbukhadraM.R. AdliiA. BakryB.M. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water.Int. J. Biol. Macromol.201912640241310.1016/j.ijbiomac.2018.12.22530593802
    [Google Scholar]
  2. SaravanakumarK. SilvaD.S. SantoshS.S. SathiyaseelanA. GaneshalingamA. JamlaM. SankaranarayananA. VeeraraghavanV.P. MubarakAliD. LeeJ. ThiripuranatharG. WangM.H. Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques.Chemosphere2022307Pt 113559310.1016/j.chemosphere.2022.13559335809745
    [Google Scholar]
  3. RoyM. SahaR. 2021Dyes and their removal technologies from wastewater: A critical review.Intelligent Environmental Data Monitoring for Pollution ManagementUnited StatesAcademic Press
    [Google Scholar]
  4. HemashenpagamN. SelvajeyanthiS. Textile dyes and their effect on human beings.Nanohybrid Materials for Treatment of Textiles Dyes.SingaporeSpringer Nature Singapore2023416010.1007/978‑981‑99‑3901‑5_3
    [Google Scholar]
  5. SrivastavaS. SinhaR. RoyD. Toxicological effects of malachite green.Aquat. Toxicol.200466331932910.1016/j.aquatox.2003.09.00815129773
    [Google Scholar]
  6. SahaP. ChowdhuryS. GuptaS. KumarI. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin.Chem. Eng. J.2010165387488210.1016/j.cej.2010.10.048
    [Google Scholar]
  7. YadavJ. QanungoK. A review: On Congo red; synthesis, uses and toxic effects.AIP Conf. Proc.20232535119
    [Google Scholar]
  8. LeeY.C. KimE.J. YangJ.W. ShinH.J. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate.J. Hazard. Mater.20111921627010.1016/j.jhazmat.2011.04.09421616589
    [Google Scholar]
  9. BekçiZ. SekiY. CavasL. Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea.J. Hazard. Mater.20091612-31454146010.1016/j.jhazmat.2008.04.12518562093
    [Google Scholar]
  10. DebrassiA. CorrêaA.F. BaccarinT. NedelkoN. Ślawska-WaniewskaA. SobczakK. DłużewskiP. GrenecheJ.M. RodriguesC.A. Removal of cationic dyes from aqueous solutions using N-benzyl-O-carboxymethylchitosan magnetic nanoparticles.Chem. Eng. J.201218328429310.1016/j.cej.2011.12.078
    [Google Scholar]
  11. SongY. DingS. ChenS. XuH. MeiY. RenJ. Removal of malachite green in aqueous solution by adsorption on sawdust.Korean J. Chem. Eng.201532122443244810.1007/s11814‑015‑0103‑1
    [Google Scholar]
  12. PalJ. DebM.K. Efficient sorption of basic organic dyes from aqueous solution using green synthesized silver nanoparticles beads.J. Dispers. Sci. Technol.20133491193120110.1080/01932691.2012.739939
    [Google Scholar]
  13. GhaediM. HajatiS. ZareM. ZareM. JaberiS.S.Y. Experimental design for simultaneous analysis of malachite green and methylene blue; derivative spectrophotometry and principal component-artificial neural network.RSC Advances2015549389393894710.1039/C5RA02531A
    [Google Scholar]
  14. ZhengY. ZhuY. WangF. WangA. Gelatin-grafted granular composite hydrogel for selective removal of Congo red.Water Air Soil Pollut.20152261035410.1007/s11270‑015‑2624‑y
    [Google Scholar]
  15. BorahD. NathH. SaikiaH. Modification of bentonite clay & its applications: A review.Rev. Inorg. Chem.202242326528210.1515/revic‑2021‑0030
    [Google Scholar]
  16. BorahD. NathH. SaikiaH. Purification of crude Bentonite clay: Synthesis and characterization of Na, Mg and Cu incorporated Bentonite clay.Asian J. Chem.20223451237124410.14233/ajchem.2022.23697
    [Google Scholar]
  17. HassanA.K. Al-KindiG.Y. GhanimD. Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: Kinetics of decolorization of reactive blue 238 dye.Water Sci. Eng.202013428629810.1016/j.wse.2020.12.001
    [Google Scholar]
  18. SabouriM.R. SohrabiM.R. MoghaddamA.Z. A novel and efficient dyes degradation using Bentonite supported zero‐valent iron‐based nanocomposites.Chem. Sel.20205136937810.1002/slct.201904174
    [Google Scholar]
  19. ChenZ. JinX. ChenZ. MegharajM. NaiduR. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron.J. Colloid Interface Sci.2011363260160710.1016/j.jcis.2011.07.05721864843
    [Google Scholar]
  20. WangT. SuJ. JinX. ChenZ. MegharajM. NaiduR. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution.J. Hazard. Mater.201326281982510.1016/j.jhazmat.2013.09.02824140533
    [Google Scholar]
  21. MahmoudA.S. Effect of nano bentonite on direct yellow 50 dye removal; Adsorption isotherm, kinetic analysis, and thermodynamic behavior.Prog. React. Kinet. Mech.202247161468678322109037710.1177/14686783221090377
    [Google Scholar]
  22. KunduA. GuptaS.B. HashimM.A. RedzwanG. Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating.J. Clean. Prod.201510542042710.1016/j.jclepro.2014.06.093
    [Google Scholar]
  23. BegM. HaiderM.B. ThakurN.K. HuseinM. SharmaS. KumarR. Clay-water interaction inhibition using amine and glycol-based deep eutectic solvents for efficient drilling of shale formations.J. Mol. Liq.202134011713410.1016/j.molliq.2021.117134
    [Google Scholar]
  24. TunçS. DumanO. The effect of different molecular weight of poly(ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions.Colloids Surf. A Physicochem. Eng. Asp.20083171-3939910.1016/j.colsurfa.2007.09.039
    [Google Scholar]
  25. SouzaD.C.E.C. LimaA.S. NascimentoR.S.V. Hydrophobically modified poly(ethylene glycol) as reactive clays inhibitor additive in water‐based drilling fluids.J. Appl. Polym. Sci.2010117285786410.1002/app.31318
    [Google Scholar]
  26. GanguliJ.N. AgarwalS. Removal of a basic dye from aqueous solution by a natural kaolinitic clay—Adsorption and kinetic studies.Adsorpt. Sci. Technol.201230217118210.1260/0263‑6174.30.2.171
    [Google Scholar]
  27. AgarwalS. GanguliJ.N. Selective hydrogenation of monoterpenes on Rhodium (0) nanoparticles stabilized in Montmorillonite K-10 clay.J. Mol. Catal. Chem.2013372445010.1016/j.molcata.2013.01.036
    [Google Scholar]
  28. Rostami-VartooniA. RostamiL. BagherzadehM. Green synthesis of Fe3O4/bentonite-supported Ag and Pd nanoparticles and investigation of their catalytic activities for the reduction of azo dyes.J. Mater. Sci. Mater. Electron.20193024213772138710.1007/s10854‑019‑02514‑3
    [Google Scholar]
  29. AhmadR. EjazM.O. Adsorption of methylene blue dye from aqueous solution onto synthesized Bentonite/silvernanoparticles-alginate (Bent/AgNPs-Alg) bio-nanocomposite.Biomass Convers. Biorefin.202214116
    [Google Scholar]
  30. Darvishi Cheshmeh SoltaniR. JorfiS. SafariM. RajaeiM.S. Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: Response surface methodological approach.J. Environ. Manage.2016179475710.1016/j.jenvman.2016.05.00127173890
    [Google Scholar]
  31. LeodopoulosC. DouliaD. GimouhopoulosK. Adsorption of cationic dyes onto Bentonite.Separ. Purif. Rev.20154417410710.1080/15422119.2013.823622
    [Google Scholar]
  32. HuangZ. LiY. ChenW. ShiJ. ZhangN. WangX. LiZ. GaoL. ZhangY. Modified bentonite adsorption of organic pollutants of dye wastewater.Mater. Chem. Phys.201720226627610.1016/j.matchemphys.2017.09.028
    [Google Scholar]
  33. RostamzadehD. SadeghiS. Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment.J. Photochem. Photobiol. Chem.202243111394710.1016/j.jphotochem.2022.113947
    [Google Scholar]
  34. ZhangT. WangW. ZhaoY. BaiH. WenT. KangS. SongG. SongS. KomarneniS. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites.Chem. Eng. J.202142012757410.1016/j.cej.2020.127574
    [Google Scholar]
  35. AlmahriA. The solid-state synthetic performance of bentonite stacked manganese ferrite nanoparticles: Adsorption and photo-fenton degradation of MB dye and antibacterial applications.J. Mater. Res. Technol.2022172935294910.1016/j.jmrt.2022.02.052
    [Google Scholar]
  36. BelachewN. BekeleG. Synergy of magnetite intercalated Bentonite for enhanced adsorption of congo red dye.Silicon202012360361210.1007/s12633‑019‑00152‑2
    [Google Scholar]
  37. SajadiS.M. KoloK. HamadS.M. MahmudS.A. BarzinjyA.A. HusseinS.M. Green synthesis of the Ag/Bentonite nanocomposite UsingEuphorbia larica extract: A reusable catalyst for efficient reduction of nitro compounds and organic dyes.ChemistrySelect2018343122741228010.1002/slct.201802707
    [Google Scholar]
  38. KaurM. UbhiM.K. GrewalJ.K. SinghD. Insight into the structural, optical, adsorptive, and photocatalytic properties of MgFe2O4-bentonite nanocomposites.J. Phys. Chem. Solids202115411006010.1016/j.jpcs.2021.110060
    [Google Scholar]
  39. AinQ.U. RasheedU. ChenZ. HeR. TongZ. Activation of Fe3O4/bentonite through anchoring of highly dispersed and photo-reduced Cu ions for higher pH fenton-like degradation and effective adsorption of Congo red dye.J. Ind. Eng. Chem.202413432734210.1016/j.jiec.2023.12.062
    [Google Scholar]
  40. MoradiH. SabbaghiS. MirbagheriN.S. ChenP. RasouliK. KamyabH. ChelliapanS. Removal of chloride ion from drinking water using Ag NPs-Modified bentonite: Characterization and optimization of effective parameters by response surface methodology-central composite design.Environ. Res.202322311548410.1016/j.envres.2023.11548436775091
    [Google Scholar]
  41. RindI.K. SarıA. TuzenM. LanjwaniM.F. SalehT.A. Synthesis of bentonite/SiO2/magnetite nanostructure as an efficient adsorbent for Bisphenol A removal from waters.Ind. Crops Prod.202320111690510.1016/j.indcrop.2023.116905
    [Google Scholar]
  42. AnirudhanT.S. RamachandranM. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm.Process Saf. Environ. Prot.20159521522510.1016/j.psep.2015.03.003
    [Google Scholar]
  43. YanL. QinL. YuH. LiS. ShanR. DuB. Adsorption of acid dyes from aqueous solution by CTMAB modified bentonite: Kinetic and isotherm modeling.J. Mol. Liq.20152111074108110.1016/j.molliq.2015.08.032
    [Google Scholar]
  44. BarmanM.P. BasakD. BorahD. BrahmaD. DebnathM. SaikiaH. Green synthesis and applications of mono/bimetallic nanoparticles on mesoporous clay: A review.Rev. Inorg. Chem.20244441910.1515/revic‑2024‑0008
    [Google Scholar]
  45. TahirS.S. RaufN. Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay.Chemosphere200663111842184810.1016/j.chemosphere.2005.10.03316380152
    [Google Scholar]
  46. AminM. AlazbaA. ShafiqM. Adsorptive removal of reactive black 5 from wastewater using Bentonite clay: Isotherms, kinetics and thermodynamics.Sustainability2015711153021531810.3390/su71115302
    [Google Scholar]
  47. VimonsesV. LeiS. JinB. ChowC.W.K. SaintC. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials.Chem. Eng. J.20091482-335436410.1016/j.cej.2008.09.009
    [Google Scholar]
  48. NaghizadehA. KamranifarM. YariA.R. MohammadiM.J. Equilibrium and kinetics study of reactive dyes removal from aqueous solutions by bentonite nanoparticles.Desalination Water Treat.20179732933710.5004/dwt.2017.21687
    [Google Scholar]
  49. MizM.E. AkichouhH. SalhiS. BachiriA.E. TahaniA. Adsorption–desorption and kinetics studies of Methylene Blue dye on Na–Bentonite from aqueous solution.IOSR J. Appl. Chem.201477607810.9790/5736‑07736078
    [Google Scholar]
  50. SaikiaH. GanguliJ.N. Intercalation of azo dyes in ni-al layered double hydroxides.Asian Journal of Chemistry201224125909
    [Google Scholar]
/content/journals/cis/10.2174/012210299X370390250429053029
Loading
/content/journals/cis/10.2174/012210299X370390250429053029
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Adsorption; Aqueous solution; Bentonite; Congo Red; Dyes; Metallic nanoparticles; NaBH4 reduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test