Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Heavy metal contamination in soil and water poses a severe global environmental challenge, particularly in rapidly industrialized regions. While conventional remediation methods exist, their widespread implementation is hindered by high costs, time-intensive processes, and complex technical requirements. This review aimed to explore an innovative approach combining phytoremediation with green-synthesized selenium nanoparticles (Se-NPs) for enhancing heavy metal removal. Our analysis revealed that plants treated with green-synthesized Se-NPs exhibited more efficient uptake of heavy metals compared to traditional phytoremediation alone. Some key advantages include enhanced metal accumulation capacity, increased plant biomass production, and improved stress tolerance. The green synthesis of Se-NPs, primarily using plant extracts and biological materials, offers a sustainable and cost-effective alternative to chemical and physical synthesis methods. These biogenic Se-NPs exhibit dual benefits: promoting plant growth and remediation efficiency while demonstrating valuable biological properties, including antioxidant, antimicrobial, and anticancer activities. Our findings demonstrated that the integrated approach achieved 40–60% greater heavy metal removal compared to conventional methods while also reducing treatment costs by approximately 30%. The review also identified promising applications in large-scale soil restoration projects and agricultural land rehabilitation, suggesting a practical pathway for sustainable environmental remediation.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X383852250505110945
2025-01-01
2025-09-25
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X383852.html?itemId=/content/journals/cis/10.2174/012210299X383852250505110945&mimeType=html&fmt=ahah

References

  1. AnsariA.A. GillS.S. GillR. R. LanzaG. NewmanL. Phytoremediation: Management of Environmental Contaminants.Springer201910.1007/978‑3‑319‑99651‑6
    [Google Scholar]
  2. YangZ. ZhangX. JiangZ. LiQ. HuangP. ZhengC. LiaoQ. YangW. Reductive materials for remediation of hexavalent chromium contaminated soil: A review.Sci. Total Environ.202177314565410.1016/j.scitotenv.2021.14565433582355
    [Google Scholar]
  3. SongB. XuP. ChenM. TangW. ZengG. GongJ. ZhangP. YeS. Using nanomaterials to facilitate the phytoremediation of contaminated soil.Crit. Rev. Environ. Sci. Technol.201949979182410.1080/10643389.2018.1558891
    [Google Scholar]
  4. DixitR. Wasiullah MalaviyaD. PandiyanK. SinghU. SahuA. ShuklaR. SinghB. RaiJ. SharmaP. LadeH. PaulD. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes.Sustainability2015722189221210.3390/su7022189
    [Google Scholar]
  5. RostamiS. AzhdarpoorA. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review.Chemosphere201922081882710.1016/j.chemosphere.2018.12.20330612051
    [Google Scholar]
  6. LasatM.M. Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent agronomic issues.J. Hazardous. Substance. Res.19992110.4148/1090‑7025.1015
    [Google Scholar]
  7. TurhunM. EzizM. Identification of the distribution, contamination levels, sources, and ecological risks of heavy metals in vineyard soils in the main grape production area of China.Environ. Earth Sci.20228124010.1007/s12665‑022‑10167‑5
    [Google Scholar]
  8. SultanM.B. ChoudhuryT.R. AlamM.N.E. DozaM.B. RahmanaM.M. Soil, dust, and leaf-based novel multi-sample approach for urban heavy metal contamination appraisals in a megacity, Dhaka, Bangladesh.Environ. Adv.2022710015410.1016/j.envadv.2021.100154
    [Google Scholar]
  9. RehmanM. LiuL. WangQ. SaleemM.H. BashirS. UllahS. PengD. Copper environmental toxicology, recent advances, and future outlook: A review.Environ. Sci. Pollut. Res. Int.20192618180031801610.1007/s11356‑019‑05073‑631054057
    [Google Scholar]
  10. KumarA. TriptiM. MalevaM. KiselevaI. MaitiS.K. MorozovaM. Toxic metal(loid)s contamination and potential human health risk assessment in the vicinity of century-old copper smelter, Karabash, Russia.Environ. Geochem. Health202042124113412410.1007/s10653‑019‑00414‑331520319
    [Google Scholar]
  11. Al-MakishahN.H. TalebM.A. BarakatM.A. Arsenic bioaccumulation in arsenic-contaminated soil: A review.Chem. Pap.20207492743275710.1007/s11696‑020‑01122‑4
    [Google Scholar]
  12. AhmedS.F. KumarP.S. RozbuM.R. ChowdhuryA.T. NuzhatS. RafaN. MahliaT.M.I. OngH.C. MofijurM. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil.Env. Technol. Innov.20222510211410.1016/j.eti.2021.102114
    [Google Scholar]
  13. GanY. HuangX. LiS. LiuN. LiY.C. FreidenreichA. WangW. WangR. DaiJ. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta.J. Clean. Prod.20192219810710.1016/j.jclepro.2019.02.157
    [Google Scholar]
  14. RajD. MaitiS.K. Sources, toxicity, and remediation of mercury: An essence review.Environ. Monit. Assess.2019191956610.1007/s10661‑019‑7743‑231418123
    [Google Scholar]
  15. MannaK. DebnathB. SinghW.S. Sources and toxicological effects of lead on human health.Indian J. Med. Spec.20191026610.4103/INJMS.INJMS_30_18
    [Google Scholar]
  16. ZhangY. HouD. O’ConnorD. ShenZ. ShiP. OkY.S. TsangD.C.W. WenY. LuoM. Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks.Crit. Rev. Environ. Sci. Technol.201949151386142310.1080/10643389.2019.1571354
    [Google Scholar]
  17. AdimallaN. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution.Environ. Geochem. Health2020421597510.1007/s10653‑019‑00270‑130843166
    [Google Scholar]
  18. YangS. GuS. HeM. TangX. MaL.Q. XuJ. LiuX. Policy adjustment impacts Cd, Cu, Ni, Pb and Zn contamination in soils around e-waste area: Concentrations, sources and health risks.Sci. Total Environ.202074114044210.1016/j.scitotenv.2020.14044232615436
    [Google Scholar]
  19. ChenX. KumariD. CaoC.J. PlazaG. AchalV. A review on remediation technologies for nickel-contaminated soil.Hum. Ecol. Risk Assess.202026357158510.1080/10807039.2018.1539639
    [Google Scholar]
  20. El-NaggarA. AhmedN. MosaA. NiaziN.K. YousafB. SharmaA. SarkarB. CaiY. ChangS.X. Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar.J. Hazard. Mater.202141912642110.1016/j.jhazmat.2021.12642134171670
    [Google Scholar]
  21. YadavI.C. DeviN.L. SinghV.K. LiJ. ZhangG. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal.Chemosphere2019218November1100111310.1016/j.chemosphere.2018.11.20230609489
    [Google Scholar]
  22. MaksimovićT. RončevićS. KukavicaB. Utricularia vulgaris L. and Salvinia natans (L.) All. heavy metal (Fe, Mn, Cu, Zn and Pb) bioaccumulation specificity in the area of Bardača fishpond.Ekologia (Bratisl.)201938320121310.2478/eko‑2019‑0016
    [Google Scholar]
  23. AliH. KhanE. SajadM.A. Phytoremediation of heavy metals: Concepts and applications.Chemosphere201391786988110.1016/j.chemosphere.2013.01.07523466085
    [Google Scholar]
  24. AshourM. MansourA.T. AbdelwahabA.M. AlprolA.E. Metal oxide nanoparticles’ green synthesis by plants: Prospects in phyto- and bioremediation and photocatalytic degradation of organic pollutants.Processes20231112335610.3390/pr11123356
    [Google Scholar]
  25. RevathiS. SubhashreeV. In-vitro phytotoxic effect of chromium and EDTA on seed germination of Sesbania grandiflora L. Res. J. Pharm. Biol. Chem. Sci.201453451456
    [Google Scholar]
  26. RevathiS. SubhashreeV. Comparative study on the effect of nitric oxide. c hromium and EDTA on oxidative stress responses in Agathi (Sesbania grandiflora L. pers). Appl. Ecol. Environ. Res.20191723269329110.15666/aeer/1702_32693291
    [Google Scholar]
  27. TuranM. EsringüA. Phytoremediation based on canola (Brassica napus L.). and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn.Plant Soil Environ.200753171510.17221/3188‑PSE
    [Google Scholar]
  28. RajputV.D. MinkinaT. UpadhyayS.K. KumariA. RanjanA. MandzhievaS. SushkovaS. SinghR.K. VermaK.K. Nanotechnology in the restoration of polluted soil.Nanomaterials202212576910.3390/nano1205076935269257
    [Google Scholar]
  29. JamzadM. Kamari BidkorpehM. Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity.J. Nanostructure Chem.202010319320110.1007/s40097‑020‑00341‑1
    [Google Scholar]
  30. WaniP.A. KhanM.S. ZaidiA. Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea.Aust. J. Exp. Agric.200747671272010.1071/EA05369
    [Google Scholar]
  31. SumiahadiA. AcarR. A review of phytoremediation technology: Heavy metals uptake by plants.IOP Conf. Ser. Earth Environ. Sci.2018142101202310.1088/1755‑1315/142/1/012023
    [Google Scholar]
  32. LiuS. YangB. LiangY. XiaoY. FangJ. Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils.Environ. Sci. Pollut. Res. Int.20202714160691608510.1007/s11356‑020‑08282‑632173779
    [Google Scholar]
  33. MartínezM. BernalP. AlmelaC. VélezD. García-AgustínP. SerranoR. Navarro-AviñóJ. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils.Chemosphere200664347848510.1016/j.chemosphere.2005.10.04416337669
    [Google Scholar]
  34. RizaM. HoqueS. Phytoremediation of copper and zinc contaminated soil around textile industries using Bryophyllum pinnatum plant.J. Ecol. Eng.2021224889710.12911/22998993/134035
    [Google Scholar]
  35. ShahandehH. HossnerL.R. Plant screening for chromium phytoremediation.Int. J. Phytoremediation200021315110.1080/15226510008500029
    [Google Scholar]
  36. AzeezN.M. Bioaccumulation and phytoremediation of some heavy metals (Mn, Cu, Zn and Pb) by bladderwort and duckweed.Biodiversitas (Surak.)20212252993299810.13057/biodiv/d220564
    [Google Scholar]
  37. SahaP. ShindeO. SarkarS. Phytoremediation of industrial mines wastewater using water hyacinth.Int. J. Phytoremediation2017191879610.1080/15226514.2016.121607827551860
    [Google Scholar]
  38. SubhashiniV. SwamyA.V.V.S. Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.).Univers. J. Environ. Res. Technol.201834465www.environmentaljournal.org
    [Google Scholar]
  39. KhanA.S. HussainM.W. MalikK.A. A possibility of using waterlily (Nymphaea Alba L.) for reducing the toxic effects of chromium (Cr) in industrial wastewater.Pak. J. Bot.201648414471452
    [Google Scholar]
  40. García-SalgadoS. García-CasillasD. Quijano-NietoM.A. Bonilla-SimónM.M. Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities.Water Air Soil Pollut.2012223255957210.1007/s11270‑011‑0882‑x
    [Google Scholar]
  41. Juárez-MaldonadoA. Ortega-OrtízH. Morales-DíazA.B. González-MoralesS. Morelos-MorenoÁ. Cabrera-De la FuenteM. Sandoval-RangelA. Cadenas-PliegoG. Benavides-MendozaA. Nanoparticles and nanomaterials as plant biostimulants.Int. J. Mol. Sci.201920116210.3390/ijms2001016230621162
    [Google Scholar]
  42. AntosiewiczD.M. Escudĕ-DuranC. WierzbowskaE. SkłodowskaA. Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil.Water Air Soil Pollut.20081931-419721010.1007/s11270‑008‑9683‑2
    [Google Scholar]
  43. SusarlaS. MedinaV.F. McCutcheonS.C. Phytoremediation: An ecological solution to organic chemical contamination.Ecol. Eng.200218564765810.1016/S0925‑8574(02)00026‑5
    [Google Scholar]
  44. KaramiA. ShamsuddinZ.H. Proceedings: Transport of anions in aqueous polymer solutions.African J. Biotechnol201092510http://www.ncbi.nlm.nih.gov/pubmed/2747
    [Google Scholar]
  45. RaoK.N. LathaP.S. Groundwater quality assessment using water quality index with a special focus on vulnerable tribal region of Eastern Ghats hard rock terrain, Southern India.Arab. J. Geosci.201912826710.1007/s12517‑019‑4440‑y
    [Google Scholar]
  46. SarithaM. Prasad TollamaduguN.V.K.V. The status of research and application of biofertilizers and biopesticides: Global scenario.Recent Developments in Applied Microbiology and Biochemistry.Elsevier Inc.201819520710.1016/B978‑0‑12‑816328‑3.00015‑5
    [Google Scholar]
  47. DeviP. KumarP. Concept and application of phytoremediation in the fight of heavy metal toxicity.J. Pharm. Sci. Res.2020126795804
    [Google Scholar]
  48. AlkortaI. Hernández-AllicaJ. BecerrilJ.M. AmezagaI. AlbizuI. GarbisuC. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic.Rev. Environ. Sci. Biotechnol.200431719010.1023/B:RESB.0000040059.70899.3d
    [Google Scholar]
  49. KalpanaV.N. Devi RajeswariV. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs.Bioinorg. Chem. Appl.2018201811210.1155/2018/356975830154832
    [Google Scholar]
  50. YanA. WangY. TanS.N. Mohd YusofM.L. GhoshS. ChenZ. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land.Front. Plant Sci.202011April35910.3389/fpls.2020.0035932425957
    [Google Scholar]
  51. MuthusaravananS. SivarajasekarN. VivekJ.S. ParamasivanT. NaushadM. PrakashmaranJ. GayathriV. Al-DuaijO.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements.Environ. Chem. Lett.20181641339135910.1007/s10311‑018‑0762‑3
    [Google Scholar]
  52. KoptsikG.N. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review.Eurasian Soil Sci.201447992393910.1134/S1064229314090075
    [Google Scholar]
  53. DasS. GoswamiS. TalukdarA.D. A study on cadmium phytoremediation potential of water lettuce, istia stratiotes L. Bull. Environ. Contam. Toxicol.201492216917410.1007/s00128‑013‑1152‑y24220931
    [Google Scholar]
  54. JeevananthamS. SaravananA. HemavathyR.V. KumarP.S. YaashikaaP.R. YuvarajD. Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects.Environmental. Technol. Innov.20191326410.1016/j.eti.2018.12.007
    [Google Scholar]
  55. WangL. Wu W.M. Bolan N.S. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives.J Hazard Mater.202140112341510.1016/j.jhazmat.2020.123415
    [Google Scholar]
  56. MiazekK. IwanekW. RemacleC. RichelA. GoffinD. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: A review.Int. J. Mol. Sci.20151610239292396910.3390/ijms16102392926473834
    [Google Scholar]
  57. JamkhandeP. G. GhuleN. W. BamerA. H. KalaskarM. G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  58. AlenaziF. SaleemM. Syed KhajaA.S. ZafarM. AlharbiM.S. Al HagbaniT. KhanM.Y. AhmadW. AhmadS. Antiglycation potential of plant based TiO 2 nanoparticle in D‐ribose glycated BSA in vitro. Cell Biochem. Funct.202240778479610.1002/cbf.374436128730
    [Google Scholar]
  59. BundschuhM. FilserJ. LüderwaldS. McKeeM.S. MetreveliG. SchaumannG.E. SchulzR. WagnerS. Nanoparticles in the environment: Where do we come from, where do we go to?Environ. Sci. Eur.2018301610.1186/s12302‑018‑0132‑629456907
    [Google Scholar]
  60. Sánchez-LópezE. GomesD. EsteruelasG. BonillaL. Lopez-MachadoA.L. GalindoR. CanoA. EspinaM. EttchetoM. CaminsA. SilvaA.M. DurazzoA. SantiniA. GarciaM.L. SoutoE.B. Metal-based nanoparticles as antimicrobial agents: An overview.Nanomaterials202010229210.3390/nano1002029232050443
    [Google Scholar]
  61. RathinavelS. PriyadharshiniK. PandaD. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application.Mater. Sci. Eng. B2021268February11509510.1016/j.mseb.2021.115095
    [Google Scholar]
  62. TianJ. ZhangW. Synthesis, self-assembly and applications of functional polymers based on porphyrins.Prog. Polym. Sci.2019956511710.1016/j.progpolymsci.2019.05.002
    [Google Scholar]
  63. AlyahyawiA.R. KhanS. RafiZ. SinghP. MoheetK. AkashaR. AhmadS. Exploring Kinnow mandarin’s hidden potential: Nature’s key to antimicrobial and antidiabetic gold nanoparticles (K-AuNPs).Saudi J. Biol. Sci.2023301010378210.1016/j.sjbs.2023.10378237692889
    [Google Scholar]
  64. DhimanR. BazadN. MukherjeeR. Himanshu Gunjan LealE. AhmadS. KaurK. RajV.S. ChangC.M. PandeyR.P. Enhanced drug delivery with nanocarriers: A comprehensive review of recent advances in breast cancer detection and treatment.Discover Nano202419114310.1186/s11671‑024‑04086‑639243326
    [Google Scholar]
  65. KhanM. SinghT. PalD.B. KhanS. AhmadS. JandrajupalliS.B. HaqueS. SinghR. SrivastavaN. Enhanced production of bacterial hydrolytic endoglucanase enzyme using waste leaves of water hyacinth and its thermal stability under the influence of TiO2 nanoparticles.Biomass Convers. Biorefin.20241422185219110.1007/s13399‑022‑02421‑4
    [Google Scholar]
  66. El-AlkamyA.M.T. TayelS.M. SafwatM.D. AbdallahD.M. NabilN.M. The protective effect of quercetin on thioacetamide- induced liver cirrhosis in adult male albino rats.Egypt. J. Histol.202346256157410.21608/ejh.2021.107570.1597
    [Google Scholar]
  67. KhanH.M. ShahabU. AlshammariA. AlyahyawiA.R. AkashaR. AkashaR. AlharaziT. Nano-therapeutics: The upcoming nanomedicine to treat cancer.IUBMB Life202476846810.1002/iub.2814.
    [Google Scholar]
  68. AlenaziF. SaleemM. KhajaA.S.S. ZafarM. AlharbiM.S. HagbaniT.A. AshrafJ.M. QamarM. RafiZ. AhmadS. Metformin encapsulated gold nanoparticles (MTF‐GNPs): A promising antiglycation agent.Cell Biochem. Funct.202240772974110.1002/cbf.373836098489
    [Google Scholar]
  69. WuC.Q. SuiJ.Y. ChenQ. TangX.Z. ZhangH.F. A tunable encoder with circular dichroism and polarization encoding function based on a layered metastructure in the GHz range.Materials. Design202525011363610.1016/j.matdes.2025.113636
    [Google Scholar]
  70. LeiL. WanB. F. LiaoS. Y. ZhangH. F. Broadband asymmetric absorption-transmission and double-band rasorber of electromagnetic waves based on superconductor ceramics metastructures-photonic crystals.Eng. Sci. Technol. Int. J.20245710181010.1016/j.jestch.2024.101810
    [Google Scholar]
  71. Jia-HaoZ. Jun-YangS. Hai-FengZ. An electromagnetic logic metastructure realizing half addition and half subtraction operations based on a virtual polarizer.Phys. Fluids202537110.1063/5.0249587
    [Google Scholar]
  72. RaskinI. Phytoremediation of toxic metals: Using plants to clean the environment.J. Plant Biotechnol.199911304
    [Google Scholar]
  73. JochemM. EndeL. IsasaM. AngJ. SchnellH. Guerra-MorenoA. MicoogullariY. BhanuM. GygiS.P. HannaJ. Targeted degradation of glucose transporters protects against arsenic toxicity.Mol. Cell. Biol.20193910e00559-1810.1128/MCB.00559‑1830886123
    [Google Scholar]
  74. SalehH.M. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides.Nucl. Eng. Des.201224242543210.1016/j.nucengdes.2011.10.023
    [Google Scholar]
  75. JamilS. AbhilashP.C. SinghN. SharmaP.N. Jatropha curcas: A potential crop for phytoremediation of coal fly ash.J. Hazard. Mater.2009172126927510.1016/j.jhazmat.2009.07.00419640648
    [Google Scholar]
  76. KrishnarajC. MuthukumaranP. RamachandranR. BalakumaranM.D. KalaichelvanP.T. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells.Biotechnol. Rep. (Amst.)201441424910.1016/j.btre.2014.08.00228626661
    [Google Scholar]
  77. Capaldi ArrudaS.C. Diniz SilvaA.L. Moretto GalazziR. Antunes AzevedoR. Zezzi ArrudaM.A. Nanoparticles applied to plant science: A review.Talanta201513169370510.1016/j.talanta.2014.08.05025281161
    [Google Scholar]
  78. NikolaidisP. SrivastavaN. SrivastavaM. MishraP.K. GuptaV.K. Analysis of green methods to synthesize nanomaterials.Green Synthesis of Nanomaterials for Bioenergy Applications.Wiley202012514410.1002/9781119576785.ch5
    [Google Scholar]
  79. AbidN. Khan A.M. Shujait S. Chaudhary K. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review.Adv Colloid Interface Sci202230010259710.1016/j.cis.2021.102597
    [Google Scholar]
  80. LombardoD. CalandraP. PasquaL. MagazùS. Self-assembly of organic nanomaterials and biomaterials: The bottom-up approach for functional nanostructures formation and advanced applications.Materials2020135104810.3390/ma1305104832110877
    [Google Scholar]
  81. Di VeceM. Using nanoparticles as a bottom-up approach to increase solar cell efficiency.Kona Powder Particle J.2019360728710.14356/kona.2019005
    [Google Scholar]
  82. YinI.X. ZhangJ. ZhaoI.S. MeiM.L. LiQ. ChuC.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry.Int. J. Nanomedicine2020152555256210.2147/IJN.S24676432368040
    [Google Scholar]
  83. DuránN. SeabraA.B. Metallic oxide nanoparticles: State of the art in biogenic syntheses and their mechanisms.Appl. Microbiol. Biotechnol.201295227528810.1007/s00253‑012‑4118‑922639143
    [Google Scholar]
  84. YangC. GuoY. ZhangF. Electromagnetic detection design in liquid crystals janus metastructures based on second harmonic generation.IEEE Trans. Instrum. Meas.20247311110.1109/TIM.2024.3470953
    [Google Scholar]
  85. Zhang M.Z. Tang Z. Zhang H.F. Layered heterogeneous structures integrated device for multiplication, division arithmetic unit and multiple-physical sensing.Phys. Fluids202436097129 10.1063/5.0228552
    [Google Scholar]
  86. YangCheng GuoChu-Ming XuJie ZhangHai-Feng Device design for multitask graphene electromagnetic detection based on second harmonic generation.IEEE Trans. Microw. Theory Techn2024727417410.1109/TMTT.2023.3347528
    [Google Scholar]
  87. McCutcheonS.C. RockS.A. Phytoremediation: State of the science conference and other developments.Int. J. Phytoremediation20013111110.1080/15226510108500047
    [Google Scholar]
  88. PavithraS. P. S. SudhaP. S. P. KalaiselviV. K. V. RamyaV. R. V. VidhyaN. V. N. Green synthesis and characterization of ZnO nanoparticles using Hibiscus Rosa Sinensis leaf extract.J. Environ. Nanotechnol.20209371210.13074/jent.2020.09.203419
    [Google Scholar]
  89. AbdullahF.H. Abu BakarN.H.H. Abu BakarM. Low temperature biosynthesis of crystalline zinc oxide nanoparticles from Musa acuminata peel extract for visible-light degradation of methylene blue.Optik202020616427910.1016/j.ijleo.2020.164279
    [Google Scholar]
  90. PrasadA. R. GarvasisJ. OruvilS. K. JosephA. Bio-inspired green synthesis of zinc oxide nanoparticles using Abelmoschus esculentus mucilage and selective degradation of cationic dye pollutants.J. Physics. Chem. Solid.201912726527410.1016/j.jpcs.2019.01.003
    [Google Scholar]
  91. AkbarianM. MahjoubS. ElahiS.M. ZabihiE. TashakkorianH. Green synthesis, formulation and biological evaluation of a novel ZnO nanocarrier loaded with paclitaxel as drug delivery system on MCF-7 cell line.Colloids Surf. B Biointerfaces202018611068610.1016/j.colsurfb.2019.11068631816463
    [Google Scholar]
  92. PillaiA.M. SivasankarapillaiV.S. RahdarA. JosephJ. SadeghfarF. Anuf AR. RajeshK. KyzasG.Z. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity.J. Mol. Struct.2020121112810710.1016/j.molstruc.2020.128107
    [Google Scholar]
  93. SanthoshkumarJ. KumarS.V. RajeshkumarS. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen.Resource-Efficient Technologies20173445946510.1016/j.reffit.2017.05.001
    [Google Scholar]
  94. DharS.A. ChowdhuryR.A. DasS. NahianM.K. IslamD. GafurM.A. Plant-mediated green synthesis and characterization of silver nanoparticles using Phyllanthus emblica fruit extract.Mater. Today Proc.2021421867187110.1016/j.matpr.2020.12.222
    [Google Scholar]
  95. KhanA.G. Promises and potential of in situ nano-phytoremediation strategy to mycorrhizo-remediate heavy metal contaminated soils using non-food bioenergy crops ( Vetiver zizinoides & Cannabis sativa).Int. J. Phytoremediation202022990091510.1080/15226514.2020.177450432538143
    [Google Scholar]
  96. ChavanR.R. BhingeS.D. BhutkarM.A. RandiveD.S. WadkarG.H. TodkarS.S. UradeM.N. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract.Mater. Today Commun.202024June10132010.1016/j.mtcomm.2020.101320
    [Google Scholar]
  97. KambaleE.K. NkangaC.I. MutonkoleB.P.I. BapolisiA.M. TassaD.O. LiesseJ.M.I. KrauseR.W.M. MemvangaP.B. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea).Heliyon202068e0449310.1016/j.heliyon.2020.e0449332793824
    [Google Scholar]
  98. MittalA.K. BhaumikJ. KumarS. BanerjeeU.C. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential.J. Colloid Interface Sci.2014415394710.1016/j.jcis.2013.10.01824267328
    [Google Scholar]
  99. DaisyP. SaipriyaK. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus.Int. J. Nanomedicine201271189120210.2147/IJN.S2665022419867
    [Google Scholar]
  100. SatpathyS. PatraA. AhirwarB. HussainM.D. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications.Physica E202012111383010.1016/j.physe.2019.113830
    [Google Scholar]
  101. GanesanR.M. Gurumallesh PrabuH. Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications.Arab. J. Chem.20191282166217410.1016/j.arabjc.2014.12.017
    [Google Scholar]
  102. RajeshK.M. AjithaB. ReddyY.A.K. SuneethaY. ReddyP.S. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties.Optik (Stuttg.)201815459360010.1016/j.ijleo.2017.10.074
    [Google Scholar]
  103. AmerM.W. AwwadA.M. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity.Int. Sci. Organ7118202110.5281/zenodo.4017993
    [Google Scholar]
  104. AlaoI.I. OyekunleI.P. IwuozorK.O. EmenikeE.C. Green synthesis of copper nanoparticles and investigation of its antimicrobial properties.Prog. Med. Chem.202241395210.22034/ajcb.2022.323779.1106
    [Google Scholar]
  105. Al-KhafajiM.A.A. Al-Refai’aR.A.K. Al-ZamelyO.M.Y. Green synthesis of copper nanoparticles using artemisia plant extract.Mater. Today Proc.2022492831283510.1016/j.matpr.2021.10.067
    [Google Scholar]
  106. GhoshM.K. SahuS. GuptaI. GhoraiT.K. Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves: Characterization, optical properties, CT-DNA binding and photocatalytic activity.RSC Advances20201037220272203510.1039/D0RA03186K35516624
    [Google Scholar]
  107. RongK. WangJ. ZhangZ. ZhangJ. Green synthesis of iron nanoparticles using Korla fragrant pear peel extracts for the removal of aqueous Cr(VI).Ecological Eng.159202010579310.1016/j.ecoleng.2020.105793
    [Google Scholar]
  108. DeviH.S. BodaM.A. ShahM.A. ParveenS. WaniA.H. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity.Green. Process. Synth.201981384510.1515/gps‑2017‑0145
    [Google Scholar]
  109. PanZ. LinY. SarkarB. OwensG. ChenZ. Green synthesis of iron nanoparticles using red peanut skin extract: Synthesis mechanism, characterization and effect of conditions on chromium removal.J. Colloid Interface Sci.202055810611410.1016/j.jcis.2019.09.10631585219
    [Google Scholar]
  110. KarpagavinayagamP. VedhiC. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract.Vacuum201916028629210.1016/j.vacuum.2018.11.043
    [Google Scholar]
  111. DinM.I. NabiA.G. RaniA. AihetashamA. MukhtarM. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials.Environ. Nanotechnol. Monit. Manag.20189293310.1016/j.enmm.2017.11.005
    [Google Scholar]
  112. Belal HananS. RahmanA. GalalG.S.. The protective effect of Selenium versus ascorbic acid on potassium dichromate-induced thyroid toxicity in adult male albino rats.J. Microsc. Ultrastruct.2023
    [Google Scholar]
  113. DikshitP. KumarJ. DasA. SadhuS. SharmaS. SinghS. GuptaP. KimB. Green synthesis of metallic nanoparticles: Applications and limitations.Catalysts202111890210.3390/catal11080902
    [Google Scholar]
  114. NieM. Cai M. Wu C. Chen S. Selenium-mediated Cr(VI) reduction and SeNPs synthesis accelerated Bacillus cereus SES to remediate Cr contamination.J. Hazard. Mater.202264December13449110.1016/j.jhazmat.2023.131713
    [Google Scholar]
  115. GeM. ZhouS. LiD. SongD. YangS. XuM. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil.J. Hazard. Mater.2024472February13449110.1016/j.jhazmat.2024.13449138703686
    [Google Scholar]
  116. ZhuY. DongY. ZhuN. JinH. Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant.Ecotoxicol. Environ. Saf.2022240May11368110.1016/j.ecoenv.2022.11368135653978
    [Google Scholar]
  117. ShahT. KhanZ. AlahmadiT.A. ShahM.A. AhmadM.Z. RasoolS. AnsariM.J. Nanoselenium inhibits chromium toxicity in wheat plants by modifying the antioxidant defense system, ascorbate glutathione cycle, and glyoxalase system.Environ. Exp. Bot.202422010569710.1016/j.envexpbot.2024.105697
    [Google Scholar]
/content/journals/cis/10.2174/012210299X383852250505110945
Loading
/content/journals/cis/10.2174/012210299X383852250505110945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test