Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Introduction

Glioblastoma (GBM) is a highly aggressive brain cancer with limited therapeutic options. The epidermal growth factor receptor (EGFR) plays a critical role in tumor progression, making it a promising target for novel treatments. This study aimed to identify plant-derived phytochemicals as potential EGFR inhibitors to enhance the management of GBM.

Methods

Computational approaches were utilized, including virtual screening of phytochemicals from the NPACT database against the EGFR crystal structure (PDB ID: 5XWD). Molecular docking, ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling, and 50 ns molecular dynamics (MD) simulations were performed to evaluate binding affinity, pharmacokinetic properties, and complex stability using metrics, such as root mean square deviation (RMSD), radius of gyration (Rg), and solvent-accessible surface area (SASA). Cytotoxicity was assessed against the SF-295 GBM cell line.

Results

Three phytochemicals, 2,3-dihydrowithaferin A, strophanthidin, and 6,8-diprenyleriodictyol, demonstrated strong EGFR binding affinities (-8.5 to -7.9 kcal/mol), favorable drug-like properties, and optimal ADMET profiles. MD simulations confirmed stable binding for 2,3-dihydrowithaferin A and 6,8-diprenyleriodictyol, with low RMSD (<2.5 Å), compact Rg (<2.2 nm), and reduced SASA. Only 6,8-diprenyleriodictyol exhibited cytotoxicity against SF-295 GBM cells (Pa = 0.383).

Discussion

The findings position 6,8-diprenyleriodictyol as a promising EGFR inhibitor due to its balanced binding affinity, pharmacokinetic profile, and selective cytotoxicity, potentially addressing limitations of current EGFR inhibitors like erlotinib in GBM. The stable binding and favorable ADMET properties suggest potential for CNS penetration; however, the P-glycoprotein substrate status warrants further investigation. However, there is a need for and validation to confirm its efficacy and selectivity.

Conclusion

6,8-Diprenyleriodictyol emerges as a lead candidate for EGFR-targeted GBM therapy, supported by its strong binding, favorable pharmacokinetics, and cytotoxicity against GBM cells. Further experimental studies are needed to validate its therapeutic potential and overcome challenges, such as BBB penetration.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X385778250912114718
2025-01-01
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X385778.html?itemId=/content/journals/cis/10.2174/012210299X385778250912114718&mimeType=html&fmt=ahah

References

  1. HanifF. MuzaffarK. PerveenK. MalhiS.M. SimjeeShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment.Asian Pac. J. Cancer Prev.20171813910.22034/APJCP.2017.18.1.328239999
    [Google Scholar]
  2. GrochansS. CybulskaA.M. SimińskaD. KorbeckiJ. KojderK. ChlubekD. Baranowska-BosiackaI. Epidemiology of glioblastoma multiforme–Literature review.Cancers20221410241210.3390/cancers1410241235626018
    [Google Scholar]
  3. Delgado-MartínB. MedinaM.Á. Advances in the knowledge of the molecular biology of glioblastoma and its impact in patient diagnosis, stratification, and treatment.Adv. Sci.202079190297110.1002/advs.20190297132382477
    [Google Scholar]
  4. SturmD. BenderS. JonesD.T.W. LichterP. GrillJ. BecherO. HawkinsC. MajewskiJ. JonesC. CostelloJ.F. IavaroneA. AldapeK. BrennanC.W. JabadoN. PfisterS.M. Paediatric and adult glioblastoma: Multiform (epi)genomic culprits emerge.Nat. Rev. Cancer20141429210710.1038/nrc365524457416
    [Google Scholar]
  5. YangF. ZouY. GongQ. ChenJ. LiW.D. HuangQ. From astrocytoma to glioblastoma: A clonal evolution study.FEBS Open Bio202010574475110.1002/2211‑5463.1281532069381
    [Google Scholar]
  6. ModrekA.S. GolubD. KhanT. BreadyD. PradoJ. BowmanC. DengJ. ZhangG. RochaP.P. RaviramR. LazarisC. StaffordJ.M. LeRoyG. KaderM. DhaliwalJ. BayinN.S. FrensterJ.D. SerranoJ. ChiribogaL. BaitalmalR. NanjangudG. ChiA.S. GolfinosJ.G. WangJ. KarajannisM.A. BonneauR.A. ReinbergD. TsirigosA. ZagzagD. SnuderlM. SkokJ.A. NeubertT.A. PlacantonakisD.G. Low-grade astrocytoma mutations in IDH1, P53, and ATRX cooperate to block differentiation of human neural stem cells via repression of SOX2.Cell Rep.20172151267128010.1016/j.celrep.2017.10.00929091765
    [Google Scholar]
  7. DavisM. Glioblastoma: Overview of disease and treatment.Clin. J. Oncol. Nurs.2016205 SupplS2S810.1188/16.CJON.S1.2‑827668386
    [Google Scholar]
  8. EckerdtF. PlataniasL.C. Emerging role of glioma stem cells in mechanisms of therapy resistance.Cancers20231513345810.3390/cancers1513345837444568
    [Google Scholar]
  9. NakadaM. KitaD. WatanabeT. HayashiY. TengL. PykoI.V. HamadaJ.I. Aberrant signaling pathways in glioma.Cancers2011333242327810.3390/cancers303324224212955
    [Google Scholar]
  10. KhabibovM. GarifullinA. BoumberY. KhaddourK. FernandezM. KhamitovF. KhalikovaL. KuznetsovaN. KitO. KharinL. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review).Int. J. Oncol.20226066910.3892/ijo.2022.535935445737
    [Google Scholar]
  11. MaoH. LeBrunD.G. YangJ. ZhuV.F. LiM. Deregulated signaling pathways in glioblastoma multiforme: Molecular mechanisms and therapeutic targets.Cancer Invest.2012301485610.3109/07357907.2011.63005022236189
    [Google Scholar]
  12. CrespoI. VitalA.L. Gonzalez-TablasM. PatinoM.C. OteroA. LopesM.C. de OliveiraC. DominguesP. OrfaoA. TaberneroM.D. Molecular and genomic alterations in glioblastoma multiforme.Am. J. Pathol.201518571820183310.1016/j.ajpath.2015.02.02325976245
    [Google Scholar]
  13. VerdugoE. PuertoI. MedinaM.Á. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment.Cancer Commun.202242111083111110.1002/cac2.1236136129048
    [Google Scholar]
  14. GilesB. NakhjavaniM. WiesaA. KnightT. ShigdarS. SamarasingheR.M. Unravelling the glioblastoma tumour microenvironment: Can aptamer targeted delivery become successful in treating brain cancers?Cancers20231517437610.3390/cancers1517437637686652
    [Google Scholar]
  15. RodriguezS.M.B. KamelA. CiubotaruG.V. OnoseG. SevastreA.S. SfredelV. DanoiuS. DricuA. TataranuL.G. An overview of EGFR mechanisms and their implications in targeted therapies for glioblastoma.Int. J. Mol. Sci.202324131111010.3390/ijms24131111037446288
    [Google Scholar]
  16. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers2017955210.3390/cancers905005228513565
    [Google Scholar]
  17. MustafaM. AbbasK. AlamM. AhmadW. Moinuddin UsmaniN. SiddiquiS.A. HabibS. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC).Mol. Cell. Biochem.2024479489591310.1007/s11010‑023‑04772‑637247161
    [Google Scholar]
  18. KellerS. SchmidtM. EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: Combination therapies for an effective treatment.Int. J. Mol. Sci.2017186129510.3390/ijms1806129528629170
    [Google Scholar]
  19. HatanpaaK.J. BurmaS. ZhaoD. HabibA.A. Epidermal growth factor receptor in glioma: Signal transduction, neuropathology, imaging, and radioresistance.Neoplasia201012967568410.1593/neo.1068820824044
    [Google Scholar]
  20. AnZ. AksoyO. ZhengT. FanQ.W. WeissW.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies.Oncogene201837121561157510.1038/s41388‑017‑0045‑729321659
    [Google Scholar]
  21. OpritaA. BaloiS.C. StaicuG.A. AlexandruO. TacheD.E. DanoiuS. MicuE.S. SevastreA.S. Updated insights on EGFR signaling pathways in glioma.Int. J. Mol. Sci.202122258710.3390/ijms2202058733435537
    [Google Scholar]
  22. LiuB. DuenasD. ZhengL. ReckampK. ShenB. Genomic instability as a major mechanism for acquired resistance to EGFR tyrosine kinase inhibitors in cancer.Protein Cell2022132828910.1007/s13238‑021‑00855‑634319535
    [Google Scholar]
  23. TaylorT.E. FurnariF.B. CaveneeW.K. Targeting EGFR for treatment of glioblastoma: Molecular basis to overcome resistance.Curr. Cancer Drug Targets201212319720910.2174/15680091279927755722268382
    [Google Scholar]
  24. HobbsJ. NikiforovaM.N. FardoD.W. BortoluzziS. CieplyK. HamiltonR.L. HorbinskiC. Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas.Am. J. Surg. Pathol.20123681186119310.1097/PAS.0b013e3182518e1222472960
    [Google Scholar]
  25. WykoskyJ. FentonT. FurnariF. CaveneeW.K. Therapeutic targeting of epidermal growth factor receptor in human cancer: Successes and limitations.Chin. J. Cancer201130151210.5732/cjc.010.1054221192840
    [Google Scholar]
  26. SeshacharyuluP. PonnusamyM.P. HaridasD. JainM. GantiA.K. BatraS.K. Targeting the EGFR signaling pathway in cancer therapy.Expert Opin. Ther. Targets2012161153110.1517/14728222.2011.64861722239438
    [Google Scholar]
  27. FauvelB. YasriA. Antibodies directed against receptor tyrosine kinases.MAbs20146483885110.4161/mabs.2908924859229
    [Google Scholar]
  28. ParkJ.H. LiuY. LemmonM.A. RadhakrishnanR. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain.Biochem. J.2012448341742310.1042/BJ2012151323101586
    [Google Scholar]
  29. AertgeertsK. SkeneR. YanoJ. SangB.C. ZouH. SnellG. JenningsA. IwamotoK. HabukaN. HirokawaA. IshikawaT. TanakaT. MikiH. OhtaY. SogabeS. Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein.J. Biol. Chem.201128621187561876510.1074/jbc.M110.20619321454582
    [Google Scholar]
  30. ByeonH.K. KuM. YangJ. Beyond EGFR inhibition: Multilateral combat strategies to stop the progression of head and neck cancer.Exp. Mol. Med.201951111410.1038/s12276‑018‑0202‑230700700
    [Google Scholar]
  31. MartinelliE. De PalmaR. OrdituraM. De VitaF. CiardielloF. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy.Clin. Exp. Immunol.200915811910.1111/j.1365‑2249.2009.03992.x19737224
    [Google Scholar]
  32. ShenY. ThngD.K.H. WongA.L.A. TohT.B. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: A comprehensive review.Exp. Hematol. Oncol.20241314010.1186/s40164‑024‑00512‑838615034
    [Google Scholar]
  33. Cruz Da SilvaE. MercierM.C. Etienne-SelloumN. DontenwillM. ChoulierL. A systematic review of glioblastoma-targeted Therapies in phases II, III, IV clinical trials.Cancers2021138179510.3390/cancers1308179533918704
    [Google Scholar]
  34. Hopper-BorgeE.A. NastoR.E. RatushnyV. WeinerL.M. GolemisE.A. AstsaturovI. Mechanisms of tumor resistance to EGFR-targeted therapies.Expert Opin. Ther. Targets200913333936210.1517/1471259090273579519236156
    [Google Scholar]
  35. HuangL. FuL. Mechanisms of resistance to EGFR tyrosine kinase inhibitors.Acta Pharm. Sin. B20155539040110.1016/j.apsb.2015.07.00126579470
    [Google Scholar]
  36. DeshmukhV.G. SapkalS.B. GadekarS.S. DeshmukhV. EGFR inhibitors across generations: Progress, challenges, and future directions.J. Mol. Struct.2025133914232610.1016/j.molstruc.2025.142326
    [Google Scholar]
  37. AlamM. AbbasK. RazaM.T. AbediS.M.H. HaqH. MustafaM. Identification of aquaporin 3 inhibitors from santalum album phytochemicals for melanoma treatment: A computational study: Targeting Aquaporin 3: Santalum Album in melanoma therapy.Indian J. Pharm. Sci.202420429331410.22037/ijps.v20i4.44925
    [Google Scholar]
  38. AbbasK. AlamM. AnsariM.S. KhanA. RazaM.T. KhanZ. IbraheemM. MustafaM. UsmaniN. Isorauhimbine and vinburnine as novel 5-HT2A receptor antagonists from rauwolfia serpentina for the treatment of insomnia: An in silico investigation.Chronobiology in Medicine20246416918210.33069/cim.2024.0023
    [Google Scholar]
  39. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  40. AlamM. AbbasK. ChaudharyB. AsifS. BaltiA.A. Computational analysis of selected phytochemicals for their PARP inhibitory potential in cancer.Acta Biochimica Iranica20242110.18502/abi.v2i1.16243
    [Google Scholar]
  41. VermaA.K. MajidA. HossainM.S. AhmedS.K.F. AshidM. BhojiyaA.A. UpadhyayS.K. VishvakarmaN.K. AlamM. Identification of 1, 2, 4-triazine and its derivatives against lanosterol 14-Demethylase (CYP51) Property of Candida albicans: Influence on the development of new antifungal therapeutic strategies.Frontiers in Medical Technology2022484532210.3389/fmedt.2022.84532235419560
    [Google Scholar]
  42. ShaikN.A. Al-KreathyH.M. AjabnoorG.M. VermaP.K. BanaganapalliB. Molecular designing, virtual screening and docking study of novel curcumin analogue as mutation (S769L and K846R) selective inhibitor for EGFR.Saudi J. Biol. Sci.201926343944810.1016/j.sjbs.2018.05.02630899155
    [Google Scholar]
  43. ButtS.S. BadshahY. ShabbirM. RafiqM. Molecular docking using chimera and autodock vina software for nonbioinformaticians.JMIR Bioinform. Biotechnol.2020111423210.2196/1423238943236
    [Google Scholar]
  44. MangalM. SagarP. SinghH. RaghavaG.P.S. AgarwalS.M. NPACT: Naturally occurring plant-based anti-cancer compound-activity-target database.Nucleic Acids Res.201341D1D1124D112910.1093/nar/gks104723203877
    [Google Scholar]
  45. Abdel-MohsenH.T. IbrahimM.A. NageebA.M. El KerdawyA.M. Receptor-based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR-2, FGFR-1, and BRAF multi-kinase inhibitors.BMC Chem.20241814210.1186/s13065‑024‑01135‑038395926
    [Google Scholar]
  46. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  47. AnsariM.S. AbbasK. AlamM. UsmaniN. KhanA. KhanA.A. HessiniK. Investigating the anxiolytic potential of Withania somnifera: A GC–MS and in silico study targeting MAO-A inhibition.Discover Plants2025218910.1007/s44372‑025‑00180‑w
    [Google Scholar]
  48. BenetL.Z. HoseyC.M. UrsuO. OpreaT.I. BDDCS, the Rule of 5 and drugability.Adv. Drug Deliv. Rev.2016101899810.1016/j.addr.2016.05.00727182629
    [Google Scholar]
  49. AlamM. AbbasK. AhmadA. ShowkatN. SenR. Identification of Hsp90 inhibitors from Ananas comosus potential phytochemicals for lung cancer treatment.Journal of Phytopharmacology2024131121910.31254/phyto.2024.13103
    [Google Scholar]
  50. OlotuF.A. MunsamyG. SolimanM.E.S. Does size really matter? probing the efficacy of structural reduction in the optimization of bioderived compounds – A computational “proof-of-concept”.Comput. Struct. Biotechnol. J.20181657358610.1016/j.csbj.2018.11.00530546858
    [Google Scholar]
  51. YinX. WangX. LiY. WangJ. WangY. DengY. HouT. LiuH. LuoP. YaoX. CODD-Pred: A web server for efficient target identification and bioactivity prediction of small molecules.J. Chem. Inf. Model.202363206169617610.1021/acs.jcim.3c0068537820365
    [Google Scholar]
  52. LaguninA.A. DubovskajaV.I. RudikA.V. PogodinP.V. DruzhilovskiyD.S. GloriozovaT.A. FilimonovD.A. SastryN.G. PoroikovV.V. CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds.PLoS One2018131019183810.1371/journal.pone.019183829370280
    [Google Scholar]
  53. RamanA.P.S. KumariK. JainP. VishvakarmaV.K. KumarA. KaushikN. ChoiE.H. KaushikN.K. SinghP. In silico evaluation of binding of 2-Deoxy-D-glucose with Mpro of nCoV to combat COVID-19.Pharmaceutics202214113510.3390/pharmaceutics1401013535057031
    [Google Scholar]
  54. AlamM. AbbasK. IramF. RazaM.T. MustafaM. ZehraZ. Molecular docking and dynamics studies of withania somnifera derived compounds as GABA-A receptor modulators for insomnia.Chronobiology in Medicine202462778610.33069/cim.2024.0010
    [Google Scholar]
  55. OostenbrinkC. VillaA. MarkA.E. Van GunsterenW.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6.J. Comput. Chem.200425131656167610.1002/jcc.2009015264259
    [Google Scholar]
  56. TabasiM. MaghamiP. Amiri-TehranizadehZ. Reza SaberiM. ChamaniJ. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations.J. Mol. Liq.202339212347210.1016/j.molliq.2023.123472
    [Google Scholar]
  57. FuL. ShiS. YiJ. WangN. HeY. WuZ. PengJ. DengY. WangW. WuC. LyuA. ZengX. ZhaoW. HouT. CaoD. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support.Nucleic Acids Res.202452W1W422W43110.1093/nar/gkae23638572755
    [Google Scholar]
  58. LuoL. WangQ. LiaoY. The inhibitors of CDK4/6 from a library of marine compound database: A pharmacophore, ADMET, molecular docking and molecular dynamics study.Mar. Drugs202220531910.3390/md2005031935621970
    [Google Scholar]
  59. Garcia-SosaA.T. MaranU. HetenyiC. Molecular property filters describing pharmacokinetics and drug binding.Curr. Med. Chem.201219111646166210.2174/09298671279994502122376034
    [Google Scholar]
  60. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197210.1038/jcbfm.2012.12622929442
    [Google Scholar]
  61. SinghM. DivakaranR. KondaL.S.K. KristamR. A classification model for blood brain barrier penetration.J. Mol. Graph. Model.20209610751610.1016/j.jmgm.2019.10751631940508
    [Google Scholar]
/content/journals/cis/10.2174/012210299X385778250912114718
Loading
/content/journals/cis/10.2174/012210299X385778250912114718
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ADMET; Brain cancer; EGFR; Glioblastoma; MD simulation; Molecular docking
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test