Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

To overcome the drugs’ low bioavailability and/ or solubility, the development of novel oral delivery approaches using lipid-based formulations has been of growing interest. Curcumin being a Class IV drug, has poor solubility and poor permeability. One of the biggest obstacles to its use in therapeutic treatment is this.

Objective

In order to increase drug bioavailability, this research aimed to create Solid Dispersion Lipid Particles (SDSLs), in which Solid Dispersion (SD) was enclosed in solid lipid particles as the drug's core packaging.

Methods

For this, Curcumin (CUR) was selected as a model drug, PEG 6000 was used as a polymer, Stearic acid was used as the lipid phase, and Poloxomer 188 was used as a surfactant. Different batches of SD were formulated by solvent evaporation method. SDSLs were prepared by the melt-emulsification ultrasonication method and characterized for their % yield, % drug loading, % drug encapsulation efficiency, zeta potential, FTIR spectroscopy, XRD studies, drug release, and permeation.

Results

The optimized formulation showed the highest % EE and sustained drug release. The release mechanism was Super Case II, and the Higuchi equation was the best fit for the data.

Conclusion

SDSLs have sustained release effects and demonstrated enhanced permeability which could lead to improved bioavailability. These studies demonstrate that SDSL could be a promising oral formulation for enhanced bioavailability.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X268602231116065429
2025-01-01
2025-09-02
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X268602.html?itemId=/content/journals/cis/10.2174/012210299X268602231116065429&mimeType=html&fmt=ahah

References

  1. GhadiR. DandN. BCS class IV drugs: Highly notorious candidates for formulation development.J. Control. Release2017248719510.1016/j.jconrel.2017.01.01428088572
    [Google Scholar]
  2. MarkovicM. ZurM. RagatskyI. CvijićS. DahanA. BCS class IV oral drugs and absorption windows: Regional-dependent intestinal permeability of furosemide.Pharmaceutics20201212117510.3390/pharmaceutics1212117533276565
    [Google Scholar]
  3. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  4. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.61841133679401
    [Google Scholar]
  5. B ShekhawatP. B PokharkarV. Understanding peroral absorption: Regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles.Acta Pharm. Sin. B20177326028010.1016/j.apsb.2016.09.00528540164
    [Google Scholar]
  6. NakmodeD. BhavanaV. ThakorP. MadanJ. SinghP.K. SinghS.B. RosenholmJ.M. BansalK.K. MehraN.K. Fundamental aspects of lipid-based excipients in lipid-based product development.Pharmaceutics202214483110.3390/pharmaceutics1404083135456665
    [Google Scholar]
  7. KumarR. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: A literature survey.J. Drug Deliv. Sci. Technol.20195310122110.1016/j.jddst.2019.101221
    [Google Scholar]
  8. BroughC. WilliamsR.O.III Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.Int. J. Pharm.2013453115716610.1016/j.ijpharm.2013.05.06123751341
    [Google Scholar]
  9. LeN.D.T. TranP.H.L. LeeB-J. TranT.T.D. Solid lipid particle-based tablets for buccal delivery: The role of solid lipid particles in drug release.J. Drug Deliv. Sci. Technol.2019529610210.1016/j.jddst.2019.04.037
    [Google Scholar]
  10. MahajanA. KaurS. KaurS. Design, formulation, and characterization of stearic acid-based solid lipid nanoparticles of candesartan cilexetil to augment its oral bioavailability.Asian J. Pharm. Clin. Res.201811434435010.22159/ajpcr.2018.v11i4.23849
    [Google Scholar]
  11. HaussD.J. Oral lipid-based formulations.Adv. Drug Deliv. Rev.200759766767610.1016/j.addr.2007.05.00617618704
    [Google Scholar]
  12. MuH. HolmR. MüllertzA. Lipid-based formulations for oral administration of poorly water-soluble drugs.Int. J. Pharm.2013453121522410.1016/j.ijpharm.2013.03.05423578826
    [Google Scholar]
  13. KalepuS. ManthinaM. PadavalaV. Oral lipid-based drug delivery systems – an overview.Acta Pharm. Sin. B20133636137210.1016/j.apsb.2013.10.001
    [Google Scholar]
  14. AlskärL.C. BergströmC.A.S. Models for predicting drug absorption from oral lipid-based formulations.Curr. Mol. Biol. Rep.20151414114710.1007/s40610‑015‑0023‑126594613
    [Google Scholar]
  15. My TranK.T. VoT.V. LeeB.J. DuanW. Ha-Lien TranP. Truong-Dinh TranT. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug.Curr. Drug Deliv.201815457658410.2174/156720181466617060610113828595530
    [Google Scholar]
  16. SinghA. YadagiriG. ParvezS. SinghO.P. VermaA. SundarS. MudavathS.L. Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic acid conjugate.Mater. Sci. Eng. C202011711127910.1016/j.msec.2020.11127932919641
    [Google Scholar]
  17. ÖztürkA.A. AygülA. ŞenelB. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity.J. Drug Deliv. Sci. Technol.20195410124010.1016/j.jddst.2019.101240
    [Google Scholar]
  18. KumarP. SharmaG. KumarR. MalikR. SinghB. KatareO.P. RazaK. Stearic acid based, systematically designed oral lipid nanoparticles for enhanced brain delivery of dimethyl fumarate.Nanomedicine (Lond.)201712232607262110.2217/nnm‑2017‑008229094640
    [Google Scholar]
  19. CortésH. Hernández-ParraH. Bernal-ChávezS.A. Prado-AudeloM.L.D. Caballero-FloránI.H. Borbolla-JiménezF.V. González-TorresM. MagañaJ.J. Leyva-GómezG. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses Non-ionic surfactants for stabilization of polymeric nanoparticles for biomedical uses.Materials (Basel)20211412319710.3390/ma1412319734200640
    [Google Scholar]
  20. LiwJ.J. TeohX.Y. TeohA.X.Y. ChanS.Y. The effect of carrier-drug ratios on dissolution performances of poorly soluble drug in crystalline solid dispersion system.J. Pharm. Sci.202211119510110.1016/j.xphs.2021.06.02634174289
    [Google Scholar]
  21. BahmaniK. SinglaY. Enhanced solubility of antihypertensive drug using hydrophilic carrier based potent solid dispersion systems.J. Pharm. Innov.2018712432442
    [Google Scholar]
  22. KadamP.V. YadavK.N. BhingareC.L. PatilM.J. Standardization and quantification of curcumin from Curcuma longa extract using UV visible spectroscopy and HPLC.J. Pharmacogn. Phytochem.20187519131918
    [Google Scholar]
  23. SharmaS. SharmaJ.B. BhattS. KumarM. Method development and validation of UV spectrophotometric method for the quantitative estimation of curcumin in simulated nasal fluid.Drug Res. (Stuttg.)202070835635910.1055/a‑1193‑465532575135
    [Google Scholar]
  24. SinghA. AvupatiV.R. Development and validation of UV-spectrophotometric method for the estimation of curcumin in standardised polyherbal formulations.J. Young Pharm.20179449149510.5530/jyp.2017.9.96
    [Google Scholar]
  25. HazraK. KumarR. SarkarB.K. ChowdaryY.A. DevganM. RamaiahM. UV-visible spectrophotometric estimation of curcumin in nanoformulation.Int. J. Pharmacogn20152127130
    [Google Scholar]
  26. LiJ. WangX. LiC. FanN. WangJ. HeZ. SunJ. Viewing molecular and interface interactions of curcumin amorphous solid dispersions for comprehending dissolution mechanisms.Mol. Pharm.20171482781279210.1021/acs.molpharmaceut.7b0031928661679
    [Google Scholar]
  27. AfifiS. Solid dispersion approach improving dissolution rate of stiripentol: A novel antiepileptic drug.Iran. J. Pharm. Res.20151441001101426664367
    [Google Scholar]
  28. Vijaya KumarS.G. MishraD.N. Preparation, characterization and in vitro dissolution studies of solid dispersion of meloxicam with PEG 6000.Yakugaku Zasshi2006126865766410.1248/yakushi.126.65716880724
    [Google Scholar]
  29. AlaayediM. Formulation and evaluation of flurbiprofen solid dispersion.Int. J. Pharm. Sci.201673
    [Google Scholar]
  30. TeixeiraC.C.C. MendonçaL.M. BergamaschiM.M. QueirozR.H.C. SouzaG.E.P. AntunesL.M.G. FreitasL.A.P. Microparticles containing curcumin solid dispersion: Stability, bioavailability and anti-inflammatory activity.AAPS PharmSciTech201617225226110.1208/s12249‑015‑0337‑626040724
    [Google Scholar]
  31. MohamedJ.M.M. AlqahtaniA. AhmadF. KrishnarajuV. KalpanaK. Stoichiometrically governed curcumin solid dispersion and its cytotoxic evaluation on colorectal adenocarcinoma cells.Drug Des. Devel. Ther.2020144639465810.2147/DDDT.S27332233173275
    [Google Scholar]
  32. Patil-GadheA. PokharkarV. Montelukast-loaded nanostructured lipid carriers: Part I Oral bioavailability improvement.Eur. J. Pharm. Biopharm.201488116016810.1016/j.ejpb.2014.05.01924878424
    [Google Scholar]
  33. SilveiraE.F. RannierL. NaloneL. da SilvaC.F. ChaudM.V. de M. BarbosaR. JuniorR. L. C. A. da CostaL. P. SoutoE. B. SeverinoP. Loading of 5- aminosalicylic in solid lipid microparticles (SLM).J. Therm. Anal. Calorim.202013921151115910.1007/s10973‑019‑08544‑7
    [Google Scholar]
  34. ShelatP. MandowaraV.K. GuptaD.G. PatelS. Formulation of curcuminoid loaded solid lipid nanoparticles in order to improve oral bioavailability.Int. J. Pharm. Pharm. Sci.201576278282
    [Google Scholar]
  35. YadavV.R. SureshS. DeviK. YadavS. Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-inflammatory activity for optimization of therapy of inflammatory bowel disease.J. Pharm. Pharmacol.201061331132110.1211/jpp.61.03.000519222903
    [Google Scholar]
  36. PhamD.T.T. TranP.H.L. TranT.T.D. Development of solid dispersion lipid nanoparticles for improving skin delivery.Saudi Pharm. J.20192771019102410.1016/j.jsps.2019.08.00431997909
    [Google Scholar]
  37. KimJ.T. BaruaS. KimH. HongS.C. YooS.Y. JeonH. ChoY. GilS. OhK. LeeJ. Absorption study of genistein using solid lipid microparticles and nanoparticles: Control of oral bioavailability by particle sizes.Biomol. Ther. (Seoul)201725445245910.4062/biomolther.2017.09528605834
    [Google Scholar]
  38. HuL. ShiY. LiJ.H. GaoN. JiJ. NiuF. ChenQ. YangX. WangS. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system.AAPS PharmSciTech20151661327133410.1208/s12249‑014‑0254‑025804949
    [Google Scholar]
  39. KushwahaA.K. VuddandaP.R. KarunanidhiP. SinghS.K. SinghS. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability.BioMed Res. Int.201320131910.1155/2013/58454924228255
    [Google Scholar]
  40. HomayouniA. SohrabiM. AminiM. VarshosazJ. NokhodchiA. Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP.Mater. Sci. Eng. C20199818519610.1016/j.msec.2018.12.12830813018
    [Google Scholar]
  41. MaiN.N.S. NakaiR. KawanoY. HanawaT. Enhancing the solubility of curcumin using a solid dispersion system with hydroxypropyl-β-cyclodextrin prepared by grinding, freeze-drying, and common solvent evaporation methods.Pharmacy (Basel)20208420310.3390/pharmacy804020333147710
    [Google Scholar]
  42. KhooS.M. PorterC.J.H. CharmanW.N. The formulation of Halofantrine as either non-solubilising PEG 6000 or solubilising lipid based solid dispersions: Physical stability and absolute bioavailability assessment.Int. J. Pharm.20002051-2657810.1016/S0378‑5173(00)00485‑311000543
    [Google Scholar]
  43. BhalekarM. UpadhayaP. MadgulkarA. Formulation and characterization of solid lipid nanoparticles for an anti-retroviral drug darunavir.Appl. Nanosci.201771-2475710.1007/s13204‑017‑0547‑1
    [Google Scholar]
  44. KadamP.V. BhingareC.L. NikamR.Y. PawarS.A. Development and validation of UV Spectrophotometric method for the estimation of Curcumin in cream formulation.Pharm. Methods201342434510.1016/j.phme.2013.08.002
    [Google Scholar]
  45. MangolimC.S. MoriwakiC. NogueiraA.C. SatoF. BaessoM.L. NetoA.M. MatioliG. Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.Food Chem.201415336137010.1016/j.foodchem.2013.12.06724491741
    [Google Scholar]
  46. MohanP.R.K. SreelakshmiG. MuraleedharanC.V. JosephR. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy.Vib. Spectrosc.201262778410.1016/j.vibspec.2012.05.002
    [Google Scholar]
  47. CaiY. SunZ. FangX. FangX. XiaoF. WangY. ChenM. Synthesis, characterization and anti-cancer activity of Pluronic F68–curcumin conjugate micelles.Drug Deliv.20162372587259510.3109/10717544.2015.103797026066393
    [Google Scholar]
  48. RompicharlaS.V.K. BhattH. ShahA. KomanduriN. VijayasarathyD. GhoshB. BiswasS. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity.Chem. Phys. Lipids2017208101810.1016/j.chemphyslip.2017.08.00928842128
    [Google Scholar]
  49. SharmaM. SharmaS. WadhwaJ. Improved uptake and therapeutic intervention of curcumin via designing binary lipid nanoparticulate formulation for oral delivery in inflammatory bowel disorder.Artif. Cells Nanomed. Biotechnol.2019471455510.1080/21691401.2018.154319130663410
    [Google Scholar]
  50. OoM.K. MahmoodS. WuiW.T. MandalU.K. ChatterjeeB. Effects of different formulation methods on drug crystallinity, drug-carrier interaction, and ex vivo permeation of a ternary solid dispersion containing nisoldipine.J. Pharm. Innov.2021161263710.1007/s12247‑019‑09415‑2
    [Google Scholar]
  51. AboutalebA. Abdel-RahmanS. AhmedM. YounisM. Improvement of domperidone solubility and dissolution rate by dispersion in various hydrophilic carriers.J. Appl. Pharm. Sci.20166713313910.7324/JAPS.2016.60720
    [Google Scholar]
  52. BiswalS. SahooJ. MurthyP.N. GiradkarR.P. AvariJ.G. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000.AAPS PharmSciTech20089256357010.1208/s12249‑008‑9079‑z18459056
    [Google Scholar]
  53. NewaM. BhandariK.H. KimJ.A. YooB.K. ChoiH.G. YongC.S. WooJ.S. LyooW.S. Preparation and evaluation of fast dissolving ibuprofen-polyethylene glycol 6000 solid dispersions.Drug Deliv.200815635536410.1080/1071754080195243118686079
    [Google Scholar]
  54. KumarS. RandhawaJ.K. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone.RSC Advances2015584687436875010.1039/C5RA10642G
    [Google Scholar]
  55. JangidA.K. PatelK. JainP. PatelS. GuptaN. PoojaD. KulhariH. Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol.Carbohydr. Polym.202024711673010.1016/j.carbpol.2020.11673032829852
    [Google Scholar]
  56. ChirioD. PeiraE. DianzaniC. MuntoniE. GigliottiC. FerraraB. SapinoS. ChindamoG. GallarateM. Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution.Nanomaterials (Basel)20199223010.3390/nano902023030744025
    [Google Scholar]
  57. MaX. WilliamsR.O.III Characterization of amorphous solid dispersions: An update.J. Drug Deliv. Sci. Technol.20195011312410.1016/j.jddst.2019.01.017
    [Google Scholar]
  58. ZhangQ. SuntsovaL. ChistyachenkoY.S. EvseenkoV. KhvostovM.V. PolyakovN.E. DushkinA.V. SuW. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent.Int. J. Biol. Macromol.201912815816610.1016/j.ijbiomac.2019.01.07930664966
    [Google Scholar]
  59. Sadati BehbahaniE. GhaediM. AbbaspourM. RostamizadehK. DashtianK. Curcumin loaded nanostructured lipid carriers: In vitro digestion and release studies.Polyhedron201916411312210.1016/j.poly.2019.02.002
    [Google Scholar]
  60. MengF. TrivinoA. PrasadD. ChauhanH. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions.Eur. J. Pharm. Sci.201571122410.1016/j.ejps.2015.02.00325686597
    [Google Scholar]
  61. SuaresD. PrabhakarB. Oral delivery of rosuvastatin lipid nanocarriers: Investigation of in vitro and in vivo profile.Int. J. Pharm. Sci. Res.20167124856
    [Google Scholar]
  62. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  63. MadaneR.G. MahajanH.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study.Drug Deliv.20162341326133410.3109/10717544.2014.97538225367836
    [Google Scholar]
  64. RahmanM.H. RamanathanM. SankarV. Preparation, characterization and in vitro cytotoxicity assay of curcumin loaded solid lipid nanoparticle in IMR32 neuroblastoma cell line.Pak. J. Pharm. Sci.20142751281128525176384
    [Google Scholar]
  65. RahmanS.M.H. TelnyT.C. RaviT.K. KuppusamyS. Role of surfactant and pH in dissolution of curcumin.Indian J. Pharm. Sci.200971213914210.4103/0250‑474X.5428020336212
    [Google Scholar]
  66. MomohM.A. KenechukwuF.C. AttamaA.A. Formulation and evaluation of novel solid lipid microparticles as a sustained release system for the delivery of metformin hydrochloride.Drug Deliv.2013203-410211110.3109/10717544.2013.77932923650987
    [Google Scholar]
  67. TangJ. JiH. RenJ. LiM. ZhengN. WuL. Solid lipid nanoparticles with TPGS and Brij 78: A co-delivery vehicle of curcumin and piperine for reversing P-glycoprotein-mediated multidrug resistance in vitro. Oncol. Lett.201713138939510.3892/ol.2016.542128123572
    [Google Scholar]
  68. CasconeS. Modeling and comparison of release profiles: Effect of the dissolution method.Eur. J. Pharm. Sci.201710635236110.1016/j.ejps.2017.06.02128627469
    [Google Scholar]
  69. ChimeS.A. AkpaP.A. UgwuanyiC.C. AttamaA.A. Anti-inflammatory and gastroprotective properties of aspirin-entrapped solid lipid microparticles.Recent Pat. Inflamm. Allergy Drug Discov.2020141788810.2174/1872213X1466620010810154831912772
    [Google Scholar]
  70. GorajanaA. RajendranA. YewL. DuaK. Preparation and characterization of cefuroxime axetil solid dispersions using hydrophilic carriers.Int. J. Pharm. Investig.20155317117810.4103/2230‑973X.16085726258059
    [Google Scholar]
  71. GoudaR. BaishyaH. QingZ. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets.J. Dev. Drugs201760218
    [Google Scholar]
  72. SinghviG. SinghM. Review: In vitro drug release characterization models.Int J Pharm Sci Res201127784
    [Google Scholar]
  73. HerediaN.S. VizueteK. Flores-CaleroM. Pazmiño VK. PilaquingaF. KumarB. DebutA. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid).PLoS One2022173e026482510.1371/journal.pone.026482535271644
    [Google Scholar]
  74. UgwuC.E. OraelunoJ.N. EzeK.C. EzenmaC.O. NwankwoA.O. PEGylated aceclofenac solid lipid microparticles homolipid-based solidified reverse micellar solutions for drug delivery.Heliyon202284e0924710.1016/j.heliyon.2022.e0924735434391
    [Google Scholar]
  75. HowladerM.S.I. ChakrabartyJ.K. FaisalK.S. KumarU. SarkarM.R. KhanM.F. SarkarM. KhanM. Enhancing dissolution profile of diazepam using hydrophilic polymers by solid dispersion technique.Int. Curr. Pharm. J.201211242343010.3329/icpj.v1i12.12453
    [Google Scholar]
  76. Butar-ButarM.E.T. WathoniN. RatihH. Windhu WardhanaY. Solid dispersion technology for improving the solubility of antiviral drugs.Pharmaceutical Sciences and Research202310111910.7454/psr.v10i1.1292
    [Google Scholar]
/content/journals/cis/10.2174/012210299X268602231116065429
Loading
/content/journals/cis/10.2174/012210299X268602231116065429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test