Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Background

Natural essential oil comprises a galaxy of low-molecular-weight (usually less than 500 daltons) and volatile phytoconstituents that exhibit a handful of biological and pharmaceutical properties; they exhibit several applications chiefly in agriculture, cosmetic, perfumeries, and food industries.

Methods

The extraction of essential oil from fresh flowers of was performed by hydrodistillation, and the determination of its chemical composition was carried out by Gas Chromatography/Mass Spectrometry (GC-MS). The antibacterial activity of the essential oil was executed by the disc diffusion method against the four pathogenic bacteria. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) was also performed for free radical scavenging assay, and a scanning electron microscopic study was also executed to get an idea of the effect of essential oil on bacterial morphology.

Results

The GC/MS analysis indicated that the essential oil is constituted primarily of aromatic compounds (68.75%), and the principal compounds are the dialkyl phthalates esters (58.32%). The zones of inhibition range from 8-16 mm in the case of Gram-negative whereas, in Gram-positive these range from 7-13.5 mm. The Minimum Inhibitory Concentration (MIC) was found to be 0.3 mg/mL against all the Gram-negative bacteria tested and 0.4 mg/mL against the Gram-positive bacteria . The oil also showed moderate antioxidant properties by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical with an IC value of 126 μg/mL.

Conclusion

As per the present study, the essential oil of flowers may be suggested as a new potential source of natural antimicrobial and antioxidant agents.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X338639241203102140
2025-01-01
2025-08-18
The full text of this item is not currently available.

References

  1. ClardyJ. WalshC. Lessons from natural molecules.Nature2004432701982983710.1038/nature0319415602548
    [Google Scholar]
  2. GrassmannJ. Essential oils\Properties and uses.Encyclopedia of food science and nutrition.2nd edLondonElsevier20032177218410.1016/B0‑12‑227055‑X/00425‑9
    [Google Scholar]
  3. DudarevaN. NegreF. NagegowdaD.A. OrlovaI. Plant volatiles: recent advances and future perspectives.Crit. Rev. Plant Sci.200625541744010.1080/07352680600899973
    [Google Scholar]
  4. EdrisA.E. Pharmaceutical and therapeutic Potentials of essential oils and their individual volatile constituents: a review.Phytother. Res.200721430832310.1002/ptr.207217199238
    [Google Scholar]
  5. LiC.M. YangX.Y. ZhongY.R. YuJ.P. Chemical composition, antioxidant and antimicrobial activity of the essential oil from the leaves of Macleaya cordata (Willd) R. Br.Nat. Prod. Res.201630443844210.1080/14786419.2015.101749025738631
    [Google Scholar]
  6. DastanD. SalehiP. MaroofiH. Chemical composition, antioxidant, and antimicrobial activities on Laserpitium carduchorum Hedge & Lamond essential oil and extract during various growing stages.Chem. Biodivers.201613101397140310.1002/cbdv.20160008727450544
    [Google Scholar]
  7. BelabbesR. DibM.E.A. DjabouN. IliasF. TabtiB. CostaJ. MuselliA. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from western Algeria.Chem. Biodivers.2017145e160048210.1002/cbdv.20160048228109063
    [Google Scholar]
  8. ZuzarteM. GonçalvesM.J. CavaleiroC. CanhotoJ. Vale-SilvaL. SilvaM.J. PintoE. SalgueiroL. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Hér.J. Med. Microbiol.201160561261810.1099/jmm.0.027748‑021321363
    [Google Scholar]
  9. RautJ.S. KaruppayilS.M. A status review on the medicinal properties of essential oils.Ind. Crops Prod.20146225026410.1016/j.indcrop.2014.05.055
    [Google Scholar]
  10. DjilaniA. DickoA. The therapeutic benefits of essential oils.Nutrition. BouayedJ. BohnT. InTech, CroatiaWell-being and Health2012155178
    [Google Scholar]
  11. CarsonC.F. HammerK.A. Chemistry and bioactivity of essential oils.Lipids and Essential Oils as Antimicrobial Agents. ThormarH. UKJohn Wiley & Sons201120323810.1002/9780470976623.ch9
    [Google Scholar]
  12. CarsonC.F. HammerK.A. RileyT.V. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties.Clin. Microbiol. Rev.2006191506210.1128/CMR.19.1.50‑62.200616418522
    [Google Scholar]
  13. GavitA.A. GagraniM.B. GuravS.S. AyyanarM. BeldarV.G. TatiyaA.U. SuranaS.J. FirkeS.D. KalaskarM.G. Chemical composition and biological activities of Lonicera caprifolium L. (Caprifoliaceae) essential oil.Nat. Prod. Res.202438571972610.1080/14786419.2023.219374536960955
    [Google Scholar]
  14. RajM.S.A. SanthiV.P. AmalrajS. MuruganR. GangapriyaP. PragadheeshV.S. SundaresanV. GuravS.S. ParamaguruP. ArulmozhianR. AyyanarM. A comparative analysis of leaf essential oil profile, in vitro biological properties and in silico studies of four Indian Guava (Psidium guajava L.) cultivars, a promising source of functional food.S. Afr. J. Bot.202315335736910.1016/j.sajb.2023.01.005
    [Google Scholar]
  15. MariyammalV. SathiageethaV. AmalrajS. GuravS.S. Amiri-ArdekaniE. JeevaS. AyyanarM. Chemical profiling of Aristolochia tagala Cham. leaf extracts by GC-MS analysis and evaluation of its antibacterial activity.J. Indian Chem. Soc.2023100110080710.1016/j.jics.2022.100807
    [Google Scholar]
  16. GuravS.S. DeshkarN.S. TillooS.K. DuragkarN.J. BuradeK. Antimicrobial and antioxidant evaluation of Flacourtia Ramontchi L. Herit.J. Herbs Spices Med. Plants2013191769510.1080/10496475.2012.743107
    [Google Scholar]
  17. SureshkumarJ. AmalrajS. MuruganR. TamilselvanA. KrupaJ. SriramavaratharajanV. GuravS.S. AyyanarM. Chemical profiling and antioxidant activity of Equisetum ramosissimum Desf. stem extract, a potential traditional medicinal plant for urinary tract infections.Futur. J. Pharm. Sci.20217119210.1186/s43094‑021‑00339‑8
    [Google Scholar]
  18. YükselB. ÖncüT. ŞenN. Assessing caffeine levels in soft beverages available in Istanbul, Turkey: An LC-MS/MS application in food toxicology.Toxicologie Analytique et Clinique2023351334310.1016/j.toxac.2022.08.004
    [Google Scholar]
  19. YükselB. Quantitative GC-FID analysis of heroin for seized drugs.Ann Clin Anal Med2020111384210.4328/ACAM.6139
    [Google Scholar]
  20. YükselB. SenN. Development and validation of a GC-FID method for determination of cocaine in illicit drug samples.Marmara Pharm. J.201822511518
    [Google Scholar]
  21. ÖncüT. YükselB. BinayE. ŞenN. LC-MS/MS Investigation of nitrosamine impurities in certain Sartan group medicinal products available in Istanbul, Türkiye.Ann. Pharm. Fr.2024821728310.1016/j.pharma.2023.08.00237567559
    [Google Scholar]
  22. RahmanM.M. SultanaT. Yousuf AliM. RahmanM.M. Al-RezaS.M. RahmanA. Chemical composition and antibacterial activity of the essential oil and various extracts from Cassia sophera L. against Bacillus sp. from soil.Arab. J. Chem.201710S2132S213710.1016/j.arabjc.2013.07.045
    [Google Scholar]
  23. BrahmachariG. MandalB. MandalM. MondalA. SopheroneA. Sopherone A and B: Two new biologically relevant dibenzo-α-pyrones from Cassia sophera.Fitoterapia201913610416910.1016/j.fitote.2019.05.00831075488
    [Google Scholar]
  24. ChopraR.N. NayarS.L. ChopraI.C. Glossary of Indian Medicinal PlantsNew DelhiCSIR195655
    [Google Scholar]
  25. AgarwalS.S. ParidhaviM. Clinically Useful Herbal Drugs.New DelhiAhuja Publishing House2005281282
    [Google Scholar]
  26. NagoreD.H. GhoshV.K. PatilM.J. Evaluation of antiasthmatic activity of Cassia sophera Linn.Pharmacogn. Mag.20095109118
    [Google Scholar]
  27. MondalA. KaranS.K. SinghaT. RajalingamD. MaityT.K. Evaluation of hepatoprotective effect of leaves of Cassia sophera Linn.Evid. Based Complement. Alternat. Med.201220121510.1155/2012/43613922690244
    [Google Scholar]
  28. KogaD. KusumiS. ShibataM. WatanabeT. Applications of scanning electron microscopy using secondary and backscattered electron signals in neural structure.Front. Neuroanat.20211575980410.3389/fnana.2021.75980434955763
    [Google Scholar]
  29. LiangD. FengB. LiN. SuL. WangZ. KongF. BiY. Preparation, characterization, and biological activity of Cinnamomum cassia essential oil nano-emulsion.Ultrason. Sonochem.202286May10600910.1016/j.ultsonch.2022.10600935472756
    [Google Scholar]
  30. ChatterjeeS. GuptaS. VariyarP.S. Comparison of essential oils obtained from different extraction techniques as an aid in identifying aroma significant compounds of nutmeg ( Myristica Fragrans ).Nat. Prod. Commun.20151081934578X150100083310.1177/1934578X150100083326434138
    [Google Scholar]
  31. BauerA.W. KirbyW.M.M. SherrisJ.C. TurckM. Antibiotic susceptibility testing by a standardized single disk method.Am. J. Clin. Pathol.1966454_ts49349610.1093/ajcp/45.4_ts.4935325707
    [Google Scholar]
  32. BrahmachariG. MandalN.C. RoyR. GhoshR. BarmanS. SarkarS. JashS.K. MondalS. A new pentacyclic triterpene with potent antibacterial activity from Limnophila indica Linn. (Druce).Fitoterapia20139010411110.1016/j.fitote.2013.07.01223876368
    [Google Scholar]
  33. MandalV. SenS.K. MandalN.C. Production and partial characterisation of an inducer‐dependent novel antifungal compound(s) by Pediococcus acidilactici LAB5.J. Sci. Food Agric.201393102445245310.1002/jsfa.605523423982
    [Google Scholar]
  34. LeeS.K. MbwamboZ.H. ChungH. LuyengiL. GamezE.J.C. MehtaR.G. KinghornA.D. PezzutoJ.M. Evaluation of the antioxidant potential of natural products.Comb. Chem. High Throughput Screen.199811354610.2174/13862073010122011815152610499128
    [Google Scholar]
  35. ZhangH. HuaY. ChenJ. LiX. BaiX. WangH. Organismderived phthalate derivatives as bioactive natural products. J. Environ. Sci. Health C Envirn. Carcinog. Ecotoxicol. Rev.20183612514410.1080/10590501.2018.149051230444179
    [Google Scholar]
  36. BuT. LiuM. ZhengL. GuoY. LinX. α‐glucosidase inhibition and the in vivo hypoglycemic effect of butyl‐isobutyl‐phthalate derived from the Laminaria japonica rhizoid.Phytother. Res.201024111588159110.1002/ptr.313921031613
    [Google Scholar]
  37. HabibM.R. KarimM.R. Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (Linn.) flower.Mycobiology2009371313610.4489/MYCO.2009.37.1.03123983504
    [Google Scholar]
  38. LiuM. ZhangW. QiuL. LinX. Synthesis of butyl-isobutyl-phthalate and its interaction with -glucosidase in vitro.J. Biochem.20111491273310.1093/jb/mvq11020870646
    [Google Scholar]
  39. ShobiT.M. ByrappM. ViswanathanG. Antibacterial activity of di-butyl phthalate isolated from Begonia malabarica. Appl Biotechnol Bioeng.2018597100
    [Google Scholar]
  40. RoyR.N. LaskarS. SenS.K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2.Microbiol. Res.2006161212112610.1016/j.micres.2005.06.00716427514
    [Google Scholar]
  41. El-NaggarM.Y.M. Dibutyl phthalate and the antitumor agent F5A1, two metabolites produced by Streptomyces nasri submutant H35.Biom. Lett.199755125131
    [Google Scholar]
  42. LeeD.S. Dibutyl phthalate, an α-glucosidase inhibitor from Streptomyces melanosporofaciens.J. Biosci. Bioeng.200089327127310.1016/S1389‑1723(00)88832‑516232742
    [Google Scholar]
  43. WettasingheM. ShahidiF. Antioxidant and free radical-scavenging properties of ethanolic extracts of defatted borage (Borago officinalis L.) seeds.Food Chem.199967439941410.1016/S0308‑8146(99)00137‑5
    [Google Scholar]
  44. MitraP. MandalN.C. AcharyaK. Biocomponents and bioprospects of ethanolic extract of Termitomyces heimii. Asian J. Pharm. Res.20158331334
    [Google Scholar]
/content/journals/cis/10.2174/012210299X338639241203102140
Loading
/content/journals/cis/10.2174/012210299X338639241203102140
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antimicrobial; Antioxidant; Caesalpiniaceae; Cassia sophera Linn; Essential oil; Flowers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test