Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

The field of public healthcare has witnessed a transformative shift with the introduction of synthetic biomaterials and biomedical implants, aiming to enhance the interaction between living systems and therapeutic interventions. Despite these advancements, a significant challenge has emerged in the form of microbial colonization and biofilm formation on these materials, leading to an alarming rise in multidrug-resistant infections and subsequent implant rejections. In this review, we present recent breakthroughs in the development of anti-infective biomaterials designed to address wound infections and prevent infections associated with implants. We present various approaches for incorporating antimicrobial properties into diverse wound healing biomaterials such as hydrogels and hemostatic sponges, through covalent and non-covalent modifications or both. Additionally, to counter microbial colonization, we explore different surface modification strategies applied to titanium and catheter implants covalent grafting as well as physical encapsulation of antibiotics, small molecular biocides, inorganic biocides and antimicrobial peptides. These coatings not only exhibit bacteria-killing capabilities upon contact but also effectively reduce biofilm formation, thereby prolonging the lifespan of implants and devices. Providing an overview of anti-infective biomaterials in clinical pipelines, we discuss the significant challenges hindering the clinical translation of these biomaterials. Finally, we share our perspective on overcoming these obstacles for the successful integration of anti-infective biomaterials into mainstream healthcare practices.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X314905241203104146
2024-12-18
2025-11-12
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X314905.html?itemId=/content/journals/cis/10.2174/012210299X314905241203104146&mimeType=html&fmt=ahah

References

  1. ArciolaC.R. CampocciaD. MontanaroL. Implant infections: Adhesion, biofilm formation and immune evasion.Nat. Rev. Microbiol.201816739740910.1038/s41579‑018‑0019‑y29720707
    [Google Scholar]
  2. KalelkarP.P. RiddickM. GarcíaA.J. Biomaterial-based antimicrobial therapies for the treatment of bacterial infections.Nat. Rev. Mater.202171395410.1038/s41578‑021‑00362‑435330939
    [Google Scholar]
  3. TognettiL. MartinelliC. BertiS. HercogovaJ. LottiT. LeonciniF. MorettiS. Bacterial skin and soft tissue infections: Review of the epidemiology, microbiology, aetiopathogenesis and treatment.J. Eur. Acad. Dermatol. Venereol.201226893194110.1111/j.1468‑3083.2011.04416.x22214317
    [Google Scholar]
  4. BusscherH.J. van der MeiH.C. SubbiahdossG. JutteP.C. van den DungenJ.J.A.M. ZaatS.A.J. SchultzM.J. GraingerD.W. Biomaterial-associated infection: Locating the finish line in the race for the surface.Sci. Transl. Med.20124153153rv1010.1126/scitranslmed.300452823019658
    [Google Scholar]
  5. PietrocolaG. CampocciaD. MottaC. MontanaroL. ArciolaC.R. SpezialeP. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants.Int. J. Mol. Sci.20222311595810.3390/ijms2311595835682632
    [Google Scholar]
  6. CampocciaD. MontanaroL. ArciolaC.R. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces.Biomaterials201334338018802910.1016/j.biomaterials.2013.07.04823932292
    [Google Scholar]
  7. MastersE.A. RicciardiB.F. BentleyK.L.M. MoriartyT.F. SchwarzE.M. MuthukrishnanG. Skeletal infections: Microbial pathogenesis, immunity and clinical management.Nat. Rev. Microbiol.202220738540010.1038/s41579‑022‑00686‑035169289
    [Google Scholar]
  8. MorkR.L. HoganP.G. MuenksC.E. BoyleM.G. ThompsonR.M. SullivanM.L. MorelliJ.J. SeigelJ. OrschelnR.C. Bubeck WardenburgJ. GehlertS.J. BurnhamC.A.D. RzhetskyA. FritzS.A. Longitudinal, strain-specific Staphylococcus aureus introduction and transmission events in households of children with community-associated meticillin-resistant S aureus skin and soft tissue infection: A prospective cohort study.Lancet Infect. Dis.202020218819810.1016/S1473‑3099(19)30570‑531784369
    [Google Scholar]
  9. IkutaK.S. SwetschinskiL.R. Robles AguilarG. ShararaF. MestrovicT. GrayA.P. Davis WeaverN. WoolE.E. HanC. Gershberg HayoonA. AaliA. AbateS.M. Abbasi-KangevariM. Abbasi-KangevariZ. Abd-ElsalamS. AbebeG. AbediA. AbhariA.P. AbidiH. AboagyeR.G. AbsalanA. Abubaker AliH. AcunaJ.M. AdaneT.D. AddoI.Y. AdegboyeO.A. AdnanM. AdnaniQ.E.S. AfzalM.S. AfzalS. AghdamZ.B. AhinkorahB.O. AhmadA. AhmadA.R. AhmadR. AhmadS. AhmadS. AhmadiS. AhmedA. AhmedH. AhmedJ.Q. Ahmed RashidT. AjamiM. AjiB. Akbarzadeh-KhiaviM. AkunnaC.J. Al HamadH. AlahdabF. Al-AlyZ. AldeyabM.A. AlemanA.V. AlhalaiqaF.A.N. AlhassanR.K. AliB.A. AliL. AliS.S. AlimohamadiY. AlipourV. AlizadehA. AljunidS.M. AllelK. AlmustanyirS. AmeyawE.K. AmitA.M.L. AnandavelaneN. AncuceanuR. AndreiC.L. AndreiT. AnggrainiD. AnsarA. AnyasodorA.E. ArablooJ. AravkinA.Y. AredaD. AripovT. ArtamonovA.A. ArulappanJ. ArulebaR.T. AsaduzzamanM. AshrafT. AthariS.S. AtlawD. AttiaS. AusloosM. AwokeT. Ayala QuintanillaB.P. AyanaT.M. AzadnajafabadS. Azari JafariA. BD.B. BadarM. BadiyeA.D. BaghcheghiN. BagheriehS. BaigA.A. BanerjeeI. BaracA. BardhanM. Barone-AdesiF. BarqawiH.J. BarrowA. BaskaranP. BasuS. BatihaA-M.M. BediN. BeleteM.A. BelgaumiU.I. BenderR.G. BhandariB. BhandariD. BhardwajP. BhaskarS. BhattacharyyaK. BhattaraiS. BitarafS. BuonsensoD. ButtZ.A. Caetano dos SantosF.L. CaiJ. CalinaD. CamargosP. CámeraL.A. CárdenasR. CevikM. ChadwickJ. CharanJ. ChaurasiaA. ChingP.R. ChoudhariS.G. ChowdhuryE.K. ChowdhuryF.R. ChuD-T. ChukwuI.S. DadrasO. DagnawF.T. DaiX. DasS. DastiridouA. DebelaS.A. DemisseF.W. DemissieS. DerejeD. DereseM. DesaiH.D. DessalegnF.N. DessalegniS.A.A. DesyeB. DhadukK. DhimalM. DhingraS. DiaoN. DiazD. DjalaliniaS. DodangehM. DongarwarD. DoraB.T. DorostkarF. DsouzaH.L. DubljaninE. DunachieS.J. DurojaiyeO.C. EdinurH.A. EjiguH.B. EkholuenetaleM. EkundayoT.C. El-AbidH. ElhadiM. ElmonemM.A. EmamiA. Engelbert BainL. EnyewD.B. ErkhembayarR. EshratiB. EtaeeF. FagbamigbeA.F. FalahiS. FallahzadehA. FaraonE.J.A. FatehizadehA. FekaduG. FernandesJ.C. FerrariA. FetensaG. FilipI. FischerF. ForoutanM. GaalP.A. GadanyaM.A. GaidhaneA.M. GanesanB. GebrehiwotM. GhanbariR. Ghasemi NourM. GhashghaeeA. GholamrezanezhadA. GholizadehA. GolechhaM. GoleijP. GolinelliD. GoodridgeA. GunawardaneD.A. GuoY. GuptaR.D. GuptaS. GuptaV.B. GuptaV.K. GutaA. HabibzadehP. Haddadi AvvalA. HalwaniR. HanifA. HannanM.A. HarapanH. HassanS. HassankhaniH. HayatK. HeibatiB. HeidariG. HeidariM. Heidari-SoureshjaniR. HerteliuC. HeyiD.Z. HezamK. HoogarP. HoritaN. HossainM.M. HosseinzadehM. HostiucM. HostiucS. HoveidamaneshS. HuangJ. HussainS. HusseinN.R. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. ImamM.T. ImmuranaM. InbarajL.R. IradukundaA. IsmailN.E. IwuC.C.D. IwuC.J. JL.M. JakovljevicM. JamshidiE. JavaheriT. JavanmardiF. JavidniaJ. JayapalS.K. JayarajahU. JebaiR. JhaR.P. JooT. JosephN. JoukarF. JozwiakJ.J. KacimiS.E.O. KadashettiV. KalankeshL.R. KalhorR. KamalV.K. KandelH. KapoorN. KarkhahS. KassaB.G. KassebaumN.J. KatotoP.D.M.C. KeykhaeiM. KhajuriaH. KhanA. KhanI.A. KhanM. KhanM.N. KhanM.A.B. KhatatbehM.M. KhaterM.M. Khayat KashaniH.R. KhubchandaniJ. KimH. KimM.S. KimokotiR.W. KissoonN. KochharS. KompaniF. KosenS. KoulP.A. Koulmane LaxminarayanaS.L. Krapp LopezF. KrishanK. KrishnamoorthyV. KulkarniV. KumarN. KurmiO.P. KuttikkattuA. KyuH.H. LalD.K. LámJ. LandiresI. LasradoS. LeeS. LenziJ. LewyckaS. LiS. LimS.S. LiuW. LodhaR. LoftusM.J. LohiyaA. LorenzoviciL. LotfiM. MahmoodpoorA. MahmoudM.A. MahmoudiR. MajeedA. MajidpoorJ. MakkiA. MamoG.A. ManlaY. MartorellM. MateiC.N. McManigalB. Mehrabi NasabE. MehrotraR. MeleseA. Mendoza-CanoO. MenezesR.G. MentisA-F.A. MichaG. MichalekI.M. Micheletti Gomide Nogueira de SáA.C. Milevska KostovaN. MirS.A. MirghafourvandM. MirmoeeniS. MirrakhimovE.M. Mirza-Aghazadeh-AttariM. MisganawA.S. MisganawA. MisraS. MohammadiE. MohammadiM. Mohammadian-HafshejaniA. MohammedS. MohanS. MohseniM. MokdadA.H. MomtazmaneshS. MonastaL. MooreC.E. MoradiM. Moradi SarabiM. MorrisonS.D. MotaghinejadM. Mousavi IsfahaniH. Mousavi KhaneghahA. Mousavi-AghdasS.A. MubarikS. MulitaF. MuluG.B.B. MunroS.B. MuthupandianS. NairT.S. NaqviA.A. NarangH. NattoZ.S. NaveedM. NayakB.P. NazS. NegoiI. NejadghaderiS.A. Neupane KandelS. NgwaC.H. NiaziR.K. Nogueira de SáA.T. NorooziN. NouraeiH. NowrooziA. Nuñez-SamudioV. NutorJ.J. NzoputamC.I. NzoputamO.J. OanceaB. ObaidurR.M. OjhaV.A. OkekunleA.P. OkonjiO.C. OlagunjuA.T. OlusanyaB.O. Omar BaliA. OmerE. OtstavnovN. OumerB. P AM. PadubidriJ.R. PakshirK. PaliczT. PanaA. PardhanS. ParedesJ.L. ParekhU. ParkE-C. ParkS. PathakA. PaudelR. PaudelU. PawarS. Pazoki ToroudiH. PengM. PensatoU. PepitoV.C.F. PereiraM. PeresM.F.P. PericoN. PetcuI-R. PirachaZ.Z. PodderI. PokhrelN. PoluruR. PostmaM.J. PourtaheriN. PrashantA. QatteaI. RabieeM. RabieeN. RadfarA. RaeghiS. RafieiS. RaghavP.R. RahbarniaL. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RahmanianV. RamP. RanjhaM.M.A.N. RaoS.J. RashidiM-M. RasulA. RatanZ.A. RawafS. RawassizadehR. RazeghiniaM.S. RedwanE.M.M. RegasaM.T. RemuzziG. RetaM.A. RezaeiN. RezapourA. RiadA. RiponR.K. RuddK.E. SaddikB. SadeghianS. SaeedU. SafaeiM. SafaryA. SafiS.Z. SahebazzamaniM. SahebkarA. SahooH. SalahiS. SalahiS. SalariH. SalehiS. Samadi KafilH. SamyA.M. SanadgolN. SankararamanS. SanmarchiF. SathianB. SawhneyM. SayaG.K. SenthilkumaranS. SeylaniA. ShahP.A. ShaikhM.A. ShakerE. ShakhmardanovM.Z. SharewM.M. Sharifi-RazaviA. SharmaP. SheikhiR.A. SheikhyA. ShettyP.H. ShigematsuM. ShinJ.I. Shirzad-AskiH. ShivakumarK.M. ShobeiriP. ShorofiS.A. ShresthaS. SibhatM.M. SidemoN.B. SikderM.K. SilvaL.M.L.R. SinghJ.A. SinghP. SinghS. SirajM.S. SiwalS.S. SkryabinV.Y. SkryabinaA.A. SoceaB. SolomonD.D. SongY. SreeramareddyC.T. SulemanM. Suliankatchi AbdulkaderR. SultanaS. SzócskaM. TabatabaeizadehS-A. TabishM. TaheriM. TakiE. TanK-K. TandukarS. TatN.Y. TatV.Y. TeferaB.N. TeferaY.M. TemesgenG. TemsahM-H. TharwatS. ThiyagarajanA. TleyjehI.I. TroegerC.E. UmapathiK.K. UpadhyayE. Valadan TahbazS. ValdezP.R. Van den EyndeJ. van DoornH.R. VaziriS. VerrasG-I. ViswanathanH. VoB. WarisA. WassieG.T. WickramasingheN.D. YaghoubiS. YahyaG.A.T.Y. Yahyazadeh JabbariS.H. YigitA. YiğitV. YonD.K. YonemotoN. ZahirM. ZamanB.A. ZamanS.B. ZangiabadianM. ZareI. ZastrozhinM.S. ZhangZ-J. ZhengP. ZhongC. ZoladlM. ZumlaA. HayS.I. DolecekC. SartoriusB. MurrayC.J.L. NaghaviM. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the global burden of disease study 2019.Lancet2022400103692221224810.1016/S0140‑6736(22)02185‑736423648
    [Google Scholar]
  10. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  11. TacconelliE. CarraraE. SavoldiA. HarbarthS. MendelsonM. MonnetD.L. PulciniC. KahlmeterG. KluytmansJ. CarmeliY. OuelletteM. OuttersonK. PatelJ. CavaleriM. CoxE.M. HouchensC.R. GraysonM.L. HansenP. SinghN. TheuretzbacherU. MagriniN. AboderinA.O. Al-AbriS.S. Awang JalilN. BenzonanaN. BhattacharyaS. BrinkA.J. BurkertF.R. CarsO. CornagliaG. DyarO.J. FriedrichA.W. GalesA.C. GandraS. GiskeC.G. GoffD.A. GoossensH. GottliebT. Guzman BlancoM. HryniewiczW. KattulaD. JinksT. KanjS.S. KerrL. KienyM-P. KimY.S. KozlovR.S. LabarcaJ. LaxminarayanR. LederK. LeiboviciL. Levy-HaraG. LittmanJ. Malhotra-KumarS. ManchandaV. MojaL. NdoyeB. PanA. PatersonD.L. PaulM. QiuH. Ramon-PardoP. Rodríguez-BañoJ. SanguinettiM. SenguptaS. SharlandM. Si-MehandM. SilverL.L. SongW. SteinbakkM. ThomsenJ. ThwaitesG.E. van der MeerJ.W.M. Van KinhN. VegaS. VillegasM.V. Wechsler-FördösA. WertheimH.F.L. WesangulaE. WoodfordN. YilmazF.O. ZorzetA. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis.Lancet Infect. Dis.201818331832710.1016/S1473‑3099(17)30753‑329276051
    [Google Scholar]
  12. CostertonJ.W. StewartP.S. GreenbergE.P. Bacterial biofilms: A common cause of persistent infections.Science199928454181318132210.1126/science.284.5418.131810334980
    [Google Scholar]
  13. SauerK. StoodleyP. GoeresD.M. Hall-StoodleyL. BurmølleM. StewartP.S. BjarnsholtT. The biofilm life cycle: Expanding the conceptual model of biofilm formation.Nat. Rev. Microbiol.2022201060862010.1038/s41579‑022‑00767‑035922483
    [Google Scholar]
  14. CarolusH. Van DyckK. Van DijckP. Candida albicans and staphylococcus species: A threatening twosome.Front. Microbiol.201910216210.3389/fmicb.2019.0216231620113
    [Google Scholar]
  15. CorreaS. GrosskopfA.K. Lopez HernandezH. ChanD. YuA.C. StapletonL.M. AppelE.A. Translational applications of hydrogels.Chem. Rev.202112118113851145710.1021/acs.chemrev.0c0117733938724
    [Google Scholar]
  16. WebberM.J. AppelE.A. MeijerE.W. LangerR. Supramolecular biomaterials.Nat. Mater.2016151132610.1038/nmat447426681596
    [Google Scholar]
  17. CloutierM. MantovaniD. RoseiF. Antibacterial coatings: Challenges, perspectives, and opportunities.Trends Biotechnol.2015331163765210.1016/j.tibtech.2015.09.00226463723
    [Google Scholar]
  18. HaldarJ. AnD. Álvarez de CienfuegosL. ChenJ. KlibanovA.M. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria.Proc. Natl. Acad. Sci. USA200610347176671767110.1073/pnas.060880310317101983
    [Google Scholar]
  19. KonaiM.M. BhattacharjeeB. GhoshS. HaldarJ. Recent progress in polymer research to tackle infections and antimicrobial resistance.Biomacromolecules20181961888191710.1021/acs.biomac.8b0045829718664
    [Google Scholar]
  20. GhoshS. MukherjeeS. PatraD. HaldarJ. Polymeric biomaterials for prevention and therapeutic intervention of microbial infections.Biomacromolecules202223359260810.1021/acs.biomac.1c0152835188749
    [Google Scholar]
  21. GristinaA.G. Biomaterial-centered infection: Microbial adhesion versus tissue integration.Science198723748221588159510.1126/science.36292583629258
    [Google Scholar]
  22. SubbiahdossG. KuijerR. GrijpmaD.W. van der MeiH.C. BusscherH.J. Microbial biofilm growth vs. tissue integration: “The race for the surface” experimentally studied.Acta Biomater.2009551399140410.1016/j.actbio.2008.12.01119158003
    [Google Scholar]
  23. JohnJ. TateS. PriceA. Non-surgical treatment for arterial leg ulcers: A narrative review.J. Wound Care2022311196997810.12968/jowc.2022.31.11.96936367798
    [Google Scholar]
  24. BeckerM.L. BurdickJ.A. Introduction: Polymeric biomaterials.Chem. Rev.202112118107891079110.1021/acs.chemrev.1c0035434547892
    [Google Scholar]
  25. DasS. BakerA.B. Biomaterials and nanotherapeutics for enhancing skin wound healing.Front. Bioeng. Biotechnol.201648210.3389/fbioe.2016.0008227843895
    [Google Scholar]
  26. GuoB. DongR. LiangY. LiM. Haemostatic materials for wound healing applications.Nat. Rev. Chem.202151177379110.1038/s41570‑021‑00323‑z37117664
    [Google Scholar]
  27. SharmaK. JosephJ.P. SahuA. YadavN. TyagiM. SinghA. PalA. KarthaK.P.R. Supramolecular gels from sugar-linked triazole amphiphiles for drug entrapment and release for topical application.RSC Advances2019934198191982710.1039/C9RA02868D35519397
    [Google Scholar]
  28. LeeC.H. LeeY. Collagen-based formulations for wound healing applications.Wound Healing BiomaterialsWoodhead PublishingSawston, United Kingdom201613514910.1016/B978‑1‑78242‑456‑7.00007‑6
    [Google Scholar]
  29. KarahaliloğluZ. ErcanB. DenkbaşE.B. WebsterT.J. Nanofeatured silk fibroin membranes for dermal wound healing applications.J. Biomed. Mater. Res. A2015103113514410.1002/jbm.a.3516124616219
    [Google Scholar]
  30. KumarS. Kumar PaswanS. VermaP. AghaeiS. Current understanding to accelerate wound healing: Mechanism and clinical importance.Recent advances in wound healing.IntechOpen202210.5772/intechopen.101429
    [Google Scholar]
  31. LooH.L. GohB.H. LeeL.H. ChuahL.H. Application of chitosan-based nanoparticles in skin wound healing.Asian J. Pharm. Sci.202217329933210.1016/j.ajps.2022.04.00135782330
    [Google Scholar]
  32. MontazerianH. DavoodiE. BaidyaA. BaghdasarianS. SarikhaniE. MeyerC.E. HaghniazR. BadvM. AnnabiN. KhademhosseiniA. WeissP.S. Engineered hemostatic biomaterials for sealing wounds.Chem. Rev.202212215128641290310.1021/acs.chemrev.1c0101535731958
    [Google Scholar]
  33. NathD. RalhanJ. JosephJ.P. MiglaniC. PalA. Thermoresponsive injectable hydrogel to mimic the heat- and strain-stiffening behavior of biopolymers toward muscle cell proliferation.Biomacromolecules202425285386310.1021/acs.biomac.3c0101838214450
    [Google Scholar]
  34. DeyR. MukherjeeS. BarmanS. HaldarJ. Macromolecular nanotherapeutics and antibiotic adjuvants to tackle bacterial and fungal infections.Macromol. Biosci.20212111210018210.1002/mabi.20210018234351064
    [Google Scholar]
  35. LiR. LiuK. HuangX. LiD. DingJ. LiuB. ChenX. Bioactive materials promote wound healing through modulation of cell behaviors.Adv. Sci. (Weinh.)2022910210515210.1002/advs.20210515235138042
    [Google Scholar]
  36. ChenY. WuL. LiP. HaoX. YangX. XiG. LiuW. FengY. HeH. ShiC. Polysaccharide based hemostatic strategy for ultrarapid hemostasis.Macromol. Biosci.2020204190037010.1002/mabi.20190037032068950
    [Google Scholar]
  37. HickmanD.A. PawlowskiC.L. SekhonU.D.S. MarksJ. GuptaA.S. Biomaterials and advanced technologies for hemostatic management of bleeding.Adv. Mater.2018304170085910.1002/adma.20170085929164804
    [Google Scholar]
  38. SimpsonA. ShuklaA. BrownA.C. Biomaterials for hemostasis.Annu. Rev. Biomed. Eng.202224111113510.1146/annurev‑bioeng‑012521‑10194235231178
    [Google Scholar]
  39. MuirV.G. BurdickJ.A. Chemically modified biopolymers for the formation of biomedical hydrogels.Chem. Rev.202112118109081094910.1021/acs.chemrev.0c0092333356174
    [Google Scholar]
  40. López-CebralR. Romero-CaamañoV. SeijoB. Alvarez-LorenzoC. Martín-PastorM. ConcheiroÁ. LandinM. SanchezA. Spermidine cross-linked hydrogels as a controlled release biomimetic approach for cloxacillin.Mol. Pharm.20141172358237110.1021/mp500067z24921673
    [Google Scholar]
  41. DasD. GhoshP. DharaS. PandaA.B. PalS. Dextrin and poly(acrylic acid)-based biodegradable, non-cytotoxic, chemically cross-linked hydrogel for sustained release of ornidazole and ciprofloxacin.ACS Appl. Mater. Interfaces2015784791480310.1021/am508712e25654747
    [Google Scholar]
  42. CasadidioC. ButiniM.E. TrampuzA. Di LucaM. CensiR. Di MartinoP. Daptomycin-loaded biodegradable thermosensitive hydrogels enhance drug stability and foster bactericidal activity against Staphylococcus aureus.Eur. J. Pharm. Biopharm.201813026027110.1016/j.ejpb.2018.07.00130064700
    [Google Scholar]
  43. BhattacharjeeB. GhoshS. PatraD. HaldarJ. Advancements in release-active antimicrobial biomaterials: A journey from release to relief.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022141e174510.1002/wnan.174534374498
    [Google Scholar]
  44. SharmaP.K. HalderM. SrivastavaU. SinghY. Antibacterial PEG-chitosan hydrogels for controlled antibiotic/protein delivery.ACS Appl. Bio Mater.20192125313532210.1021/acsabm.9b0057035021532
    [Google Scholar]
  45. RibeiroJ.S. BordiniE.A.F. FerreiraJ.A. MeiL. DubeyN. FennoJ.C. PivaE. LundR.G. SchwendemanA. BottinoM.C. Injectable MMP-responsive nanotube-modified gelatin hydrogel for dental infection ablation.ACS Appl. Mater. Interfaces20201214160061601710.1021/acsami.9b2296432180395
    [Google Scholar]
  46. ZhuJ. LiF. WangX. YuJ. WuD. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing.ACS Appl. Mater. Interfaces20181016133041331610.1021/acsami.7b1892729607644
    [Google Scholar]
  47. BallanceW.C. SeoY. BaekK. ChalifouxM. KimD. KongH. Stretchable, anti-bacterial hydrogel activated by large mechanical deformation.J. Control. Release201827511110.1016/j.jconrel.2018.02.00929427648
    [Google Scholar]
  48. HoqueJ. HaldarJ. Direct synthesis of dextran-based antibacterial hydrogels for extended release of biocides and eradication of topical biofilms.ACS Appl. Mater. Interfaces2017919159751598510.1021/acsami.7b0320828422484
    [Google Scholar]
  49. BarmanS. MukherjeeS. BhattacharjeeB. DeK. MukherjeeR. HaldarJ. Biocide loaded shear-thinning hydrogel with anti-biofilm efficacy cures topical infection.Biomater. Sci.2023113998101210.1039/D2BM01582J36541679
    [Google Scholar]
  50. BhattacharjeeB. JollyL. MukherjeeR. HaldarJ. An easy-to-use antimicrobial hydrogel effectively kills bacteria, fungi, and influenza virus.Biomater. Sci.20221082014202810.1039/D2BM00134A35294508
    [Google Scholar]
  51. HuangW.C. YingR. WangW. GuoY. HeY. MoX. XueC. MaoX. A macroporous hydrogel dressing with enhanced antibacterial and anti-inflammatory capabilities for accelerated wound healing.Adv. Funct. Mater.20203021200064410.1002/adfm.202000644
    [Google Scholar]
  52. KaiJ. XuesongZ. Preparation, characterization, and cytotoxicity evaluation of zinc oxide–bacterial cellulose–chitosan hydrogels for antibacterial dressing.Macromol. Chem. Phys.202022121200025710.1002/macp.202000257
    [Google Scholar]
  53. HaqueS. KotcherlakotaR. BhamidipatiP. MuralidharanK. SreedharB. AmanchyR. PatraC.R. Smartly engineered casein manganese oxide nanobiomaterials and its potential therapeutic angiogenesis applications for wound healing and limb ischemia.Adv. Therap20236
    [Google Scholar]
  54. RoyA. BasuthakurP. HaqueS. PatraC.R. Silver-based nanoparticles for antibacterial activity: Recent development and mechanistic approaches.Microbial interactions at nanobiotechnology interfaces: Molecular mechanisms and applications. KrishnarajR.N. SaniR.K. Wiley202124530110.1002/9781119617181.ch8
    [Google Scholar]
  55. YangK. HanQ. ChenB. ZhengY. ZhangK. LiQ. WangJ. Antimicrobial hydrogels: Promising materials for medical application.Int. J. Nanomedicine2018132217226310.2147/IJN.S15474829695904
    [Google Scholar]
  56. GhoshS. MukherjeeR. MukherjeeS. BarmanS. HaldarJ. Engineering antimicrobial polymer nanocomposites: In situ synthesis, disruption of polymicrobial biofilms, and in vivo activity.ACS Appl. Mater. Interfaces20221430345273453710.1021/acsami.2c1146635875986
    [Google Scholar]
  57. ZhuC. ZhaoJ. KempeK. WilsonP. WangJ. VelkovT. LiJ. DavisT.P. WhittakerM.R. HaddletonD.M. A hydrogel-based localized release of colistin for antimicrobial treatment of burn wound infection.Macromol. Biosci.2017172160032010.1002/mabi.20160032027619320
    [Google Scholar]
  58. OlivaN. ShinM. BurdickJ.A. Editorial: Special issue on advanced biomedical hydrogels.ACS Biomater. Sci. Eng.2021793993399610.1021/acsbiomaterials.1c0105934510909
    [Google Scholar]
  59. ZhouC. LiP. QiX. SharifA.R.M. PoonY.F. CaoY. ChangM.W. LeongS.S.J. Chan-ParkM.B. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine.Biomaterials201132112704271210.1016/j.biomaterials.2010.12.04021257199
    [Google Scholar]
  60. TsaoC.T. ChangC.H. LinY.Y. WuM.F. WangJ.L. HanJ.L. HsiehK.H. Antibacterial activity and biocompatibility of a chitosan–γ-poly(glutamic acid) polyelectrolyte complex hydrogel.Carbohydr. Res.2010345121774178010.1016/j.carres.2010.06.00220598293
    [Google Scholar]
  61. AzizM.A. CabralJ.D. BrooksH.J.L. MorattiS.C. HantonL.R. Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use.Antimicrob. Agents Chemother.201256128028710.1128/AAC.05463‑1122024824
    [Google Scholar]
  62. BakshiP.S. SelvakumarD. KadirveluK. KumarN.S. Chitosan as an environment friendly biomaterial – A review on recent modifications and applications.Int. J. Biol. Macromol.20201501072108310.1016/j.ijbiomac.2019.10.11331739057
    [Google Scholar]
  63. LiP. PoonY.F. LiW. ZhuH.Y. YeapS.H. CaoY. QiX. ZhouC. LamraniM. BeuermanR.W. KangE.T. MuY. LiC.M. ChangM.W. Jan LeongS.S. Chan-ParkM.B. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability.Nat. Mater.201110214915610.1038/nmat291521151166
    [Google Scholar]
  64. DongR. ZhaoX. GuoB. MaP.X. Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy.ACS Appl. Mater. Interfaces2016827171381715010.1021/acsami.6b0491127311127
    [Google Scholar]
  65. ZhaoX. GuoB. WuH. LiangY. MaP.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing.Nat. Commun.201891278410.1038/s41467‑018‑04998‑930018305
    [Google Scholar]
  66. BhattacharjeeB. GhoshS. MukherjeeR. HaldarJ. Quaternary lipophilic chitosan and gelatin cross-linked antibacterial hydrogel effectively kills multidrug-resistant bacteria with minimal toxicity toward mammalian cells.Biomacromolecules202122255757110.1021/acs.biomac.0c0142033325682
    [Google Scholar]
  67. HoqueJ. AdhikaryU. YadavV. SamaddarS. KonaiM.M. PrakashR.G. ParamanandhamK. ShomeB.R. SanyalK. HaldarJ. Chitosan derivatives active against multidrug-resistant bacteria and pathogenic fungi: In vivo evaluation as topical antimicrobials.Mol. Pharm.201613103578358910.1021/acs.molpharmaceut.6b0076427589087
    [Google Scholar]
  68. HoqueJ. PrakashR.G. ParamanandhamK. ShomeB.R. HaldarJ. Biocompatible injectable hydrogel with potent wound healing and antibacterial properties.Mol. Pharm.20171441218123010.1021/acs.molpharmaceut.6b0110428207269
    [Google Scholar]
  69. GianoM.C. IbrahimZ. MedinaS.H. SarhaneK.A. ChristensenJ.M. YamadaY. BrandacherG. SchneiderJ.P. Injectable bioadhesive hydrogels with innate antibacterial properties.Nat. Commun.201451409510.1038/ncomms509524958189
    [Google Scholar]
  70. GharibiR. ShakerA. Rezapour-LactoeeA. AgarwalS. Antibacterial and biocompatible hydrogel dressing based on gelatin- and castor-oil-derived biocidal agent.ACS Biomater. Sci. Eng.2021783633364710.1021/acsbiomaterials.1c0070634196519
    [Google Scholar]
  71. ChandelA.K.S. NutanB. RavalI.H. JewrajkaS.K. Self-assembly of partially alkylated dextran- graft -poly[(2-dimethylamino)ethyl methacrylate] copolymer facilitating hydrophobic/hydrophilic drug delivery and improving conetwork hydrogel properties.Biomacromolecules20181941142115310.1021/acs.biomac.8b0001529486116
    [Google Scholar]
  72. DeyR. MukherjeeR. HaldarJ. Photo-crosslinked antimicrobial hydrogel exhibiting wound healing ability and curing infections in vivo.Adv. Healthc. Mater.20221115220053610.1002/adhm.20220053635665490
    [Google Scholar]
  73. EnglerA.C. TanJ.P.K. OngZ.Y. CoadyD.J. NgV.W.L. YangY.Y. HedrickJ.L. Antimicrobial polycarbonates: Investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach.Biomacromolecules201314124331433910.1021/bm401248t24228904
    [Google Scholar]
  74. LiuS.Q. YangC. HuangY. DingX. LiY. FanW.M. HedrickJ.L. YangY.Y. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition.Adv. Mater.201224486484648910.1002/adma.20120222523018988
    [Google Scholar]
  75. LeeA.L.Z. NgV.W.L. WangW. HedrickJ.L. YangY.Y. Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication.Biomaterials20133438102781028610.1016/j.biomaterials.2013.09.02924090835
    [Google Scholar]
  76. StrassburgA. PetranowitschJ. PaetzoldF. KrummC. PeterE. MeurisM. KöllerM. TillerJ.C. Cross-linking of a hydrophilic, antimicrobial polycation toward a fast-swelling, antimicrobial superabsorber and interpenetrating hydrogel networks with long lasting antimicrobial properties.ACS Appl. Mater. Interfaces2017942365733658210.1021/acsami.7b1004928952307
    [Google Scholar]
  77. LiL. YanB. YangJ. HuangW. ChenL. ZengH. Injectable self-healing hydrogel with antimicrobial and antifouling properties.ACS Appl. Mater. Interfaces20179119221922510.1021/acsami.6b1619228266838
    [Google Scholar]
  78. HoqueJ. BhattacharjeeB. PrakashR.G. ParamanandhamK. HaldarJ. Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy.Biomacromolecules201819226727810.1021/acs.biomac.7b0097928846393
    [Google Scholar]
  79. BhattacharjeeB. GhoshS. HaldarJ. Versatile and user-friendly anti-infective hydrogel for effective wound healing.ACS Appl. Bio Mater.20236114867487610.1021/acsabm.3c0060837816154
    [Google Scholar]
  80. NepalA. TranH.D.N. NguyenN.T. TaH.T. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis.Bioact. Mater.20232723125610.1016/j.bioactmat.2023.04.00837122895
    [Google Scholar]
  81. Thattaruparambil RaveendranN. MohandasA. Ramachandran MenonR. Somasekharan MenonA. BiswasR. JayakumarR. Ciprofloxacin- and fluconazole-containing fibrin-nanoparticle-incorporated chitosan bandages for the treatment of polymicrobial wound infections.ACS Appl. Bio Mater.20192124325410.1021/acsabm.8b0058535016347
    [Google Scholar]
  82. YouC. LiQ. WangX. WuP. HoJ.K. JinR. ZhangL. ShaoH. HanC. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation.Sci. Rep.2017711048910.1038/s41598‑017‑10481‑028874692
    [Google Scholar]
  83. GeL. XuY. LiX. YuanL. TanH. LiD. MuC. Fabrication of antibacterial collagen-based composite wound dressing.ACS Sustain. Chem.& Eng.2018679153916610.1021/acssuschemeng.8b01482
    [Google Scholar]
  84. YuanH. ChenL. HongF.F. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing.ACS Appl. Mater. Interfaces20201233382339210.1021/acsami.9b1773231880915
    [Google Scholar]
  85. WangC. NiuH. MaX. HongH. YuanY. LiuC. Bioinspired, injectable, quaternized hydroxyethyl cellulose composite hydrogel coordinated by mesocellular silica foam for rapid, noncompressible hemostasis and wound healing.ACS Appl. Mater. Interfaces20191138345953460810.1021/acsami.9b0879931464418
    [Google Scholar]
  86. BhattacharjeeB. MukherjeeR. HaldarJ. Biocompatible hemostatic sponge exhibiting broad-spectrum antibacterial activity.ACS Biomater. Sci. Eng.2022883596360710.1021/acsbiomaterials.2c0041035802178
    [Google Scholar]
  87. BeltH. NeutD. SchenkW. HornJ.R. MeiH.C. BusscherH.J. Infection of orthopedic implants and the use of antibiotic-loaded bone cements: A review.Acta Orthop. Scand.200172655757110.1080/00016470131726897811817870
    [Google Scholar]
  88. QinS. XuK. NieB. JiF. ZhangH. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity.J. Biomed. Mater. Res. A201810692531253910.1002/jbm.a.3641329603857
    [Google Scholar]
  89. OrapiriyakulW. YoungP.S. DamiatiL. TsimbouriP.M. Antibacterial surface modification of titanium implants in orthopaedics.J. Tissue Eng.20189204173141878983810.1177/204173141878983830083308
    [Google Scholar]
  90. AkshayaS. RowloP.K. DukleA. NathanaelA.J. Antibacterial coatings for titanium implants: Recent trends and future perspectives.Antibiotics 20221112171910.3390/antibiotics1112171936551376
    [Google Scholar]
  91. López-ValverdeN. Macedo-de-SousaB. López-ValverdeA. RamírezJ.M. Effectiveness of antibacterial surfaces in osseointegration of titanium dental implants: A systematic review.Antibiotics202110436010.3390/antibiotics1004036033800702
    [Google Scholar]
  92. JoseB. AntociV.Jr ZeigerA.R. WickstromE. HickokN.J. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus.Chem. Biol.20051291041104810.1016/j.chembiol.2005.06.01316183028
    [Google Scholar]
  93. AntociV.Jr AdamsC.S. HickokN.J. ShapiroI.M. ParviziJ. Vancomycin bound to Ti rods reduces periprosthetic infection: Preliminary study.Clin. Orthop. Relat. Res.2007461461889510.1097/BLO.0b013e318073c2b217549034
    [Google Scholar]
  94. EdupugantiO.P. AntociV.Jr KingS.B. JoseB. AdamsC.S. ParviziJ. ShapiroI.M. ZeigerA.R. HickokN.J. WickstromE. Covalent bonding of vancomycin to Ti6Al4V alloy pins provides long-term inhibition of Staphylococcus aureus colonization.Bioorg. Med. Chem. Lett.200717102692269610.1016/j.bmcl.2007.03.00517369042
    [Google Scholar]
  95. AntociV.Jr KingS.B. JoseB. ParviziJ. ZeigerA.R. WickstromE. FreemanT.A. CompostoR.J. DucheyneP. ShapiroI.M. HickokN.J. AdamsC.S. Vancomycin covalently bonded to titanium alloy prevents bacterial colonization.J. Orthop. Res.200725785886610.1002/jor.2034817415753
    [Google Scholar]
  96. AdamsC.S. AntociV.Jr HarrisonG. PatalP. FreemanT.A. ShapiroI.M. ParviziJ. HickokN.J. RadinS. DucheyneP. Controlled release of vancomycin from thin sol-gel films on implant surfaces successfully controls osteomyelitis.J. Orthop. Res.200927670170910.1002/jor.2081519051247
    [Google Scholar]
  97. AntociV.Jr AdamsC.S. ParviziJ. DavidsonH.M. CompostoR.J. FreemanT.A. WickstromE. DucheyneP. JungkindD. ShapiroI.M. HickokN.J. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection.Biomaterials200829354684469010.1016/j.biomaterials.2008.08.01618814909
    [Google Scholar]
  98. LawsonM.C. BowmanC.N. AnsethK.S. Vancomycin derivative photopolymerized to titanium kills S. epidermidis.Clin. Orthop. Relat. Res.20074614619610510.1097/BLO.0b013e318098670617549033
    [Google Scholar]
  99. LawsonM.C. HothK.C. DeForestC.A. BowmanC.N. AnsethK.S. Inhibition of Staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives.Clin. Orthop. Relat. Res.201046882081209110.1007/s11999‑010‑1266‑z20191335
    [Google Scholar]
  100. ZarghamiV. GhorbaniM. BagheriK.P. ShokrgozarM.A. Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline.J. Mater. Sci. Mater. Med.20223364610.1007/s10856‑022‑06666‑335596852
    [Google Scholar]
  101. SonJ.S. KimK.H. KwonT.Y. Drug delivery from titanium surface using biodegradable nanoparticle carriers.Mater. Lett.20128912913210.1016/j.matlet.2012.08.084
    [Google Scholar]
  102. RottmanM. GoldbergJ. HackingS.A. Titanium-tethered vancomycin prevents resistance to rifampicin in Staphylococcus aureus in vitro.PLoS One2012712e5288310.1371/journal.pone.005288323285213
    [Google Scholar]
  103. ZhangL. YanJ. YinZ. TangC. GuoY. LiD. WeiB. XuY. GuQ. WangL. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections.Int. J. Nanomedicine201493027303625028544
    [Google Scholar]
  104. HanL. WangZ. LuX. DongL. XieC. WangK. ChenX. DingY. WengL. Mussel-inspired adhesive and transferable free-standing films by self-assembling dexamethasone encapsulated BSA nanoparticles and vancomycin immobilized oxidized alginate.Colloids Surf. B Biointerfaces201512645245810.1016/j.colsurfb.2014.12.05025601750
    [Google Scholar]
  105. HanJ. YangY. LuJ. WangC. XieY. ZhengX. YaoZ. ZhangC. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.Biosci. Trends201711334635410.5582/bst.2017.0106128552898
    [Google Scholar]
  106. ZhangT. WeiQ. ZhouH. ZhouW. FanD. LinX. JingZ. CaiH. ChengY. LiuX. LiW. SongC. TianY. XuN. ZhengY. LiuZ. Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model.Biomater. Sci.20208113106311510.1039/C9BM01968E32350485
    [Google Scholar]
  107. LeeJ.S. LeeS.J. YangS.B. LeeD. NahH. HeoD.N. MoonH.J. HwangY.S. ReisR.L. MoonJ.H. KwonI.K. Facile preparation of mussel-inspired antibiotic-decorated titanium surfaces with enhanced antibacterial activity for implant applications.Appl. Surf. Sci.201949614367510.1016/j.apsusc.2019.143675
    [Google Scholar]
  108. LiD. LvP. FanL. HuangY. YangF. MeiX. WuD. The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections.Biomater. Sci.20175112337234610.1039/C7BM00693D29034380
    [Google Scholar]
  109. EscobarA. MuzzioN. CoyE. LiuH. BindiniE. AndreozziP. WangG. AngeloméP. DelceaM. GrzelczakM. MoyaS.E. Antibacterial mesoporous titania films with embedded gentamicin and surface modified with bone morphogenetic protein 2 to promote osseointegration in bone implants.Adv. Mater. Interfaces201969180164810.1002/admi.201801648
    [Google Scholar]
  110. LeeD.W. YunY.P. ParkK. KimS.E. Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration.Bone201250497498210.1016/j.bone.2012.01.00722289658
    [Google Scholar]
  111. SoyluH.M. ChevallierP. CopesF. PontiF. CandianiG. YurtF. MantovaniD. A novel strategy to coat dopamine-functionalized titanium surfaces with agarose-based hydrogels for the controlled release of gentamicin.Front. Cell. Infect. Microbiol.20211167808110.3389/fcimb.2021.67808134178721
    [Google Scholar]
  112. NieB. AoH. LongT. ZhouJ. TangT. YueB. Immobilizing bacitracin on titanium for prophylaxis of infections and for improving osteoinductivity: An in vivo study.Colloids Surf. B Biointerfaces201715018319110.1016/j.colsurfb.2016.11.03427914255
    [Google Scholar]
  113. ZhangY. HuK. XingX. ZhangJ. ZhangM.R. MaX. ShiR. ZhangL. Smart titanium coating composed of antibiotic conjugated peptides as an infection-responsive antibacterial agent.Macromol. Biosci.2021211200019410.1002/mabi.20200019433052007
    [Google Scholar]
  114. ZhangB. BraunB.M. SkellyJ.D. AyersD.C. SongJ. Significant suppression of staphylococcus aureus colonization on intramedullary Ti6Al4V implants surface-grafted with vancomycin-bearing polymer brushes.ACS Appl. Mater. Interfaces20191132286412864710.1021/acsami.9b0764831313901
    [Google Scholar]
  115. ChoiH. SchulteA. MüllerM. ParkM. JoS. SchönherrH. Drug release from thermo-responsive polymer brush coatings to control bacterial colonization and biofilm growth on titanium implants.Adv. Healthc. Mater.20211011210006910.1002/adhm.20210006933951320
    [Google Scholar]
  116. LiT. WangN. ChenS. LuR. LiH. ZhangZ. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide.Int. J. Nanomedicine2017122995300710.2147/IJN.S12877528442908
    [Google Scholar]
  117. Kranthi KiranA.S. KizhakeyilA. RamalingamR. VermaN.K. LakshminarayananR. KumarT.S.S. DobleM. RamakrishnaS. Drug loaded electrospun polymer/ceramic composite nanofibrous coatings on titanium for implant related infections.Ceram. Int.20194515187101872010.1016/j.ceramint.2019.06.097
    [Google Scholar]
  118. NieB. AoH. ZhouJ. TangT. YueB. Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation.Colloids Surf. B Biointerfaces201614572873910.1016/j.colsurfb.2016.05.08927289314
    [Google Scholar]
  119. AnS. EvansJ.L. HamletS. LoveR.M. Overview of incorporation of inorganic antimicrobial materials in denture base resin: A scoping review.J. Prosthet. Dent.2023130220221110.1016/j.prosdent.2021.09.00434756425
    [Google Scholar]
  120. Al OthmanZ.A. AlamM.M. NaushadM. InamuddinI. KhanM.F. Inamuddin, Khan MF: Inorganic nanoparticles and nanomaterials based on titanium (ti): Applications in medicine.Mater. Sci. Forum2013754218710.4028/www.scientific.net/MSF.754.21
    [Google Scholar]
  121. MokabberT. CaoH.T. NorouziN. van RijnP. PeiY.T. Antimicrobial electrodeposited silver-containing calcium phosphate coatings.ACS Appl. Mater. Interfaces20201255531554110.1021/acsami.9b2015831894959
    [Google Scholar]
  122. Devlin-MullinA. ToddN.M. GolrokhiZ. GengH. KonerdingM.A. TernanN.G. HuntJ.A. PotterR.J. SutcliffeC. JonesE. LeeP.D. MitchellC.A. Atomic layer deposition of a silver nanolayer on advanced titanium orthopedic implants inhibits bacterial colonization and supports vascularized de novo bone ingrowth.Adv. Healthc. Mater.2017611170003310.1002/adhm.20170003328321991
    [Google Scholar]
  123. CometaS. BonifacioM.A. BaruzziF. de CandiaS. GiangregorioM.M. GiannossaL.C. DicarloM. Mattioli-BelmonteM. SabbatiniL. De GiglioE. Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: Analytical characterization and biological activity.Anal. Bioanal. Chem.2017409307211722110.1007/s00216‑017‑0685‑z29032456
    [Google Scholar]
  124. QinH. CaoH. ZhaoY. ZhuC. ChengT. WangQ. PengX. ChengM. WangJ. JinG. JiangY. ZhangX. LiuX. ChuP.K. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium.Biomaterials201435339114912510.1016/j.biomaterials.2014.07.04025112937
    [Google Scholar]
  125. ShimabukuroM. Antibacterial property and biocompatibility of silver, copper, and zinc in titanium dioxide layers incorporated by one-step micro-arc oxidation: A review.Antibiotics 202091071610.3390/antibiotics910071633092058
    [Google Scholar]
  126. ThukkaramM. CoolsP. NikiforovA. RigoleP. CoenyeT. Van Der VoortP. Du LaingG. VercruysseC. DeclercqH. MorentR. De WildeL. De BaetsP. VerbekenK. De GeyterN. Antibacterial activity of a porous silver doped TiO2 coating on titanium substrates synthesized by plasma electrolytic oxidation.Appl. Surf. Sci.202050014423510.1016/j.apsusc.2019.144235
    [Google Scholar]
  127. AndoY. MiyamotoH. NodaI. SakuraiN. AkiyamaT. YonekuraY. ShimazakiT. MiyazakiM. MawatariM. HotokebuchiT. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion.Mater. Sci. Eng. C201030117518010.1016/j.msec.2009.09.015
    [Google Scholar]
  128. VuA.A. RobertsonS.F. KeD. BandyopadhyayA. BoseS. Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications.Acta Biomater.20199232533510.1016/j.actbio.2019.05.02031082568
    [Google Scholar]
  129. SergiR. BellucciD. CandidatoR.T.Jr LusvarghiL. BolelliG. PawlowskiL. CandianiG. AltomareL. De NardoL. CannilloV. Bioactive Zn-doped hydroxyapatite coatings and their antibacterial efficacy against Escherichia coli and Staphylococcus aureus.Surf. Coat. Tech.2018352849110.1016/j.surfcoat.2018.08.017
    [Google Scholar]
  130. LiuY.C. LeeY.T. HuangT.C. LinG.S. ChenY.W. LeeB.S. TungK.L. In vitro bioactivity and antibacterial activity of strontium-, magnesium-, and zinc-multidoped hydroxyapatite porous coatings applied via atmospheric plasma spraying.ACS Appl. Bio Mater.2021432523253310.1021/acsabm.0c0153535014370
    [Google Scholar]
  131. DongJ. FangD. ZhangL. ShanQ. HuangY. Gallium-doped titania nanotubes elicit anti-bacterial efficacy in vivo against Escherichia coli and Staphylococcus aureus biofilm.Materialia2019510020910.1016/j.mtla.2019.100209
    [Google Scholar]
  132. CiobanuG. HarjaM. Bismuth-doped nanohydroxyapatite coatings on titanium implants for improved radiopacity and antimicrobial activity.Nanomaterials 2019912169610.3390/nano912169631783686
    [Google Scholar]
  133. ZhangY. ZhengY. LiY. WangL. BaiY. ZhaoQ. XiongX. ChengY. TangZ. DengY. WeiS. Tantalum nitride-decorated titanium with enhanced resistance to microbiologically induced corrosion and mechanical property for dental application.PLoS One2015106e013077410.1371/journal.pone.013077426107177
    [Google Scholar]
  134. MookherjeeN. AndersonM.A. HaagsmanH.P. DavidsonD.J. Antimicrobial host defence peptides: Functions and clinical potential.Nat. Rev. Drug Discov.202019531133210.1038/s41573‑019‑0058‑832107480
    [Google Scholar]
  135. YeamanM.R. YountN.Y. Mechanisms of antimicrobial peptide action and resistance.Pharmacol. Rev.2003551275510.1124/pr.55.1.212615953
    [Google Scholar]
  136. SeoM.D. WonH.S. KimJ.H. Mishig-OchirT. LeeB.J. Antimicrobial peptides for therapeutic applications: A review.Molecules20121710122761228610.3390/molecules17101227623079498
    [Google Scholar]
  137. GaoG. LangeD. HilpertK. KindrachukJ. ZouY. ChengJ.T.J. Kazemzadeh-NarbatM. YuK. WangR. StrausS.K. BrooksD.E. ChewB.H. HancockR.E.W. KizhakkedathuJ.N. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides.Biomaterials201132163899390910.1016/j.biomaterials.2011.02.01321377727
    [Google Scholar]
  138. Kazemzadeh-NarbatM. LaiB.F.L. DingC. KizhakkedathuJ.N. HancockR.E.W. WangR. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections.Biomaterials201334245969597710.1016/j.biomaterials.2013.04.03623680363
    [Google Scholar]
  139. HolmbergK.V. AbdolhosseiniM. LiY. ChenX. GorrS.U. AparicioC. Bio-inspired stable antimicrobial peptide coatings for dental applications.Acta Biomater.2013998224823110.1016/j.actbio.2013.06.01723791670
    [Google Scholar]
  140. ChenR. WillcoxM.D.P. HoK.K.K. SmythD. KumarN. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models.Biomaterials20168514215110.1016/j.biomaterials.2016.01.06326871890
    [Google Scholar]
  141. ZhangY. ZhangL. LiB. HanY. Enhancement in sustained release of antimicrobial peptide from dual-diameter-structured TiO 2 nanotubes for long-lasting antibacterial activity and cytocompatibility.ACS Appl. Mater. Interfaces20179119449946110.1021/acsami.7b0032228240853
    [Google Scholar]
  142. de BreijA. RioolM. KwakmanP.H.S. de BoerL. CordfunkeR.A. DrijfhoutJ.W. CohenO. EmanuelN. ZaatS.A.J. NibberingP.H. MoriartyT.F. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145.J. Control. Release20162221810.1016/j.jconrel.2015.12.00326658071
    [Google Scholar]
  143. ZhouL. HanY. DingJ. ChenX. HuangS. XingX. WuD. ChenJ. Regulation of an antimicrobial peptide GL13K-modified titanium surface on osteogenesis, osteoclastogenesis, and angiogenesis base on osteoimmunology.ACS Biomater. Sci. Eng.2021794569458010.1021/acsbiomaterials.1c0063934432981
    [Google Scholar]
  144. ZhouL. LinZ. DingJ. HuangW. ChenJ. WuD. Inflammatory and biocompatibility evaluation of antimicrobial peptide GL13K immobilized onto titanium by silanization.Colloids Surf. B Biointerfaces201716058158810.1016/j.colsurfb.2017.10.00729028606
    [Google Scholar]
  145. Kazemzadeh-NarbatM. KindrachukJ. DuanK. JenssenH. HancockR.E.W. WangR. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections.Biomaterials201031369519952610.1016/j.biomaterials.2010.08.03520970848
    [Google Scholar]
  146. ChenX. HirtH. LiY. GorrS.U. AparicioC. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms.PLoS One2014911e11157910.1371/journal.pone.011157925372402
    [Google Scholar]
  147. Rodríguez LópezA.L. LeeM.R. OrtizB.J. GastfriendB.D. WhiteheadR. LynnD.M. PalecekS.P. Preventing S. aureus biofilm formation on titanium surfaces by the release of antimicrobial β-peptides from polyelectrolyte multilayers.Acta Biomater.201993506210.1016/j.actbio.2019.02.04730831325
    [Google Scholar]
  148. ZhangL. XueY. GopalakrishnanS. LiK. HanY. RotelloV.M. Antimicrobial peptide-loaded pectolite nanorods for enhancing wound-healing and biocidal activity of titanium.ACS Appl. Mater. Interfaces20211324287642877310.1021/acsami.1c0489534110763
    [Google Scholar]
  149. SchmitzM.G.J. RioolM. de BoerL. VrehenA.F. BartelsP.A.A. ZaatS.A.J. DankersP.Y.W. Development of an antimicrobial peptide saap-148-functionalized supramolecular coating on titanium to prevent biomaterial-associated infections.Adv. Mater. Technol.2023813220184610.1002/admt.202201846
    [Google Scholar]
  150. Defensive Antibacterial Coating.2017Available from: https://www.dac-coating.com/
  151. Tibial Nail and EXPERT™ Tibial Nail PROtect.2023Available from: https://www.jnjmedtech.com/en-EMEA/product/expert-tibial-nail-etn
  152. Flores-MirelesA.L. WalkerJ.N. CaparonM. HultgrenS.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options.Nat. Rev. Microbiol.201513526928410.1038/nrmicro343225853778
    [Google Scholar]
  153. StammW.E. NorrbyS.R. Urinary tract infections: Disease panorama and challenges.J. Infect. Dis.2001183s1Suppl. 1S1S410.1086/31885011171002
    [Google Scholar]
  154. FoxmanB. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden.Infect. Dis. Clin. North Am.201428111310.1016/j.idc.2013.09.00324484571
    [Google Scholar]
  155. Abdel-AzizS.M. Bacterial biofilm: Dispersal and inhibition strategies.Schol. J. Biotechnol.201411105
    [Google Scholar]
  156. NeohK.G. LiM. KangE.T. ChiongE. TambyahP.A. Surface modification strategies for combating catheter-related complications: Recent advances and challenges.J. Mater. Chem. B Mater. Biol. Med.20175112045206710.1039/C6TB03280J32263678
    [Google Scholar]
  157. LaiN.M. ChaiyakunaprukN. LaiN.A. O’RiordanE. PauW.S.C. SaintS. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults.Cochrane Libr.2016201812CD00787810.1002/14651858.CD007878.pub326982376
    [Google Scholar]
  158. PercivalS.L. SulemanL. VuottoC. DonelliG. Healthcare-associated infections, medical devices and biofilms: Risk, tolerance and control.J. Med. Microbiol.201564432333410.1099/jmm.0.00003225670813
    [Google Scholar]
  159. RodriguesL.R. Inhibition of bacterial adhesion on medical devices.Adv. Exp. Med. Biol.201171535136710.1007/978‑94‑007‑0940‑9_2221557075
    [Google Scholar]
  160. PatelA.R. PatelA.R. SinghS. SinghS. KhawajaI. Central line catheters and associated complications: A review.Cureus2019115e471710.7759/cureus.471731355077
    [Google Scholar]
  161. GahlotR. GahlotR. NigamC. KumarV. YadavG. AnupurbaS. NigamC. KumarV. YadavG. AnupurbaS. Catheter-related bloodstream infections.Int. J. Crit. Illn. Inj. Sci.20144216216710.4103/2229‑5151.13418425024944
    [Google Scholar]
  162. LorenteL. HenryC. MartínM.M. JiménezA. MoraM.L. Central venous catheter-related infection in a prospective and observational study of 2,595 catheters.Crit. Care200596R631R63510.1186/cc382416280064
    [Google Scholar]
  163. ParameswaranR. SherchanJ.B. Varma DM. MukhopadhyayC. VidyasagarS. Intravascular catheter-related infections in an Indian tertiary care hospital.J. Infect. Dev. Ctries.20105645245810.3855/jidc.126121727644
    [Google Scholar]
  164. RicardoS.I.C. AnjosI.I.L. MongeN. FaustinoC.M.C. RibeiroI.A.C. A glance at antimicrobial strategies to prevent catheter-associated medical infections.ACS Infect. Dis.20206123109313010.1021/acsinfecdis.0c0052633245664
    [Google Scholar]
  165. GhoshS. HaldarJ. Cationic polymer–based antibacterial smart coatings.Advances in smart coatings and thin films for future industrial and biomedical engineering applications.Elsevier202055758210.1016/B978‑0‑12‑849870‑5.00011‑2
    [Google Scholar]
  166. PaladiniF. PolliniM. TalàA. AlifanoP. SanninoA. Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion.J. Mater. Sci. Mater. Med.20122381983199010.1007/s10856‑012‑4674‑722584824
    [Google Scholar]
  167. HoC.K. KhandasamyY. SingamP. Hong GohE. ZainuddinZ. Encrusted and incarcerated urinary bladder catheter: What are the options?Libyan J. Med.201051568610.3402/ljm.v5i0.568621483557
    [Google Scholar]
  168. TranT.T.T. KrishnanK. Antimicrobial property, corrosion resistance and tarnish resistance of cold-sprayed additive manufactured copper-nickel alloy.Progress in Additive Manufacturing2024941253126410.1007/s40964‑023‑00517‑5
    [Google Scholar]
  169. CheungR. NgT. WongJ. ChanW. Chitosan: An update on potential biomedical and pharmaceutical applications.Mar. Drugs20151385156518610.3390/md1308515626287217
    [Google Scholar]
  170. KaraF. AksoyE.A. YuksekdagZ. AksoyS. HasirciN. Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization.Appl. Surf. Sci.20153571692170210.1016/j.apsusc.2015.09.227
    [Google Scholar]
  171. HoqueJ. AkkapeddiP. GhoshC. UppuD.S.S.M. HaldarJ. A biodegradable polycationic paint that kills bacteria in vitro and in vivo.ACS Appl. Mater. Interfaces2016843292982930910.1021/acsami.6b0980427709890
    [Google Scholar]
  172. HuangK.S. YangC.H. HuangS.L. ChenC.Y. LuY.Y. LinY.S. Recent advances in antimicrobial polymers: A mini-review.Int. J. Mol. Sci.2016179157810.3390/ijms1709157827657043
    [Google Scholar]
  173. YangS.H. LeeY.S.J. LinF.H. YangJ.M. ChenK. Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters.J. Biomed. Mater. Res. B Appl. Biomater.200783B230431310.1002/jbm.b.3079617410571
    [Google Scholar]
  174. CampanaR. CasettariL. CiandriniE. IllumL. BaffoneW. Chitosans inhibit the growth and the adhesion of Klebsiella pneumoniae and Escherichia coli clinical isolates on urinary catheters.Int. J. Antimicrob. Agents201750213514110.1016/j.ijantimicag.2017.03.03128689873
    [Google Scholar]
  175. JainA. DuvvuriL.S. FarahS. BeythN. DombA.J. KhanW. Antimicrobial Polymers.Adv. Healthc. Mater.20143121969198510.1002/adhm.20140041825408272
    [Google Scholar]
  176. NiemczykA. GoszczyńskaA. Gołda-CępaM. KotarbaA. SobolewskiP. El FrayM. Biofunctional catheter coatings based on chitosan-fatty acids derivatives.Carbohydr. Polym.201922511526310.1016/j.carbpol.2019.11526331521311
    [Google Scholar]
  177. KaurR. LiuS. Antibacterial surface design – Contact kill.Prog. Surf. Sci.201691313615310.1016/j.progsurf.2016.09.001
    [Google Scholar]
  178. GourN. NgoK.X. Vebert-NardinC. Anti-infectious surfaces achieved by polymer modification.Macromol. Mater. Eng.2014299664866810.1002/mame.201300285
    [Google Scholar]
  179. CyphertE.L. von RecumH.A. Emerging technologies for long-term antimicrobial device coatings: Advantages and limitations.Exp. Biol. Med.2017242878879810.1177/153537021668857228110543
    [Google Scholar]
  180. HoqueJ. AkkapeddiP. YadavV. ManjunathG.B. UppuD.S.S.M. KonaiM.M. YarlagaddaV. SanyalK. HaldarJ. Broad spectrum antibacterial and antifungal polymeric paint materials: Synthesis, structure-activity relationship, and membrane-active mode of action.ACS Appl. Mater. Interfaces2015731804181510.1021/am507482y25541751
    [Google Scholar]
  181. HoqueJ. GhoshS. ParamanandhamK. HaldarJ. Charge-switchable polymeric coating kills bacteria and prevents biofilm formation in vivo.ACS Appl. Mater. Interfaces20191142391503916210.1021/acsami.9b1145331550124
    [Google Scholar]
  182. GhoshS. MukherjeeR. BasakD. HaldarJ. One-step curable, covalently immobilized coating for clinically relevant surfaces that can kill bacteria, fungi, and influenza virus.ACS Appl. Mater. Interfaces20201225278532786510.1021/acsami.9b2261032538606
    [Google Scholar]
  183. GhoshS. MukherjeeR. PatraD. HaldarJ. Engineering photo-crosslinked antimicrobial coating to tackle catheter-associated infections in vivo.ACS Biomater. Sci. Eng.2023974404441410.1021/acsbiomaterials.3c0034237335583
    [Google Scholar]
  184. PantJ. GaoJ. GoudieM.J. HopkinsS.P. LocklinJ. HandaH. A multi-defense strategy: Enhancing bactericidal activity of a medical grade polymer with a nitric oxide donor and surface-immobilized quaternary ammonium compound.Acta Biomater.20175842143110.1016/j.actbio.2017.05.06128579540
    [Google Scholar]
  185. ZaniniS. PolissiA. MaccagniE.A. Dell’OrtoE.C. LiberatoreC. RiccardiC. Development of antibacterial quaternary ammonium silane coatings on polyurethane catheters.J. Colloid Interface Sci.2015451788410.1016/j.jcis.2015.04.00725890115
    [Google Scholar]
  186. BakhshiH. YeganehH. Mehdipour-AtaeiS. ShokrgozarM.A. YariA. Saeedi-EslamiS.N. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.Mater. Sci. Eng. C201333115316410.1016/j.msec.2012.08.02325428057
    [Google Scholar]
  187. LoontjensJ.A. MoriartyT.F. ZaatS.A.J. BusscherH.J. Quaternary ammonium compounds.Biomaterials Associated Infection.Springer New York201337940410.1007/978‑1‑4614‑1031‑7_15
    [Google Scholar]
  188. Lakshmaiah NarayanaJ. ChenJ.Y. Antimicrobial peptides: Possible anti-infective agents.Peptides201572889410.1016/j.peptides.2015.05.01226048089
    [Google Scholar]
  189. YuK. LoJ.C.Y. YanM. YangX. BrooksD.E. HancockR.E.W. LangeD. KizhakkedathuJ.N. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model.Biomaterials2017116698110.1016/j.biomaterials.2016.11.04727914268
    [Google Scholar]
  190. MishraB. LushnikovaT. GollaR.M. WangX. WangG. Design and surface immobilization of short anti-biofilm peptides.Acta Biomater.20174931632810.1016/j.actbio.2016.11.06127915018
    [Google Scholar]
  191. BazakaK. JacobM.V. ChrzanowskiW. OstrikovK. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification.RSC Advances2015560487394875910.1039/C4RA17244B
    [Google Scholar]
  192. MonteiroC. CostaF. PirttiläA.M. TejesviM.V. MartinsM.C.L. Prevention of urinary catheter-associated infections by coating antimicrobial peptides from crowberry endophytes.Sci. Rep.2019911075310.1038/s41598‑019‑47108‑531341199
    [Google Scholar]
  193. SimõesN.G. BettencourtA.F. MongeN. RibeiroI.A.C. Novel antibacterial agents: An emergent need to win the battle against infections.Mini Rev. Med. Chem.201717141364137627629996
    [Google Scholar]
  194. TranC. YasirM. DuttaD. EswaramoorthyN. SuchowerskaN. WillcoxM. McKenzieD.R. Single step plasma process for covalent binding of antimicrobial peptides on catheters to suppress bacterial adhesion.ACS Appl. Bio Mater.20192125739574810.1021/acsabm.9b0077635021567
    [Google Scholar]
  195. ChungP.Y. KhanumR. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.J. Microbiol. Immunol. Infect.201750440541010.1016/j.jmii.2016.12.00528690026
    [Google Scholar]
  196. IvanovaK. FernandesM.M. MendozaE. TzanovT. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters.Appl. Microbiol. Biotechnol.201599104373438510.1007/s00253‑015‑6378‑725582561
    [Google Scholar]
  197. Guadarrama-ZempoaltecaY. Díaz-GómezL. Meléndez-OrtizH.I. ConcheiroA. Alvarez-LorenzoC. BucioE. Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion.Radiat. Phys. Chem.20161261810.1016/j.radphyschem.2016.04.023
    [Google Scholar]
  198. CostoyaA. Velázquez BecerraL.E. Meléndez-OrtizH.I. Díaz-GómezL. MayerC. OteroA. ConcheiroA. BucioE. Alvarez-LorenzoC. Immobilization of antimicrobial and anti-quorum sensing enzymes onto GMA-grafted poly(vinyl chloride) catheters.Int. J. Pharm.2019558728110.1016/j.ijpharm.2018.12.07530639217
    [Google Scholar]
  199. ZanderZ.K. BeckerM.L. Antimicrobial and antifouling strategies for polymeric medical devices.ACS Macro Lett.201871162510.1021/acsmacrolett.7b0087935610930
    [Google Scholar]
  200. BzdrengaJ. DaudéD. RémyB. JacquetP. PlenerL. EliasM. ChabrièreE. Biotechnological applications of quorum quenching enzymes.Chem. Biol. Interact.201726710411510.1016/j.cbi.2016.05.02827223408
    [Google Scholar]
  201. Flores-RojasG.G. Pino-RamosV.H. López-SaucedoF. ConcheiroA. Alvarez-LorenzoC. BucioE. Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene glycol dimethacrylate-co-glycidylmethacrylate).Eur. Polym. J.201795274010.1016/j.eurpolymj.2017.07.040
    [Google Scholar]
  202. KowalczukD. GinalskaG. PiersiakT. Miazga-KarskaM. Prevention of biofilm formation on urinary catheters: Comparison of the sparfloxacin-treated long-term antimicrobial catheters with silver-coated ones.J. Biomed. Mater. Res. B Appl. Biomater.2012100B71874188210.1002/jbm.b.3275522903649
    [Google Scholar]
  203. ChoY.W. ParkJ.H. KimS.H. ChoY.H. ChoiJ.M. ShinH.J. BaeY.H. ChungH. JeongS.Y. KwonI.C. Gentamicin-releasing urethral catheter for short-term catheterization.J. Biomater. Sci. Polym. Ed.200314996397210.1163/15685620332238144714661873
    [Google Scholar]
  204. ParkJ.H. ChoY.W. ChoY.H. ChoiJ.M. ShinH.J. BaeY.H. ChungH. JeongS.Y. KwonI.C. Norfloxacin-releasing urethral catheter for long-term catheterization.J. Biomater. Sci. Polym. Ed.200314995196210.1163/15685620332238143814661872
    [Google Scholar]
  205. JohnsonJ.R. BerggrenT. ConwayA.J. Activity of a nitrofurazone matrix urinary catheter against catheter-associated uropathogens.Antimicrob. Agents Chemother.19933792033203610.1128/AAC.37.9.20338239629
    [Google Scholar]
  206. FisherL.E. HookA.L. AshrafW. YousefA. BarrettD.A. ScurrD.J. ChenX. SmithE.F. FayM. ParmenterC.D.J. ParkinsonR. BaystonR. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity.J. Control. Release2015202576410.1016/j.jconrel.2015.01.03725639970
    [Google Scholar]
  207. TianY. JianZ. WangJ. HeW. LiuQ. WangK. LiH. TanH. Antimicrobial activity Study of triclosan-loaded WBPU on proteus mirabilis in vitro.Int. Urol. Nephrol.201749456357110.1007/s11255‑017‑1532‑z28150092
    [Google Scholar]
  208. GaonkarT.A. SampathL.A. ModakS.M. Evaluation of the antimicrobial efficacy of urinary catheters impregnated with antiseptics in an in vitro urinary tract model.Infect. Control Hosp. Epidemiol.200324750651310.1086/50224112887239
    [Google Scholar]
  209. AhmedA. KhanA.K. AnwarA. AliS.A. ShahM.R. Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae.Microb. Pathog.201698505610.1016/j.micpath.2016.06.01627321770
    [Google Scholar]
  210. WangL. ZhangS. KeatchR. CornerG. NabiG. MurdochS. DavidsonF. ZhaoQ. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters.J. Hosp. Infect.20191031556310.1016/j.jhin.2019.02.01230802524
    [Google Scholar]
  211. ShalomY. PerelshteinI. PerkasN. GedankenA. BaninE. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections.Nano Res.201710252053310.1007/s12274‑016‑1310‑8
    [Google Scholar]
  212. MargelD. MizrahiM. Regev-ShoshaniG. KoM. MosheM. OzalvoR. Shavit-GrievinkL. BanielJ. KedarD. YossepowitchO. LifshitzD. NaduA. GreenbergD. Av-GayY. Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections.PLoS One2017124e017444310.1371/journal.pone.017444328410367
    [Google Scholar]
  213. WoY. BrisboisE.J. WuJ. LiZ. MajorT.C. MohammedA. WangX. CollettaA. BullJ.L. MatzgerA.J. XiC. BartlettR.H. MeyerhoffM.E. Reduction of thrombosis and bacterial infection via controlled nitric oxide (NO) release from S -Nitroso- N -acetylpenicillamine (SNAP) impregnated carbosil intravascular catheters.ACS Biomater. Sci. Eng.20173334935910.1021/acsbiomaterials.6b0062228317023
    [Google Scholar]
  214. AljohiA. HassanH. GuptaR. The efficacy of noble metal alloy urinary catheters in reducing catheter-associated urinary tract infection.Urol. Ann20168442342910.4103/0974‑7796.19209928057985
    [Google Scholar]
  215. CampocciaD. MontanaroL. ArciolaC.R. A review of the biomaterials technologies for infection-resistant surfaces.Biomaterials201334348533855410.1016/j.biomaterials.2013.07.08923953781
    [Google Scholar]
  216. JohnsonJ.R. JohnstonB. KuskowskiM.A. In vitro comparison of nitrofurazone- and silver alloy-coated foley catheters for contact-dependent and diffusible inhibition of urinary tract infection-associated microorganisms.Antimicrob. Agents Chemother.20125694969497210.1128/AAC.00733‑1222751541
    [Google Scholar]
  217. WuP. GraingerD.W. Drug/device combinations for local drug therapies and infection prophylaxis.Biomaterials200627112450246710.1016/j.biomaterials.2005.11.03116337266
    [Google Scholar]
  218. MarconiW. FrancoliniI. PiozziA. RosaR.D. Antibiotic releasing urethane polymers for prevention of catheter related infections.J. Bioact. Compat. Polym.200116539340710.1106/G5EB‑LL73‑K59A‑7YBF
    [Google Scholar]
  219. DograG.K. HersonH. HutchisonB. IrishA.B. HeathC.H. GolledgeC. LuxtonG. MoodyH. Prevention of tunneled hemodialysis catheter-related infections using catheter-restricted filling with gentamicin and citrate: A randomized controlled study.J. Am. Soc. Nephrol.20021382133213910.1097/01.ASN.0000022890.29656.2212138146
    [Google Scholar]
  220. KernW.V. Infections associated with intravascular lines and grafts.Infectious Diseases427438.e3201710.1016/B978‑0‑7020‑6285‑8.00048‑4
    [Google Scholar]
  221. SinghaP. LocklinJ. HandaH. A review of the recent advances in antimicrobial coatings for urinary catheters.Acta Biomater.201750204010.1016/j.actbio.2016.11.07027916738
    [Google Scholar]
  222. PetersenR.C. Triclosan antimicrobial polymers.AIMS Mol. Sci.2016318810310.3934/molsci.2016.1.8827280150
    [Google Scholar]
  223. ChoiY.J. LimJ.K. ParkJ.J. HuhH. KimD.J. GongC.H. YoonS.Z. Chlorhexidine and silver sulfadiazine coating on central venous catheters is not sufficient for protection against catheter-related infection: Simulation-based laboratory research with clinical validation.J. Int. Med. Res.20174531042105310.1177/030006051770894428534703
    [Google Scholar]
  224. PaiM.P. PendlandS.L. DanzigerL.H. Antimicrobial-coated/bonded and -impregnated intravascular catheters.Ann. Pharmacother.200135101255126310.1345/aph.1041611675856
    [Google Scholar]
  225. FangF.C. Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity.J. Clin. Invest.199799122818282510.1172/JCI1194739185502
    [Google Scholar]
  226. WangP.G. Bill CaiT. TaniguchiN. Nitric oxide donors: For pharmaceutical and biological applications.Wiley200510.1002/3527603751
    [Google Scholar]
  227. KetchumA.R. KapplerM.P. WuJ. XiC. MeyerhoffM.E. The preparation and characterization of nitric oxide releasing silicone rubber materials impregnated with S-nitroso-tert-dodecyl mercaptan.J. Mater. Chem. B Mater. Biol. Med.20164342243010.1039/C5TB01664A27087965
    [Google Scholar]
  228. RenH. BullJ.L. MeyerhoffM.E. Transport of nitric oxide (NO) in various biomedical grade polyurethanes: Measurements and modeling impact on no release properties of medical devices.ACS Biomater. Sci. Eng.2016291483149210.1021/acsbiomaterials.6b0021527660819
    [Google Scholar]
  229. FengQ.L. WuJ. ChenG.Q. CuiF.Z. KimT.N. KimJ.O. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli andStaphylococcus aureus.J. Biomed. Mater. Res.200052466266810.1002/1097‑4636(20001215)52:4<662::AID‑JBM10>3.0.CO;2‑311033548
    [Google Scholar]
  230. KimJ.S. KukE. YuK.N. KimJ.H. ParkS.J. LeeH.J. KimS.H. ParkY.K. ParkY.H. HwangC.Y. KimY.K. LeeY.S. JeongD.H. ChoM.H. Antimicrobial effects of silver nanoparticles.Nanomedicine2007319510110.1016/j.nano.2006.12.00117379174
    [Google Scholar]
  231. KumarR. MünstedtH. Silver ion release from antimicrobial polyamide/silver composites.Biomaterials200526142081208810.1016/j.biomaterials.2004.05.03015576182
    [Google Scholar]
  232. SondiI. Salopek-SondiB. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci.2004275117718210.1016/j.jcis.2004.02.01215158396
    [Google Scholar]
  233. HondaM. KawanobeY. IshiiK. KonishiT. MizumotoM. KanzawaN. MatsumotoM. AizawaM. In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route.Mater. Sci. Eng. C20133385008501810.1016/j.msec.2013.08.02624094218
    [Google Scholar]
  234. KnetschM.L.W. KooleL.H. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles.Polymers 20113134036610.3390/polym3010340
    [Google Scholar]
  235. PickardR. LamT. MacLennanG. StarrK. KilonzoM. McPhersonG. GilliesK. McDonaldA. WaltonK. BuckleyB. GlazenerC. BoachieC. BurrJ. NorrieJ. ValeL. GrantA. N’DowJ. Types of urethral catheter for reducing symptomatic urinary tract infections in hospitalised adults requiring short-term catheterisation: Multicentre randomised controlled trial and economic evaluation of antimicrobial- and antiseptic-impregnated urethral catheters (the CATHETER trial).Health Technol. Assess.20121647119710.3310/hta1647023199586
    [Google Scholar]
  236. ZhangS. WangL. LiangX. VorstiusJ. KeatchR. CornerG. NabiG. DavidsonF. GaddG.M. ZhaoQ. Enhanced antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating for urinary catheters.ACS Biomater. Sci. Eng.2019562804281410.1021/acsbiomaterials.9b0007133405585
    [Google Scholar]
  237. AgarwalaM. ChoudhuryB. YadavR.N.S. Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens.Indian J. Microbiol.201454336536810.1007/s12088‑014‑0462‑z24891746
    [Google Scholar]
  238. HoqueJ. YadavV. PrakashR.G. SanyalK. HaldarJ. Dual-function polymer–silver nanocomposites for rapid killing of microbes and inhibiting biofilms.ACS Biomater. Sci. Eng.201951819110.1021/acsbiomaterials.8b0023933405872
    [Google Scholar]
  239. DamodaranV.B. MurthyN.S. Bio-inspired strategies for designing antifouling biomaterials.Biomater. Res.20162011810.1186/s40824‑016‑0064‑427326371
    [Google Scholar]
  240. HartlebW. SaarJ.S. ZouP. LienkampK. Just antimicrobial is not enough: Toward bifunctional polymer surfaces with dual antimicrobial and protein-repellent functionality.Macromol. Chem. Phys.2016217222523110.1002/macp.201500266
    [Google Scholar]
  241. YanC. JiangP. JiaX. WangX. 3D printing of bioinspired textured surfaces with superamphiphobicity.Nanoscale20201252924293810.1039/C9NR09620E31993618
    [Google Scholar]
  242. NishimotoS. BhushanB. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity.RSC Advances20133367169010.1039/C2RA21260A
    [Google Scholar]
  243. ReddyS.T. ChungK.K. McDanielC.J. DarouicheR.O. LandmanJ. BrennanA.B. Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: An in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli.J. Endourol.20112591547155210.1089/end.2010.061121819223
    [Google Scholar]
  244. Amin YavariS. CastenmillerS.M. van StrijpJ.A.G. CroesM. Combating implant infections: Shifting focus from bacteria to host.Adv. Mater.20203243200296210.1002/adma.20200296232914481
    [Google Scholar]
  245. BanerjeeI. PanguleR.C. KaneR.S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.Adv. Mater.201123669071810.1002/adma.20100121520886559
    [Google Scholar]
  246. MiL. JiangS. Integrated antimicrobial and nonfouling zwitterionic polymers.Angew. Chem. Int. Ed.20145371746175410.1002/anie.20130406024446141
    [Google Scholar]
  247. ChengG. XueH. ZhangZ. ChenS. JiangS. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities.Angew. Chem. Int. Ed.200847468831883410.1002/anie.20080357018846530
    [Google Scholar]
  248. ChandorkarY. KR. BasuB. The foreign body response demystified.ACS Biomater. Sci. Eng.201951194410.1021/acsbiomaterials.8b0025233405858
    [Google Scholar]
  249. SadtlerK. SinghA. WolfM.T. WangX. PardollD.M. ElisseeffJ.H. Design, clinical translation and immunological response of biomaterials in regenerative medicine.Nat. Rev. Mater.2016171604010.1038/natrevmats.2016.40
    [Google Scholar]
  250. LiC. GuoC. FitzpatrickV. IbrahimA. ZwierstraM.J. HannaP. LechtigA. NazarianA. LinS.J. KaplanD.L. Design of biodegradable, implantable devices towards clinical translation.Nat. Rev. Mater.201951618110.1038/s41578‑019‑0150‑z
    [Google Scholar]
/content/journals/cis/10.2174/012210299X314905241203104146
Loading
/content/journals/cis/10.2174/012210299X314905241203104146
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test