Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Cognition is the interdisciplinary scientific study of the brain and its processes, which include the intelligence and behaviour of living beings. Humans are generally equipped with a capacity for cognitive function at birth, but some conditions, such as infection and oxidative stress, lead to impaired cognition. Herbal drugs/phytochemicals are utilized in order to get better cognitive functions and alleviate symptoms associated with impaired cognition function. Yet, there still remains no complete cure for cognitive dysfunction, with most current treatments offering symptomatic relief. This has prompted us to review the importance of phytochemicals and the mechanism by which they may augment cognitive functions. For the present review, a comprehensive literature search was conducted by referring to the research and review articles published by authentic journals and available on web databases. Indeed, numerous plant-based drugs have traditionally been used to combat learning and memory-associated deficits, but many available drugs are potentially toxic alkaloidal cholinesterase inhibitors. Findings by various researchers exhibited that many plant-based drugs act through a different mechanisms, such as inhibition of acetylcholinesterase (AChE), activation of antioxidant defence, and augmenting the blood flow to the brain. The aim of the present review is to highlight the importance of phytochemicals in the modulation of cholinergic anti-inflammatory pathways (CAP) in neurodegenerative disease. For this, available literature was critically analysed. Through a comprehensive review of the recent research findings, this article concludes that medicinal plants serve as reservoirs of various successful drugs for cognition improvement, which belong to different classes of secondary metabolites. We also observe that phytochemicals can modulate cholinergic anti-inflammatory pathways (CAP) in neurodegenerative disease, although the mechanism of action of most natural/herbal extracts and their compounds is not yet fully explored.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X309791240914125655
2025-01-01
2025-09-01
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X309791.html?itemId=/content/journals/cis/10.2174/012210299X309791240914125655&mimeType=html&fmt=ahah

References

  1. RingmanJ.M. CummingsJ.L. Current and emerging pharmacological treatment options for dementia.Behav. Neurol.200617151610.1155/2006/31538616720956
    [Google Scholar]
  2. IngoleS.R. RajputS.K. SharmaS.S. Cognition enhancers: Current strategies and future perspectives.CRIPS2008934248
    [Google Scholar]
  3. TullyT. BourtchouladzeR. ScottR. TallmanJ. Targeting the CREB pathway for memory enhancers.Nat. Rev. Drug Discov.20032426727710.1038/nrd106112669026
    [Google Scholar]
  4. LynchG. AMPA receptor modulators as cognitive enhancers.Curr. Opin. Pharmacol.20044141110.1016/j.coph.2003.09.00915018832
    [Google Scholar]
  5. O’MahonyA. RaberJ. MontanoM. FoehrE. HanV. LuS. KwonH. LeFevourA. Chakraborty-SettS. GreeneW.C. NF-kappaB/Rel regulates inhibitory and excitatory neuronal function and synaptic plasticity.Mol. Cell. Biol.200626197283729810.1128/MCB.00510‑0616980629
    [Google Scholar]
  6. CeskováE. Cognitive dysfunction and its therapy.Cas. Lek. Cesk.20051441280180416389750
    [Google Scholar]
  7. BhattacharyaP. Implications of an aging population in India: Challenges and opportunities.Living To20051001214
    [Google Scholar]
  8. HowesM.J. Alkaloids and drug discovery for neurodegenerative diseases.Natural Products.Berlin, HeidelbergSpringer201361331136510.1007/978‑3‑642‑22144‑6_43
    [Google Scholar]
  9. DasA. ShankerG. NathC. PalR. SinghS. SinghH.K. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba.Pharmacol. Biochem. Behav.200273489390010.1016/S0091‑3057(02)00940‑112213536
    [Google Scholar]
  10. KennedyD.O. ScholeyA.B. Ginseng: Potential for the enhancement of cognitive performance and mood.Pharmacol. Biochem. Behav.200375368770010.1016/S0091‑3057(03)00126‑612895687
    [Google Scholar]
  11. KennedyD.O. WightmanE.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function.Adv. Nutr.201121325010.3945/an.110.00011722211188
    [Google Scholar]
  12. KumarV. Potential medicinal plants for CNS disorders: An overview.Phytother. Res.200620121023103510.1002/ptr.197016909441
    [Google Scholar]
  13. ShiksharthiA.R. MittalS. RamanaJ. Systematic review of herbals as potential memory enhancers.Int. J. Res. Pharm. Biomed. Sci.20113918925
    [Google Scholar]
  14. NapryeyenkoO. BorzenkoI. Ginkgo biloba special extract in dementia with neuropsychiatric features. A randomised, placebo-controlled, double-blind clinical trial.Arzneimittelforschung200757141117341003
    [Google Scholar]
  15. ShinK.Y. LeeJ.Y. WonB.Y. JungH.Y. ChangK.A. KoppulaS. SuhY.H. BT-11 is effective for enhancing cognitive functions in the elderly humans.Neurosci. Lett.2009465215715910.1016/j.neulet.2009.08.03319699261
    [Google Scholar]
  16. AraiH. SuzukiT. SasakiH. HanawaT. ToriizukaK. YamadaH. A new interventional strategy for Alzheimer’s disease by Japanese herbal medicine.Jpn. J. Geriatr.200037321221510.3143/geriatrics.37.21210879069
    [Google Scholar]
  17. PapandreouM.A. KanakisC.D. PolissiouM.G. EfthimiopoulosS. CordopatisP. MargarityM. LamariF.N. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents.J. Agric. Food Chem.200654238762876810.1021/jf061932a17090119
    [Google Scholar]
  18. BartusR.T. DeanR.L.III Pharmaceutical treatment for cognitive deficits in Alzheimer’s disease and other neurodegenerative conditions: Exploring new territory using traditional tools and established maps.Psychopharmacology (Berl.)20092021-3153610.1007/s00213‑008‑1365‑719011839
    [Google Scholar]
  19. LiuC. Targeting the cholinergic system in Parkinson’s disease.Acta Pharmacol. Sin.202041445346310.1038/s41401‑020‑0380‑z32132659
    [Google Scholar]
  20. GuoQ. WangD. HeX. FengQ. LinR. XuF. FuL. LuoM. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.PLoS One2015104e012338110.1371/journal.pone.012338125830919
    [Google Scholar]
  21. GonzalesK.K. PareJ.F. WichmannT. SmithY. GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen.J. Comp. Neurol.2013521112502252210.1002/cne.2329523296794
    [Google Scholar]
  22. YanZ. SongW.J. SurmeierD.J. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway.J. Neurophysiol.19977721003101510.1152/jn.1997.77.2.10039065864
    [Google Scholar]
  23. ContiM.M. ChambersN. BishopC. A new outlook on cholinergic interneurons in Parkinson’s disease and L-DOPA-induced dyskinesia.Neurosci. Biobehav. Rev.201892678210.1016/j.neubiorev.2018.05.02129782883
    [Google Scholar]
  24. JonesI.W. BolamJ.P. WonnacottS. Presynaptic localisation of the nicotinic acetylcholine receptor β2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones.J. Comp. Neurol.2001439223524710.1002/cne.134511596051
    [Google Scholar]
  25. Ramos-MartínezI.E. RodríguezM.C. CerbónM. Ramos-MartínezJ.C. Ramos-MartínezE.G. Role of the cholinergic anti-inflammatory reflex in central nervous system diseases.Int. J. Mol. Sci.202122241342710.3390/ijms22241342734948222
    [Google Scholar]
  26. HuangL.Z. CamposC. LyJ. Ivy CarrollF. QuikM. Nicotinic receptor agonists decrease L-dopa-induced dyskinesias most effectively in partially lesioned parkinsonian rats.Neuropharmacology201160686186810.1016/j.neuropharm.2010.12.03221232546
    [Google Scholar]
  27. DalyJ.W. Nicotinic agonists, antagonists, and modulators from natural sources.Cell. Mol. Neurobiol.2005253-451355210.1007/s10571‑005‑3968‑416075378
    [Google Scholar]
  28. DawidowskiB. GórniakA. PodwalskiP. LebieckaZ. MisiakB. SamochowiecJ. The role of cytokines in the pathogenesis of schizophrenia.J. Clin. Med.20211017384910.3390/jcm1017384934501305
    [Google Scholar]
  29. BusseS. BusseM. SchiltzK. BielauH. GosT. BrischR. MawrinC. SchmittA. JordanW. MüllerU.J. BernsteinH.G. BogertsB. SteinerJ. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: Further evidence for disease course-related immune alterations?Brain Behav. Immun.20122681273127910.1016/j.bbi.2012.08.00522917959
    [Google Scholar]
  30. FreedmanR. OlincyA. BuchananR.W. HarrisJ.G. GoldJ.M. JohnsonL. AllensworthD. Guzman-BonillaA. ClementB. BallM.P. KutnickJ. PenderV. MartinL.F. StevensK.E. WagnerB.D. ZerbeG.O. SotiF. KemW.R. Initial phase 2 trial of a nicotinic agonist in schizophrenia.Am. J. Psychiatry200816581040104710.1176/appi.ajp.2008.0707113518381905
    [Google Scholar]
  31. TerryA.V.Jr CallahanP.M. α7 nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future.Neuropharmacology202017010805310.1016/j.neuropharm.2020.10805332188568
    [Google Scholar]
  32. TregellasJ.R. WylieK.P. Alpha7 nicotinic receptors as therapeutic targets in schizophrenia.Nicotine Tob. Res.201921334935610.1093/ntr/nty03430137618
    [Google Scholar]
  33. GamageR. WagnonI. RossettiI. ChildsR. NiedermayerG. ChesworthR. GyengesiE. Cholinergic modulation of glial function during aging and chronic neuroinflammation.Front. Cell. Neurosci.20201457791210.3389/fncel.2020.57791233192323
    [Google Scholar]
  34. TraceyK.J. The inflammatory reflex.Nature2002420691785385910.1038/nature0132112490958
    [Google Scholar]
  35. TrakhtenbergE.F. GoldbergJ.L. Neuroimmune communication.Science20113346052474810.1126/science.121309921980100
    [Google Scholar]
  36. AlbuquerqueE.X. PereiraE.F.R. AlkondonM. RogersS.W. Mammalian nicotinic acetylcholine receptors: From structure to function.Physiol. Rev.20098917312010.1152/physrev.00015.200819126755
    [Google Scholar]
  37. ZoliM. PucciS. VilellaA. GottiC. Neuronal and extra neuronal nicotinic acetylcholine receptors.Curr. Neuropharmacol.201816433834910.2174/1570159X1566617091211045028901280
    [Google Scholar]
  38. BorovikovaL.V. IvanovaS. ZhangM. YangH. BotchkinaG.I. WatkinsL.R. WangH. AbumradN. EatonJ.W. TraceyK.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.Nature2000405678545846210.1038/3501307010839541
    [Google Scholar]
  39. BenfanteR. Di LascioS. CardaniS. FornasariD. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: A new therapeutic perspective in aging-related disorders.Aging Clin. Exp. Res.202133482383410.1007/s40520‑019‑01359‑431583530
    [Google Scholar]
  40. MukherjeeP.K. KumarV. HoughtonP.J. Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity.Phytother. Res.200721121142114510.1002/ptr.222417639556
    [Google Scholar]
  41. MorsW.B. RizziniC.T. PereiraN.A. Medicinal Plants of Brazil.J. Nat. Prod.20006491258125910.1021/np000750m
    [Google Scholar]
  42. IkedaK. NegishiH. YamoriY. Antioxidant nutrients and hypoxia/ischemia brain injury in rodents.Toxicology20031891-2556110.1016/S0300‑483X(03)00152‑512821282
    [Google Scholar]
  43. LiuR.H. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals.Am. J. Clin. Nutr.2003783517S520S10.1093/ajcn/78.3.517S12936943
    [Google Scholar]
  44. JosephJ.A. Shukitt-HaleB. CasadesusG. Reversing the deleterious effects of aging on neuronal communication and behavior: Beneficial properties of fruit polyphenolic compounds.Am. J. Clin. Nutr.2005811Suppl.313S316S10.1093/ajcn/81.1.313S15640496
    [Google Scholar]
  45. LarsonR.A. The antioxidants of higher plants.Phytochemistry198827496997810.1016/0031‑9422(88)80254‑1
    [Google Scholar]
  46. KennedyD. ScholeyA. The psychopharmacology of European herbs with cognition-enhancing properties.Curr. Pharm. Des.200612354613462310.2174/13816120677901038717168769
    [Google Scholar]
  47. GoldmanP. Herbal medicines today and the roots of modern pharmacology.Ann. Intern. Med.20011358_Part_159460010.7326/0003‑4819‑135‑8_Part_1‑200110160‑0001011601931
    [Google Scholar]
  48. ZenkM.H. JuengerM. Evolution and current status of the phytochemistry of nitrogenous compounds.Phytochemistry20076822-242757277210.1016/j.phytochem.2007.07.00917719615
    [Google Scholar]
  49. PearsonV.E. Galantamine: A new alzheimer drug with a past life.Ann. Pharmacother.200135111406141310.1345/aph.1A09211724094
    [Google Scholar]
  50. KumarG.P. KhanumF. Neuroprotective potential of phytochemicals.Pharmacogn. Rev.2012612819010.4103/0973‑7847.9989823055633
    [Google Scholar]
  51. WillisL.M. Shukitt-HaleB. JosephJ.A. Recent advances in berry supplementation and age-related cognitive decline.Curr. Opin. Clin. Nutr. Metab. Care2009121919410.1097/MCO.0b013e32831b9c6e19057194
    [Google Scholar]
  52. ZhengY. LayneJ. ToborekM. HennigB. The roles of caveolin‐1 and heme oxygenase‐1 in EGCG‐mediated protection against TNF‐α‐induced endothelial inflammation.FASEB J.201024S15411010.1096/fasebj.24.1_supplement.541.10
    [Google Scholar]
  53. ZhangL. JieG. ZhangJ. ZhaoB. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress.Free Radic. Biol. Med.200946341442110.1016/j.freeradbiomed.2008.10.04119061950
    [Google Scholar]
  54. WeinrebO. MandelS. AmitT. YoudimM.B.H. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases.J. Nutr. Biochem.200415950651610.1016/j.jnutbio.2004.05.00215350981
    [Google Scholar]
  55. BowsherC. SteerM. TobinA. Plant biochemistry.1st Ed.LondonGarland Science200847210.4324/9780203833483
    [Google Scholar]
  56. GuoS. YanJ. YangT. YangX. BezardE. ZhaoB. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway.Biol. Psychiat.200762121353136210.1016/j.biopsych.2007.04.02017624318
    [Google Scholar]
  57. EhrnhoeferD.E. DuennwaldM. MarkovicP. WackerJ.L. EngemannS. RoarkM. LegleiterJ. MarshJ.L. ThompsonL.M. LindquistS. MuchowskiP.J. WankerE.E. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models.Hum. Mol. Genet.200615182743275110.1093/hmg/ddl21016893904
    [Google Scholar]
  58. SutherlandB.A. RahmanR.M.A. AppletonI. Mechanisms of action of green tea catechins, with a focus on ischemia-induced neurodegeneration.J. Nutr. Biochem.200617529130610.1016/j.jnutbio.2005.10.00516443357
    [Google Scholar]
  59. YoudimK.A. SpencerJ.P.E. SchroeterH. Rice-EvansC. Dietary flavonoids as potential neuroprotectants.Biol. Chem.20023833-450351910.1515/BC.2002.05212033439
    [Google Scholar]
  60. RohmerM. RohmerM. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants.Nat. Prod. Rep.199916556557410.1039/a709175c10584331
    [Google Scholar]
  61. RattanR.S. Mechanism of action of insecticidal secondary metabolites of plant origin.Crop Prot.201029991392010.1016/j.cropro.2010.05.008
    [Google Scholar]
  62. WinkM. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective.Phytochemistry200364131910.1016/S0031‑9422(03)00300‑512946402
    [Google Scholar]
  63. KleijnenJ. KnipschildP. Ginkgo biloba for cerebral insufficiency.Br. J. Clin. Pharmacol.199234435235810.1111/j.1365‑2125.1992.tb05642.x1457269
    [Google Scholar]
  64. ChanP.C. XiaQ. FuP.P. Ginkgo biloba leave extract: Biological, medicinal, and toxicological effects.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200725321124410.1080/1059050070156941417763047
    [Google Scholar]
  65. WarotD. LacomblezL. DanjouP. WeillerE. PayanC. PuechA.J. Comparative effects of ginkgo biloba extracts on psychomotor performances and memory in healthy subjects.Therapie199146133362020921
    [Google Scholar]
  66. YunT.K. Brief introduction of Panax ginseng C.A. Meyer.J. Korean Med. Sci.200116SupplSuppl.S3S510.3346/jkms.2001.16.S.S311748372
    [Google Scholar]
  67. LüJ.M. YaoQ. ChenC. Ginseng compounds: An update on their molecular mechanisms and medical applications.Curr. Vasc. Pharmacol.20097329330210.2174/15701610978834076719601854
    [Google Scholar]
  68. SpargS.G. LightM.E. van StadenJ. Biological activities and distribution of plant saponins.J. Ethnopharmacol.2004942-321924310.1016/j.jep.2004.05.01615325725
    [Google Scholar]
  69. EskelinenM.H. NganduT. TuomilehtoJ. SoininenH. KivipeltoM. Midlife coffee and tea drinking and the risk of late-life dementia: A population-based CAIDE study.J. Alzheimers Dis.2009161859110.3233/JAD‑2009‑092019158424
    [Google Scholar]
  70. TohdaC. KuboyamaT. KomatsuK. Search for natural products related to regeneration of the neuronal network.Neurosignals2005141-2344510.1159/00008538415956813
    [Google Scholar]
  71. ColeyN. AndrieuS. GardetteV. Gillette-GuyonnetS. SanzC. VellasB. GrandA. Dementia prevention: Methodological explanations for inconsistent results.Epidemiol. Rev.2008301356610.1093/epirev/mxn01018779228
    [Google Scholar]
  72. DeKoskyS.T. WilliamsonJ.D. FitzpatrickA.L. KronmalR.A. IvesD.G. SaxtonJ.A. LopezO.L. BurkeG. CarlsonM.C. FriedL.P. KullerL.H. RobbinsJ.A. TracyR.P. WoolardN.F. DunnL. SnitzB.E. NahinR.L. FurbergC.D. Ginkgo biloba for prevention of dementia: A randomized controlled trial.JAMA2008300192253226210.1001/jama.2008.68319017911
    [Google Scholar]
  73. NgT.P. ChiamP.C. LeeT. ChuaH.C. LimL. KuaE.H. Curry consumption and cognitive function in the elderly.Am. J. Epidemiol.2006164989890610.1093/aje/kwj26716870699
    [Google Scholar]
  74. ElbazA. MoisanF. Update in the epidemiology of Parkinson’s disease.Curr. Opin. Neurol.200821445446010.1097/WCO.0b013e328305046118607207
    [Google Scholar]
  75. OrtizJ.G. Nieves-NatalJ. ChavezP. Effects of Valeriana officinalis extracts on [3H]flunitrazepam binding, synaptosomal [3H]GABA uptake, and hippocampal [3H]GABA release.Neurochem. Res.199924111373137810.1023/A:102257640553410555777
    [Google Scholar]
  76. SakinaM.R. DandiyaP.C. others. A psycho-neuropharmacological profile of Centella asiatica extract.Fitoterapia1990614291296
    [Google Scholar]
  77. NaliniK. AroorA.R. RaoA. KaranthK.S. Effect of Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats.Fitoterapia1992633231238
    [Google Scholar]
  78. CrewsC. HoughP. GodwardJ. BreretonP. LeesM. GuietS. WinkelmannW. Study of the main constituents of some authentic hazelnut oils.J. Agric. Food Chem.200553124843485210.1021/jf047836w15941325
    [Google Scholar]
  79. YehudaS. RabinovitzS. LcarassoR. ImostofskyD. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane.Neurobiol. Aging200223584385310.1016/S0197‑4580(02)00074‑X12392789
    [Google Scholar]
  80. RangH.P. DaleM.M. RitterJ.M. FlowerR.J. Anxiolytic and hypnotic drugs. Rang Dales Pharmacol.6th Ed.LondonElsevier Churchill Livingstone2007538
    [Google Scholar]
  81. WilensT.E. KlintT. AdlerL. WestS. WesnesK. GraffO. MikkelsenB. A randomized controlled trial of a novel mixed monoamine reuptake inhibitor in adults with ADHD.Behav. Brain Funct.2008412410.1186/1744‑9081‑4‑2418554401
    [Google Scholar]
  82. TurnerD.C. ClarkL. DowsonJ. RobbinsT.W. SahakianB.J. Modafinil improves cognition and response inhibition in adult attention-deficit/hyperactivity disorder.Biol. Psychiatry200455101031104010.1016/j.biopsych.2004.02.00815121488
    [Google Scholar]
  83. UptonN. ChuangT.T. HunterA.J. VirleyD.J. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer’s disease.Neurotherapeutics20085345846910.1016/j.nurt.2008.05.00818625457
    [Google Scholar]
  84. BrownE.S. VazquezM. NakamuraA. Randomized, placebo-controlled, crossover trial of memantine for cognitive changes with corticosteroid therapy.Biol. Psychiatry200864872772910.1016/j.biopsych.2008.05.01018582848
    [Google Scholar]
  85. RobinsonD.M. KeatingG.M. Memantine.Drugs200666111515153410.2165/00003495‑200666110‑0001516906789
    [Google Scholar]
  86. ErberkO.N. RezakiM. Prefrontal cortex: Implications for memory functions and dementia.Turk. Psikiyatri. Derg. Turk. J. Psychiat.2006183262269
    [Google Scholar]
  87. LanniC. LenzkenS.C. PascaleA. Del VecchioI. RacchiM. PistoiaF. GovoniS. Cognition enhancers between treating and doping the mind.Pharmacol. Res.200857319621310.1016/j.phrs.2008.02.00418353672
    [Google Scholar]
  88. BitnerR.S. BunnelleW.H. AndersonD.J. BriggsC.A. BuccafuscoJ. CurzonP. DeckerM.W. FrostJ.M. GronlienJ.H. GubbinsE. LiJ. MalyszJ. MarkosyanS. MarshK. MeyerM.D. NikkelA.L. RadekR.J. RobbH.M. TimmermannD. SullivanJ.P. GopalakrishnanM. Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways.J. Neurosci.20072739105781058710.1523/JNEUROSCI.2444‑07.200717898229
    [Google Scholar]
  89. AkhondzadehS. Shafiee SabetM. HarirchianM.H. ToghaM. CheraghmakaniH. RazeghiS. HejaziS.S. YousefiM.H. AlimardaniR. JamshidiA. RezazadehS.A. YousefiA. ZareF. MoradiA. VossoughiA. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease.Psychopharmacology (Berl.)2010207463764310.1007/s00213‑009‑1706‑119838862
    [Google Scholar]
  90. FeuerbachD. LingenhoehlK. OlpeH.R. VassoutA. GentschC. ChaperonF. NozulakJ. EnzA. BilbeG. McAllisterK. HoyerD. The selective nicotinic acetylcholine receptor α7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain.Neuropharmacology200956125426310.1016/j.neuropharm.2008.08.02518793655
    [Google Scholar]
  91. RuttenK. PrickaertsJ. SchaenzleG. RosenbrockH. BloklandA. Sub-chronic rolipram treatment leads to a persistent improvement in long-term object memory in rats.Neurobiol. Learn. Mem.200890356957510.1016/j.nlm.2008.04.01618558503
    [Google Scholar]
  92. GouliaevA.H. SenningA. Piracetam and other structurally related nootropics.Brain Res. Brain Res. Rev.199419218022210.1016/0165‑0173(94)90011‑68061686
    [Google Scholar]
  93. WinbladB. FioravantiM. DolezalT. LoginaI. MilanovI.G. PopescuD.C. SolomonA. Therapeutic use of nicergoline.Clin. Drug Investig.200828953355210.2165/00044011‑200828090‑0000118666801
    [Google Scholar]
  94. KiddP.M. A review of nutrients and botanicals in the integrative management of cognitive dysfunction.Altern. Med. Rev.19994314416110383479
    [Google Scholar]
  95. BennettG.W. BallardT.M. WatsonC.D. FoneK.C.F. Effect of neuropeptides on cognitive function.Exp. Gerontol.1997324-545146910.1016/S0531‑5565(96)00159‑39315449
    [Google Scholar]
  96. WeissR.F. FintelmannV. Herbal medicine. Classic Edition.Stuttg, N YThieme2000372
    [Google Scholar]
  97. VianaM. BarbasC. BonetB. BonetM.V. CastroM. FraileM.V. HerreraE. In vitro effects of a flavonoid-rich extract on LDL oxidation.Atherosclerosis19961231-2839110.1016/0021‑9150(95)05763‑38782839
    [Google Scholar]
  98. PinderR.M. SandlerM. Alcohol, wine and mental health: Focus on dementia and stroke.J. Psychopharmacol.200418444945610.1177/02698811040180040215582912
    [Google Scholar]
  99. BergerM. Can oxidative damage be treated nutritionally?Clin. Nutr.200524217218310.1016/j.clnu.2004.10.00315784476
    [Google Scholar]
  100. FloydR.A. Antioxidants, oxidative stress, and degenerative neurological disorders.Proc. Soc. Exp. Biol. Med.1999222323624510.1046/j.1525‑1373.1999.d01‑140.x10601882
    [Google Scholar]
  101. KumarM. KumarS. KaurS. Identification of polyphenols in leaf extracts of Lawsonia inermis L. with antioxidant, antigenotoxic and antiproliferative potential.Int. J. Green Pharm.201481233610.4103/0973‑8258.126816
    [Google Scholar]
  102. MaurerS.V. WilliamsC.L. The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells.Front. Immunol.20178148910.3389/fimmu.2017.0148929167670
    [Google Scholar]
  103. RawatJ.K. RoyS. SinghM. GuatamS. YadavR.K. AnsariM.N. AldossaryS.A. SaeedanA.S. KaithwasG. Transcutaneous vagus nerve stimulation regulates the cholinergic anti-inflammatory pathway to counteract 1, 2-dimethylhydrazine induced colon carcinogenesis in albino wistar rats.Front. Pharmacol.20191035310.3389/fphar.2019.0035331164817
    [Google Scholar]
  104. PerryE.K. PickeringA.T. WangW.W. HoughtonP. PerryN.S.L. Medicinal plants and Alzheimer’s disease: Integrating ethnobotanical and contemporary scientific evidence.J. Altern. Complement. Med.19984441942810.1089/acm.1998.4.4199884179
    [Google Scholar]
  105. MillsS.Y. The essential book of herbal medicine.Baxter, ArkansasArkana Series1993677
    [Google Scholar]
  106. PerryE. HowesM.J.R. Medicinal plants and dementia therapy: Herbal hopes for brain aging?CNS Neurosci. Ther.201117668369810.1111/j.1755‑5949.2010.00202.x22070157
    [Google Scholar]
  107. HowesM.J.R. HoughtonP.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function.Pharmacol. Biochem. Behav.200375351352710.1016/S0091‑3057(03)00128‑X12895669
    [Google Scholar]
  108. HeinrichM. Lee TeohH. Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge.J. Ethnopharmacol.2004922-314716210.1016/j.jep.2004.02.01215137996
    [Google Scholar]
  109. PariL. TewasD. EckelJ. Role of curcumin in health and disease.Arch. Physiol. Biochem.2008114212714910.1080/1381345080203395818484280
    [Google Scholar]
  110. KinrysG. ColemanE. RothsteinE. Natural remedies for anxiety disorders: Potential use and clinical applications.Depress. Anxiety200926325926510.1002/da.2046019123457
    [Google Scholar]
  111. ErdõS.L. MolnárP. LakicsV. BenceJ.Z. TömösköziZ. Vincamine and vincanol are potent blockers of voltage-gated Na+ channels.Eur. J. Pharmacol.19963141-2697310.1016/S0014‑2999(96)00542‑08957220
    [Google Scholar]
  112. NyakasC. FelszeghyK. SzabóR. KeijserJ.N. LuitenP.G.M. SzombathelyiZ. TihanyiK. Neuroprotective effects of vinpocetine and its major metabolite cis-apovincaminic acid on NMDA-induced neurotoxicity in a rat entorhinal cortex lesion model.CNS Neurosci. Ther.2009152899910.1111/j.1755‑5949.2009.00078.x19492990
    [Google Scholar]
  113. HowesM.J.R. PerryE. The role of phytochemicals in the treatment and prevention of dementia.Drugs Aging201128643946810.2165/11591310‑000000000‑0000021639405
    [Google Scholar]
  114. PerryN.S.L. HoughtonP.J. TheobaldA. JennerP. PerryE.K. In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes.J. Pharm. Pharmacol.200052789590210.1211/002235700177459810933142
    [Google Scholar]
  115. SavelevS. OkelloE. PerryN.S.L. WilkinsR.M. PerryE.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil.Pharmacol. Biochem. Behav.200375366166810.1016/S0091‑3057(03)00125‑412895684
    [Google Scholar]
  116. LeungK.W. YungK.K. MakN.K. YueP.Y. LuoH-B. ChengY-K. FanT.P. YeungH.W. NgT.B. WongR.N. Angiomodulatory and neurological effects of ginsenosides.Curr. Med. Chem.200714121371138010.2174/09298670778059791617504218
    [Google Scholar]
  117. HsiehM. PengW. WuC. NgK. ChengC. XuH. Review on experimental research of herbal medicines with anti-amnesic activity.Planta Med.201076320321710.1055/s‑0029‑124070720033863
    [Google Scholar]
  118. NahS.Y. KimD.H. RhimH. Ginsenosides: Are any of them candidates for drugs acting on the central nervous system?CNS Drug Rev.200713438140410.1111/j.1527‑3458.2007.00023.x18078425
    [Google Scholar]
  119. LeeM.S. YangE.J. KimJ.I. ErnstE. Ginseng for cognitive function in Alzheimer’s disease: A systematic review.J. Alzheimers Dis.200918233934410.3233/JAD‑2009‑114919584437
    [Google Scholar]
  120. HaskellC.F. KennedyD.O. WesnesK.A. ScholeyA.B. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine.Psychopharmacology (Berl.)2005179481382510.1007/s00213‑004‑2104‑315678363
    [Google Scholar]
  121. FerréS. An update on the mechanisms of the psychostimulant effects of caffeine.J. Neurochem.200810541067107910.1111/j.1471‑4159.2007.05196.x18088379
    [Google Scholar]
  122. QiG. MiY. FanR. LiR. LiuZ. LiuX. Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways.J. Agric. Food Chem.201967185122513410.1021/acs.jafc.9b0013330995031
    [Google Scholar]
  123. GuptaM. SinghN. GulatiM. GuptaR. SudhakarK. KapoorB. Herbal bioactives in treatment of inflammation: An overview.S. Afr. J. Bot.202114320522510.1016/j.sajb.2021.07.027
    [Google Scholar]
  124. HosseinzadehH. EbrahimpourS. FazeliM. MehriS. TaherianfardM. Boswellic acid improves cognitive function in a rat model through its antioxidant activity:-neuroprotective effect of boswellic acid.J. Pharmacopuncture2017201101710.3831/KPI.2017.20.00128392957
    [Google Scholar]
  125. SontakkeS. Open, randomized, controlled clinical trial of Boswellia serrata extract as compared to valdecoxib in osteoarthritis of knee.Int. J. Pharmacol.200739127
    [Google Scholar]
  126. SinghA. DeshpandeP. GogiaN. Exploring the efficacy of natural products in alleviating Alzheimer’s disease.Neural Regen. Res.20191481321132910.4103/1673‑5374.25350930964049
    [Google Scholar]
  127. CarnicellaS. PainL. OberlingP. Cholinergic effects on fear conditioning II: Nicotinic and muscarinic modulations of atropine-induced disruption of the degraded contingency effect.Psychopharmacology (Berl.)2005178453354110.1007/s00213‑004‑2101‑615696332
    [Google Scholar]
/content/journals/cis/10.2174/012210299X309791240914125655
Loading
/content/journals/cis/10.2174/012210299X309791240914125655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test