Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Mitapivat (AG-348) is a novel, first-in-class oral small-molecule allosteric activator of the pyruvate kinase enzyme. Mitapivat has been shown to significantly upregulate both wild-type and numerous mutant forms of erythrocyte pyruvate kinase (PKR), increasing adenosine triphosphate (ATP) production and reducing levels of 2,3-diphosphoglycerate. Given this mechanism, mitapivat has been evaluated in clinical trials in a wide range of hereditary hemolytic anaemias, including pyruvate kinase deficiency (PKD), sickle cell disease, and thalassemia.

The technique entails searching numerous search engines, such as PubMed, Science Direct, and Sci Finder, for relevant citations to the current subject matter. This is done in order to obtain the data that is required. In relation to medicine, mitapivat has been examined for its ability to cure a wide variety of inherited haemolytic anaemias in clinical investigations. Some examples of these conditions include pyruvate kinase deficiency (PKD), sickle cell disease, and thalassemias.

It has been demonstrated that mitapivat is both safe and effective in treating adults with PKD in two phases III clinical trials, and the development of the medicine is very close to being finished. Based on these findings, mitapivat may end up becoming the very first medication in the history of the world to receive regulatory approval.

Allosteric activator of pyruvate kinase mitapivat has shown promise in treating various hereditary hemolytic anemias, including sickle cell disease, PKD, and alpha- and beta-thalassemia.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X261752230922114714
2025-01-01
2025-09-25
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X261752.html?itemId=/content/journals/cis/10.2174/012210299X261752230922114714&mimeType=html&fmt=ahah

References

  1. Al-SamkariH. van BeersE.J. Mitapivat, a novel pyruvate kinase activator, for the treatment of hereditary hemolytic anemias.Ther. Adv. Hematol.2021122040620721106607010.1177/2040620721106607034987744
    [Google Scholar]
  2. SizemoreJ GuoL MirmehrabiM SuY Crystalline forms of n-(4-(4-(cyclopropylmethyl) piperazine-1-carbonyl)phenyl)quinoline-8-sulfonamide.WO2019104134A12019
  3. PerezE.A. WeilbaecherK. Aromatase inhibitors and bone loss.Oncology20062091029103916986348
    [Google Scholar]
  4. MatteA. FedertiE. KungC. KosinskiP.A. NarayanaswamyR. RussoR. FedericoG. CarlomagnoF. DesbatsM.A. SalviatiL. LeboeufC. ValentiM.T. TurriniF. JaninA. YuS. BeneduceE. RonseauxS. IatcenkoI. DangL. GanzT. JungC.L. IolasconA. BrugnaraC. De FranceschiL. The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a β-thalassemia mouse model.J. Clin. Invest.202113110e14420610.1172/JCI14420633822774
    [Google Scholar]
  5. RabM.A.E. Van OirschotB.A. KosinskiP.A. HixonJ. JohnsonK. ChubukovV. DangL. PasterkampG. Van StraatenS. Van SolingeW.W. Van BeersE.J. KungC. Van WijkR. AG-348 (Mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and ATP levels over a broad range of PKLR genotypes.Haematologica2020106123824910.3324/haematol.2019.23886531974203
    [Google Scholar]
  6. BianchiP. FermoE. Molecular heterogeneity of pyruvate kinase deficiency.Haematologica202010592218222810.3324/haematol.2019.24114133054047
    [Google Scholar]
  7. Al-SamkariH. Van BeersE.J. KuoK.H.M. BarcelliniW. BianchiP. GlenthøjA. Del Mar Mañú PereiraM. Van WijkR. GladerB. GraceR.F. The variable manifestations of disease in pyruvate kinase deficiency and their management.Haematologica202010592229223910.3324/haematol.2019.24084633054048
    [Google Scholar]
  8. SecrestM.H. StormM. CarringtonC. CassoD. GilroyK. PladsonL. BoscoeA.N. Prevalence of pyruvate kinase deficiency: A systematic literature review.Eur. J. Haematol.2020105217318410.1111/ejh.1342432279356
    [Google Scholar]
  9. BeutlerE. GelbartT. Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population.Blood200095113585358810.1182/blood.V95.11.358510828047
    [Google Scholar]
  10. BianchiP. FermoE. GladerB. KannoH. AgarwalA. BarcelliniW. EberS. HoyerJ.D. KuterD.J. MaiaT.M. Mañu-PereiraM.M. KalfaT.A. PissardS. SegoviaJ.C. van BeersE. GallagherP.G. ReesD.C. van WijkR. Addressing the diagnostic gaps in pyruvate kinase deficiency: Consensus recommendations on the diagnosis of pyruvate kinase deficiency.Am. J. Hematol.201994114916110.1002/ajh.2532530358897
    [Google Scholar]
  11. GraceR.F. RoseC. LaytonD.M. GalactérosF. BarcelliniW. MortonD.H. van BeersE.J. YaishH. RavindranathY. KuoK.H.M. ShethS. KwiatkowskiJ.L. BarbierA.J. BodieS. SilverB. HuaL. KungC. HawkinsP. JouvinM.H. BowdenC. GladerB. Safety and efficacy of mitapivat in pyruvate kinase deficiency.N. Engl. J. Med.20193811093394410.1056/NEJMoa190267831483964
    [Google Scholar]
  12. RabM.A.E. BosJ. van OirschotB.A. van StraatenS. KosinskiP.A. ChubukovV. KimH. MangusH. SchutgensR.E.G. PasterkampG. DangL. KungC. van BeersE.J. van WijkR. Decreased activity and stability of pyruvate kinase in sickle cell disease: A novel target for mitapivat therapy.Blood2021137212997300110.1182/blood.202000863533690814
    [Google Scholar]
  13. KungC. HixonJ. KosinskiP.A. CianchettaG. HistenG. ChenY. HillC. GrossS. SiY. JohnsonK. DeLaBarreB. LuoZ. GuZ. YaoG. TangH. FangC. XuY. LvX. BillerS. SuS.S.M. YangH. Popovici-MullerJ. SalituroF. SilvermanL. DangL. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency.Blood2017130111347135610.1182/blood‑2016‑11‑75352528760888
    [Google Scholar]
  14. KungC. HixonJ. ChoeS. MarksK. GrossS. MurphyE. DeLaBarreB. CianchettaG. SethumadhavanS. WangX. YanS. GaoY. FangC. WeiW. JiangF. WangS. QianK. SaundersJ. DriggersE. WooH.K. KuniiK. MurrayS. YangH. YenK. LiuW. CantleyL.C. Vander HeidenM.G. SuS.M. JinS. SalituroF.G. DangL. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy.Chem. Biol.20121991187119810.1016/j.chembiol.2012.07.02122999886
    [Google Scholar]
  15. BoscoeA.N. YanY. HedgemanE. van BeersE.J. Al-SamkariH. BarcelliniW. EberS.W. GladerB. YaishH.M. ChonatS. SharmaM. KuoK.H.M. NeufeldE.J. WangH. VerhovsekM. ShethS. GraceR.F. Comorbidities and complications in adults with pyruvate kinase deficiency.Eur. J. Haematol.2021106448449210.1111/ejh.1357233370479
    [Google Scholar]
  16. van StraatenS. BieringsM. BianchiP. AkiyoshiK. KannoH. SerraI.B. ChenJ. HuangX. van BeersE. EkwattanakitS. GüngörT. KorsW.A. SmiersF. RaymakersR. YanezL. SevillaJ. van SolingeW. SegoviaJ.C. van WijkR. Worldwide study of hematopoietic allogeneic stem cell transplantation in pyruvate kinase deficiency.Haematologica20181032e82e8610.3324/haematol.2017.17785729242305
    [Google Scholar]
  17. Palsson-McDermottE.M. CurtisA.M. GoelG. LauterbachM.A.R. SheedyF.J. GleesonL.E. van den BoschM.W.M. QuinnS.R. Domingo-FernandezR. JohnstonD.G.W. JiangJ. IsraelsenW.J. KeaneJ. ThomasC. ClishC. Vander HeidenM. XavierR.J. O’NeillL.A.J. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages.Cell Metab.2015211658010.1016/j.cmet.2014.12.00525565206
    [Google Scholar]
  18. OlivieriO. De FranceschiL. CapelliniM.D. GirelliD. CorrocherR. BrugnaraC. Oxidative damage and erythrocyte membrane transport abnormalities in thalassemias.Blood199484131532010.1182/blood.V84.1.315.3158018927
    [Google Scholar]
  19. MatteA. De FalcoL. IolasconA. MohandasN. AnX. SicilianoA. LeboeufC. JaninA. BrunoM. ChoiS.Y. KimD.W. De FranceschiL. The interplay between peroxiredoxin-2 and nuclear factor-erythroid 2 is important in limiting oxidative mediated dysfunction in β-thalassemic erythropoiesis.Antioxid. Redox Signal.201523161284129710.1089/ars.2014.623726058667
    [Google Scholar]
  20. LuoW. HuH. ChangR. ZhongJ. KnabelM. O’MeallyR. ColeR.N. PandeyA. SemenzaG.L. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1.Cell2011145573274410.1016/j.cell.2011.03.05421620138
    [Google Scholar]
  21. RundD. RachmilewitzE. β-Thalassemia.N. Engl. J. Med.2005353111135114610.1056/NEJMra05043616162884
    [Google Scholar]
  22. HowardJ. Sickle cell disease: When and how to transfuse.Hematology (Am. Soc. Hematol. Educ. Program)20162016162563110.1182/asheducation‑2016.1.62527913538
    [Google Scholar]
  23. MusallamK.M. CappelliniM.D. TaherA.T. Variations in hemoglobin level and morbidity burden in non-transfusion-dependent β-thalassemia.Ann. Hematol.202110071903190510.1007/s00277‑021‑04456‑533575946
    [Google Scholar]
  24. Marengo-RoweA.J. The thalassemias and related disorders.Proc. Bayl. Univ. Med. Cent.2007201273110.1080/08998280.2007.1192823017256039
    [Google Scholar]
  25. SalekS. BoscoeA.N. PiantedosiS. EganS. EvansC.J. WellsT. CohenJ. KlaassenR.J. GraceR. StormM. Development of the pyruvate kinase deficiency diary and pyruvate kinase deficiency impact assessment: Disease-specific assessments.Eur. J. Haematol.2020104542743410.1111/ejh.1337631880847
    [Google Scholar]
  26. CançadoR.D. Pyruvate kinase deficiency: Novel mutations and a better understanding of the genotype-to-phenotype correlation in Brazilian patients.Rev. Bras. Hematol. Hemoter.20184011229519365
    [Google Scholar]
  27. LesmanaH. DyerL. LiX. DentonJ. GriffithsJ. ChonatS. SeuK.G. HeeneyM.M. ZhangK. HopkinR.J. KalfaT.A. Alu element insertion in PKLR gene as a novel cause of pyruvate kinase deficiency in Middle Eastern patients.Hum. Mutat.201839338939310.1002/humu.2339229288557
    [Google Scholar]
  28. BubpJ. JenM. MatuszewskiK. Caring for glucose-6-phosphate dehydrogenase (G6PD)-deficient patients: Implications for pharmacy.P&T201540957257426417175
    [Google Scholar]
  29. GraceR.F. ZanellaA. NeufeldE.J. MortonD.H. EberS. YaishH. GladerB. Erythrocyte pyruvate kinase deficiency: 2015 status report.Am. J. Hematol.201590982583010.1002/ajh.2408826087744
    [Google Scholar]
  30. SvidnickiM.C.C.M. SantosA. FernandezJ.A.A. YokoyamaA.P.H. MagalhãesI.Q. PinheiroV.R.P. BrandaliseS.R. SilveiraP.A.A. CostaF.F. SaadS.T.O. Novel mutations associated with pyruvate kinase deficiency in Brazil.Rev. Bras. Hematol. Hemoter.201840151129519373
    [Google Scholar]
  31. ValentineW.N. TanakaK.R. MiwaS. A specific erythrocyte glycolytic enzyme defect (pyruvate kinase) in three subjects with congenital non-spherocytic hemolytic anemia.Trans. Assoc. Am. Physicians19617410011013924348
    [Google Scholar]
  32. NathanD.G. OskiF.A. MillerD.R. GardnerF.H. Life-span and organ sequestration of the red cells in pyruvate kinase deficiency.N. Engl. J. Med.19682782738110.1056/NEJM1968011127802035634483
    [Google Scholar]
  33. GraceR.F. Mark LaytonD. BarcelliniW. How we manage patients with pyruvate kinase deficiency.Br. J. Haematol.2019184572173410.1111/bjh.1575830681718
    [Google Scholar]
  34. KeittA.S. Pyruvate kinase deficiency and related disorders of red cell glycolysis.Am. J. Med.196641576278510.1016/0002‑9343(66)90036‑2
    [Google Scholar]
  35. TanakaK.R. PagliaD.E. Pyruvate kinase deficiency.Semin. Hematol.1971843673964942588
    [Google Scholar]
  36. Al-SamkariH. BeersE.J. MortonD.H. BarcelliniW. EberS.W. GladerB. YaishH.M. ChonatS. KuoK.H.M. KollmarN. DespotovicJ.M. PospíšilováD. KnollC.M. KwiatkowskiJ.L. PastoreY.D. ThompsonA.A. WlodarskiM.W. RavindranathY. RothmanJ.A. WangH. HolzhauerS. BreakeyV.R. VerhovsekM.M. KunzJ. ShethS. SharmaM. RoseM.J. BradeenH.A. McNaullM.N. AddonizioK. Al-SayeghH. LondonW.B. GraceR.F. Characterization of the severe phenotype of pyruvate kinase deficiency.Am. J. Hematol.2020951010.1002/ajh.2592632619047
    [Google Scholar]
  37. ChouR. DeLougheryT.G. Recurrent thromboembolic disease following splenectomy for pyruvate kinase deficiency.Am. J. Hematol.200167319719910.1002/ajh.110711391719
    [Google Scholar]
  38. ZahidM.F. BainsA.P.S. Rapidly fatal Klebsiella pneumoniae sepsis in a patient with pyruvate kinase deficiency and asplenia.Blood201713026290610.1182/blood‑2017‑08‑80384129284613
    [Google Scholar]
  39. MarshallS.R. SaundersP.W.G. HamiltonP.J. TaylorP.R.A. The dangers of iron overload in pyruvate kinase deficiency.Br. J. Haematol.200312061090109110.1046/j.1365‑2141.2003.04208_2.x12648084
    [Google Scholar]
  40. KoralkovaP. van SolingeW.W. van WijkR. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia - pathophysiology, clinical aspects, and laboratory diagnosis.Int. J. Lab. Hematol.201436338839710.1111/ijlh.1222324750686
    [Google Scholar]
/content/journals/cis/10.2174/012210299X261752230922114714
Loading
/content/journals/cis/10.2174/012210299X261752230922114714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test