Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2210-299X
  • E-ISSN: 2210-3007

Abstract

Introduction

Poor solubility is a common challenge in pharmaceuticals, hindering oral bioavailability. High throughput screening has led to an increase in poorly soluble drug candidates. Enhancing solubility and dissolution rates is crucial for drug development. Various methods, including solid dispersion, aim to improve solubility. A solid dispersion formulation process involves dispersing one or more active chemicals in a solid state within an inert carrier or matrix. It can be made using solvent, melting, or melting-solvent procedures, among other techniques. By increasing the surface area and dispersibility of poorly soluble pharmaceuticals, this method improves their solubility and rate of dissolution, ultimately leading to an improvement in bioavailability.

Background

Nifedipine solid dispersion emerged in the late 1970s to address its poor solubility and erratic bioavailability for cardiovascular treatment. Researchers explored methods like fusion, solvent evaporation, and melt extrusion to enhance its solubility and dissolution rate. Over the years, these efforts resulted in commercial products, highlighting the importance of solid dispersion in improving drug delivery and patient outcomes for nifedipine therapy.

Aim

The aim of this work is to use the surface solid dispersion approach to increase the solubility of nifedipine.

Objective

The objective of the study is to develop surface solid dispersion formulations of nifedipine, evaluate their physicochemical properties, assess solubility enhancement, analyze dissolution behavior and stability, and determine the potential of this technique to enhance the pharmaceutical performance of nifedipine.

Materials and Methods

Nifedipine was dissolved in the solvent-ethanol, and a carrier was then added at various drug-to-carrier ratios. The mixture was allowed to sit for an hour before the solvent was evaporated on a water bath at 40-42ºC with occasional stirring. The resulting dried mass was pulverized, sieved, and then dried further at 40ºC for 3 hours. For further study the powder was stored in desiccators.

Results

Formulation S3 shows better increase in the solubility by solid dispersion technique, increases solubility from 0.002576 ± 0.00013 to 0.04379 ± 0.00013. Dissolution profile data found to be improved from 98.45 ± 0.41 to 99.57 ± 0.088%.

Conclusion

This study explores the challenge of poor solubility in pharmaceutical formulation, focusing on Nifedipine. Surface solid dispersions (SSDs) are investigated as a solution, with various polymers showing promise in enhancing solubility. SSDs, particularly with sodium starch glycolate (SSG) as a carrier, significantly improve solubility, as confirmed by saturation solubility studies. Evaluation indicates SSD efficacy, with S3 emerging as a promising formulation. This study underscores the potential of SSD technology in addressing solubility challenges and improving drug bioavailability.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cis/10.2174/012210299X338910241218114154
2025-01-01
2025-10-18
Loading full text...

Full text loading...

/deliver/fulltext/cis/3/1/CIS-3-E2210299X338910.html?itemId=/content/journals/cis/10.2174/012210299X338910241218114154&mimeType=html&fmt=ahah

References

  1. MooreM.D. WildfongP.L.D. Wildfong. Aqueous solubility enhancement through engineering of binary solid composites- Pharmaceutical applications.J. Pharm. Innov.200941364910.1007/s12247‑009‑9053‑7
    [Google Scholar]
  2. LimaA.A. SobrinhoJ.L. CorreaR.A. RolimNeto, Pedro J. Alternative technologies to improve solubility of poorly water-soluble drugs.Lat. Am. J. Pharm.2008275789797
    [Google Scholar]
  3. GoodD. NairR. Solubility-advantage of Pharmaceutical Cocrystals.Cryst. Growth Des.201616844394449
    [Google Scholar]
  4. SareenS. JosephL. MathewG. Improvement in solubility of poor water-soluble drugs by solid dispersion.Int. J. Pharm. Investig.201221121710.4103/2230‑973X.9692123071955
    [Google Scholar]
  5. TiwariR. TiwariG. SrivastavaB. RaiA. Solid Dispersions: An Overview To Modify Bioavailability Of Poorly Water Soluble Drugs.Int. J. Pharm. Tech. Res.20091413381349
    [Google Scholar]
  6. AlexanianC. PapademouH. VertzoniM. ArchontakiH. ValsamiG. Effect of pH and water-soluble polymers on the aqueous solubility of nimesulide in the absence and presence of β-cyclodextrin derivatives.J. Pharm. Pharmacol.200860111433143910.1211/jpp.60.11.000318957163
    [Google Scholar]
  7. PatelK. ShahS. PatelJ. Solid dispersion technology as a formulation strategy for the fabrication of modified release dosage forms: A comprehensive review.Daru202230116518910.1007/s40199‑022‑00440‑035437630
    [Google Scholar]
  8. HuangY. ZhaoX. ZuY. WangL. DengY. WuM. WangH. Enhanced solubility and bioavailability of apigenin via preparation of solid dispersions of mesoporous silica nanoparticles.Iran. J. Pharm. Res.201918116818231089353
    [Google Scholar]
  9. ModiA. TayadeP. Enhancement of dissolution profile by solid dispersion (kneading) technique.AAPS PharmSciTech200673E87E9210.1208/pt07036817025249
    [Google Scholar]
  10. TrivediJ.S. WellsM.L. Solubilization using cosolvent approach.Water- Insoluble Drug FormulationCRC Press2000141168
    [Google Scholar]
  11. HabibM. Pharmaceutical Solid Dispersion TechnologyTechnomic Publishing company, Inc2001
    [Google Scholar]
  12. GaberD.A. AlnwiserM.A. AlotaibiN.L. AlmutairiR.A. AlsaeedS.S. AbdounS.A. AlsubaiyelA.M. Design and optimization of ganciclovir solid dispersion for improving its bioavailability.Drug Deliv.20222911836184710.1080/10717544.2022.208372335674640
    [Google Scholar]
  13. ZhangX. XingH. ZhaoY. MaZ. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs.Pharmaceutics20181037410.3390/pharmaceutics1003007429937483
    [Google Scholar]
  14. BhujbalS.V. MitraB. JainU. GongY. AgrawalA. KarkiS. TaylorL.S. KumarS. Tony ZhouQ. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies.Acta Pharm. Sin. B20211182505253610.1016/j.apsb.2021.05.01434522596
    [Google Scholar]
  15. PatelB.B. PatelJ.K. ChakrabortyS. Solubility enhancement using poly(meth)acrylate based solid dispersions.Powder Technol.2015270273810.1016/j.powtec.2014.10.006
    [Google Scholar]
  16. GawaiS.K. DeshmaneS.V. PurohitR.N. BiyaniK.R. In vivo-in vitro evaluation of solid dispersion containing ibuprofen.Am. J. Adv. Drug Deliv.2013116672
    [Google Scholar]
  17. LeunerC. DressmanJ. Improving drug solubility for oral delivery using solid dispersions.Eur. J. Pharm. Biopharm.2000501476010.1016/S0939‑6411(00)00076‑X10840192
    [Google Scholar]
  18. DeshmukhA.S. Recent advances in self emulsifying drug delivery system.Int. J. Pharm. Sci. Nanotechnol.2015812693269710.37285/ijpsn.2015.8.1.1
    [Google Scholar]
  19. Indian Pharmacopoeia 2007The Indian Pharmacopoeia Commission Ghaziabad2007Available from:https://www.pharmaresearchlibrary.com/wp-content/uploads/2013/03/IP2007-Vol-1.pdf (accessed on 18-11-2024).
    [Google Scholar]
  20. QiuY. ChenY. ZangG. Developing Solid Oral Dosage Form.Pharmaceutical Theory & PracticeElsevier2011327
    [Google Scholar]
  21. ShahT.J. AminA.F. ParikhJ.R. ParikhR.H. Process optimization and characterization of poloxamer solid dispersions of a poorly water-soluble drug.AAPS PharmSciTech200782E18E2410.1208/pt080202917622107
    [Google Scholar]
  22. BhosaleM.T. DigheP.R. DeshmukhA.S. Synthesis, characterization and biological activity of 4-[2-hydroxy-5-(aryl-diazenyl) phenyl]-6-(aryl) pyrimidine derivatives.Sun Text Rev. Pharmaceut. Sci.202341122
    [Google Scholar]
  23. KolheS. ChipadeM. ChaudhariP.D. Solubility and solubilization techniques-a review.Int. J. Pharmaceut. Chem. Sci.201211129150
    [Google Scholar]
  24. SammourO.A. HammadM.A. MegrabN.A. ZidanA.S. Formulation and optimization of mouth dissolve tablets containing rofecoxib solid dispersion.AAPS PharmSciTech200672E167E17510.1208/pt07025516796372
    [Google Scholar]
  25. MaulviF.A. DalwadiS.J. ThakkarV.T. SoniT.G. GohelM.C. GandhiT.R. Improvement of dissolution rate of aceclofenac by solid dispersion technique.Powder Technol.20112071-3475410.1016/j.powtec.2010.10.009
    [Google Scholar]
  26. BarveA.V. MandeK.S. DeshmukhA.S. RodeR.B. MahajanV.R. Solid dispersion: A novel approach for solubility and bioavailability enhancement of poorly water-soluble drugs.Int. J. Res. Pharm. Nano Sci.202093106117
    [Google Scholar]
  27. TubtimsriS. WeerapolY. Improvement in solubility and absorption of nifedipine using solid solution: Correlations between surface free energy and drug dissolution.Polymers (Basel)20211317296310.3390/polym1317296334503003
    [Google Scholar]
  28. ChaudhariP. Current trends in solid dispersions techniques.Pharm. Rev.2006413
    [Google Scholar]
  29. MekaA. PolaS. TupallyK. AbbarajuP. Development, Evaluation and Characterization of surface solid dispersion for solubility and dissolution enhancement of Irbesartan.Int. J. Drug Develop. Res.201241263273
    [Google Scholar]
  30. VippaguntaS.R. MaulK.A. TallavajhalaS. GrantD.J.W. Solid-state characterization of nifedipine solid dispersions.Int. J. Pharm.20022361-211112310.1016/S0378‑5173(02)00019‑411891075
    [Google Scholar]
  31. Rama, Formulation and evaluation of piroxicam solid dispersion.Int. J. Pharm. Sci. Health Care20014514
    [Google Scholar]
  32. LalithaY. LakshmiP. Enhancement of dissolution of nifedipine by surface solid dispersion technique.Int. J. Pharm. Pharm. Sci.2011334146
    [Google Scholar]
  33. HiewT.N. ZemlyanovD.Y. TaylorL.S. Balancing solid-state stability and dissolution performance of lumefantrine amorphous solid dispersions: the role of polymer choice and drug–polymer interactions.Mol. Pharm.202219239241310.1021/acs.molpharmaceut.1c0048134494842
    [Google Scholar]
  34. AgrawalS. GaikwadS.N. PatelR.I. ShindeL.E. DeshmukhA. Synthesis and formulation development of phenytoin by inclusion complexation.Indian J. Pharm. Sci.2021835955962
    [Google Scholar]
  35. MadanJ. AvachatA. BanodeS. DangiM. Formulation and evaluation of a bilayer floating drug delivery system of nizatidine for nocturnal acid breakthrough.Ars. Pharm.2012532914
    [Google Scholar]
  36. GurunathS. Pradeep KumarS. BasavarajN.K. PatilP.A. Amorphous solid dispersion method for improving oral bioavailability of poorly water-soluble drugs.J. Pharm. Res.20136447648010.1016/j.jopr.2013.04.008
    [Google Scholar]
  37. ShammaR.N. BashaM. Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation.Powder Technol.201323740641410.1016/j.powtec.2012.12.038
    [Google Scholar]
  38. RoweR. SheskeyP. Handbook of pharmaceutical excipients.Pharmaceutical Press2009
    [Google Scholar]
  39. PatelT.B. PatelL.D. PatelT.R. SuhagiaB.N. Artificial neural network as tool for quality by design in formulation development of solid dispersion of fenofibrate.Bull. Pharm. Res.2015512027
    [Google Scholar]
  40. JagdaleS.C. JadhavV.N. ChabukswarA.R. KuchekarB.S. Solubility enhancement, physicochemical characterization and formulation of fast-dissolving tablet of nifedipine-betacyclodextrin complexes.Braz. J. Pharm. Sci.201248113114510.1590/S1984‑82502012000100015
    [Google Scholar]
  41. ShastriN. RamakrishnaS. SadanandamM. Surface solid dispersion of glimepiride for enhancement of dissolution rate.Int. J. Pharm. Tech. Res.200913822831
    [Google Scholar]
  42. KumarL. SuhasB.S. PaiG.K. VermaR. Determination of saturated solubility of naproxen using UV visible spectrophotometer.Res. J. Pharm. Technol.20158782582810.5958/0974‑360X.2015.00134.1
    [Google Scholar]
  43. Arun RajR. HarindranJ. Formulation and evaluation of carvedilol solid dispersion tablets for solubility enhancement.Eur J Biomed Pharm Sci201742337348
    [Google Scholar]
  44. SubramanyamC. Text book of Physical pharmaceutics.SCRIBD2001
    [Google Scholar]
  45. BarmpalexisP. KachrimanisK. GeorgarakisE. Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming.Eur. J. Pharm. Biopharm.201177112213110.1016/j.ejpb.2010.09.01720934511
    [Google Scholar]
  46. FujiiM. OkadaH. ShibataY. TeramachiH. KondohM. WatanabeY. Preparation, characterization, and tableting of a solid dispersion of indomethacin with crospovidone.Int. J. Pharm.20052931-214515310.1016/j.ijpharm.2004.12.01815778052
    [Google Scholar]
  47. KogermannK. PenkinaA. PredbannikovaK. JeegerK. VeskiP. RantanenJ. NaelapääK. Dissolution testing of amorphous solid dispersions.Int. J. Pharm.20134441-2404610.1016/j.ijpharm.2013.01.04223370435
    [Google Scholar]
  48. WinckJ. DaalmannM. BerghausA. ThommesM. In-line monitoring of solid dispersion preparation in small scale extrusion based on UV–vis spectroscopy.Pharm. Dev. Technol.202227101009101510.1080/10837450.2022.214488736331240
    [Google Scholar]
  49. MurtiY.B. HartiniY.S. HinrichsW.L.J. FrijlinkH.W. SetyaningsihD. UV-Vis spectroscopy to enable determination of the dissolution behavior of solid dispersions containing curcumin and piperine.J. Young Pharm.2018111263010.5530/jyp.2019.11.6
    [Google Scholar]
  50. MaggiL. Ochoa MachisteE. FasaniE. AlbiniA. SegaleL. ConteU. Photostability of extended-release matrix formulations.Eur. J. Pharm. Biopharm.20035519910510.1016/S0939‑6411(02)00126‑112551710
    [Google Scholar]
  51. BikiarisD. PapageorgiouG.Z. StergiouA. PavlidouE. KaravasE. KanazeF. GeorgarakisM. Physicochemical studies on solid dispersions of poorly water-soluble drugs.Thermochim. Acta20054391-2586710.1016/j.tca.2005.09.011
    [Google Scholar]
  52. Barzegar-jalaliM. GhanbarzadehS. AdibkiaK. ValizadehH. BibakS. MohammadiG. Siahi-ShadbadM. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers.Bioimpacts20174314114810.15171/bi.2014.00725337467
    [Google Scholar]
  53. KimihikoY. YasuhideT. Water content using Karl-Fisher aquametry and loss on drying determinations using thermogravimeter for pesticide standard materials.J. Health Sci.200450214214710.1248/jhs.50.142
    [Google Scholar]
  54. QuirinoD.F. LimaN.S.A. PalmaM.N.N. FrancoM.O. DetmannE. Evaluation of heating times for loss on drying at 105°C for estimation of laboratory dry matter in animal feeds.J. AOAC Int.2023106226126610.1093/jaoacint/qsad00436610993
    [Google Scholar]
  55. HabibM. Pharmaceutical Solid Dispersion TechnologyTechnomic Publishing company, Inc2001
    [Google Scholar]
/content/journals/cis/10.2174/012210299X338910241218114154
Loading
/content/journals/cis/10.2174/012210299X338910241218114154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test