Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Wastewater management has emerged as a critical global challenge in the contemporary era. Several contaminants, like textile dyes, heavy metals, non-metals, various organic compounds, ., are discharged into water sources, causing a significant threat to the ecosystem. With the limited availability of water resources, it is required to adopt green and sustainable wastewater treatment methods aligning with the United Nations Sustainable Development Goals (SDGs) 6, 7, and 13. This review paper draws insights on Hydroxyapatite (HAP), a versatile sustainable material derived from waste sources, both biological and non-biological sources, as a promising candidate for sustainable wastewater treatment. The study described the innovations using wastes for the synthesis of HAP by diverse methods like wet, dry, high-temperature, and hybrid methods, offering flexibility and adaptability in tailoring HAP material to particular applications. Additionally, the potential to fabricate HAP in various nanoscale structures, like nanoribbons, nanoflakes, and nanocomposites, further exalts its ability for effective contaminant removal. Cadmium and Lead are the key heavy metals of significant interest, have detrimental effects on various environmental factors, and their presence necessitates effective removal strategies. HAP, with its innate properties like high stability, swift kinetics, good adsorption capacity, and availability, has emerged as a promising waste-derived adsorbent for the removal of hazardous Cd and Lead ions. This review paper provides insights on a comprehensive overview of research works on HAP-based wastewater treatment, extending its potential to address the issue of heavy metal contamination and highlighting the universal principle ‘One Health’- the health of the ecosystem and its parts.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461363673250311134721
2025-03-24
2025-12-09
Loading full text...

Full text loading...

References

  1. SinghA. SinghR. Impact and assessment of heavy metal toxicity on water quality, edible fishes and sediments in lakes: A review.Trends Biosci.201710815511560
    [Google Scholar]
  2. ManisalidisI. StavropoulouE. StavropoulosA. BezirtzoglouE. Environmental and health impacts of air pollution: A review.Front. Public Health202081410.3389/fpubh.2020.00014
    [Google Scholar]
  3. SangeethaK. VidhyaG. VasugiG. GirijaE.K. Lead and cadmium removal from single and binary metal ion solution by novel hydroxyapatite/alginate/gelatin nanocomposites.J. Environ. Chem. Eng.2018611118112610.1016/j.jece.2018.01.018
    [Google Scholar]
  4. Landin-SandovalV.J. Mendoza-CastilloD.I. Bonilla-PetricioletA. Aguayo-VillarrealI.A. Reynel-AvilaH.E. Gonzalez-PonceH.A. Valorization of agri-food industry wastes to prepare adsorbents for heavy metal removal from water.J. Environ. Chem. Eng.20208510406710.1016/j.jece.2020.104067
    [Google Scholar]
  5. NúñezD. ElguetaE. VaraprasadK. OyarzúnP. Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes.Mater. Lett.2018230646810.1016/j.matlet.2018.07.077
    [Google Scholar]
  6. HaiderA. HaiderS. HanS.S. KangI.K. Recent advances in the synthesis, functionalization and biomedical applications of hydroxyapatite: A review.RSC Adv201777442745810.1039/C6RA26124H
    [Google Scholar]
  7. HuangT. SongD. YangC. ZhangS. Nonthermal plasma-irradiated polyvalent ferromanganese binary hydro(oxide) for the removal of uranyl ions from wastewater.Environ. Res.202321711491110.1016/j.envres.2022.11491136427641
    [Google Scholar]
  8. HuangT. ZhouL. LiuL. XiaM. Ultrasound-enhanced electrokinetic remediation for removal of Zn, Pb, Cu and Cd in municipal solid waste incineration fly ashes.Waste Manag.20187522623510.1016/j.wasman.2018.01.02929395736
    [Google Scholar]
  9. AliH. KhanE. SajadM.A. Phytoremediation of heavy metals-concepts and applications.Chemosphere201391786988110.1016/j.chemosphere.2013.01.075
    [Google Scholar]
  10. BriffaJ. SinagraE. BlundellR. Heavy metal pollution in the environment and their toxicological effects on humans.Heliyon202069e0469110.1016/j.heliyon.2020.e04691
    [Google Scholar]
  11. PiwowarskaD. KiedrzyńskaE. JaszczyszynK. A global perspective on the nature and fate of heavy metals polluting water ecosystems, and their impact and remediation.542024191436145810.1080/10643389.2024.2317112
    [Google Scholar]
  12. VaradavenkatesanT. VinayagamR. PaiS. KathirvelB. PugazhendhiA. SelvarajR. Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings.Prog. Org. Coat.202115110605610.1016/j.porgcoat.2020.106056
    [Google Scholar]
  13. IbrahimM. LabakiM. GiraudonJ.M. LamonierJ.F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review.J. Hazard. Mater.202038312113910.1016/j.jhazmat.2019.121139
    [Google Scholar]
  14. HassanainM. Abdel-GhafarH.M. HamoudaH.I. El-HosinyF.I. EwaisE.M.M. Enhanced antimicrobial efficacy of hydroxyapatite-based composites for healthcare applications.Sci. Rep.20241412642610.1038/s41598‑024‑76088‑439488578
    [Google Scholar]
  15. PiccirilloC. CastroP.M.L. Calcium hydroxyapatite-based photocatalysts for environment remediation: Characteristics, performances and future perspectives.J. Environ. Manage.2017193799110.1016/j.jenvman.2017.01.071
    [Google Scholar]
  16. LinK. Structure and properties of hydroxyapatite for biomedical applications.Hydroxyapatite (Hap) for Biomedical Applications.CambridgeWoodhead Publishing2015319
    [Google Scholar]
  17. UskokovićV. UskokovićD.P. Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents.J. Biomed. Mater. Res. B Appl. Biomater.201196115219110.1002/jbm.b.31746
    [Google Scholar]
  18. KhatunR. Water pollution: Causes, consequences, prevention method and role of WBPHED with special reference from murshidabad district Int.J. Sci. Res. Publ.201778
    [Google Scholar]
  19. CatrosS. GuillemotF. LebraudE. ChanseauC. PerezS. BareilleR. AmédéeJ. FricainJ.C. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature.IRBM201031422623310.1016/j.irbm.2010.04.002
    [Google Scholar]
  20. KalbarczykM. SzcześA. Microwave assistant synthesis of calcium phosphate minerals using hen’s eggshells as a calcium source.Physicochem. Probl. Miner. Proces.202056616717710.37190/ppmp/127930
    [Google Scholar]
  21. Yelten-YilmazA. YilmazS. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders.Ceram. Int.20184489703971010.1016/j.ceramint.2018.02.201
    [Google Scholar]
  22. BanerjeeS. BagchiB. BhandaryS. KoolA. Amin HoqueN. ThakurP. DasS. A facile vacuum assisted synthesis of nanoparticle impregnated hydroxyapatite composites having excellent antimicrobial properties and biocompatibility.Ceram. Int.20184411066107710.1016/j.ceramint.2017.10.051
    [Google Scholar]
  23. PrakashM. RajanH.K. ChandraprabhaM.N. ShettyS. MukherjeeT. Girish KumarS. Recent developments in green synthesis of hydroxyapatite nanocomposites: Relevance to biomedical and environmental applications.Green Chem. Lett. Rev.2024171242240910.1080/17518253.2024.2422409
    [Google Scholar]
  24. MahmoudM.M. Sustainable and environmentally friendly microwave synthesis of nano-hydroxyapatite from decarbonized eggshells.Materials2024178183210.3390/ma1708183238673189
    [Google Scholar]
  25. AwanA.A. LiaqatU. HussainZ. The effect of pH on the morphological transformation of nanocrystalline hydroxyapatite during wet chemical synthesis.J. Korean Ceram. Soc.20236061010102710.1007/s43207‑023‑00324‑2
    [Google Scholar]
  26. KramerE. PodurgielJ. WeiM. Control of hydroxyapatite nanoparticle morphology using wet synthesis techniques: Reactant addition rate effects.Mater. Lett.201413114514710.1016/j.matlet.2014.05.105
    [Google Scholar]
  27. MaG. Three common preparation methods of hydroxyapatite Conf.Ser.: Mater. Sci. Eng201968803305710.1088/1757‑899X/688/3/033057
    [Google Scholar]
  28. ChoiG. ChoiA.H. EvansL.A. AkyolS. Ben-NissanB. A review: Recent advances in sol‐gel‐derived hydroxyapatite nanocoatings for clinical applications.J. Am. Ceram. Soc.2020103105442545310.1111/jace.17118
    [Google Scholar]
  29. ChahkandiM. Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nano-particle.Mater. Chem. Phys.201720234035110.1016/j.matchemphys.2017.09.047
    [Google Scholar]
  30. RoopalakshmiS. RavishankarR. BelaldavarS. PrasadR.G.S.V. PhaniA.R. Investigation of structural and morphological characteristic of hydroxyapatite synthesized by sol-gel process.Mater. Today Proc.2017411120261203110.1016/j.matpr.2017.09.126
    [Google Scholar]
  31. Ben-ArfaB.A.E. SalvadoI.M.M. FerreiraJ.M.F. PullarR.C. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.Mater. Sci. Eng. C201770Pt 179680410.1016/j.msec.2016.09.05427770957
    [Google Scholar]
  32. NazeerM.A. YilgorE. YagciM.B. UnalU. YilgorI. Effect of reaction solvent on hydroxyapatite synthesis in sol–gel process.R. Soc. Open Sci.201741217109810.1098/rsos.17109829308248
    [Google Scholar]
  33. Buitrago-VásquezM. Ossa-OrozcoC.P. Hydrothermal synthesis of hydroxyapatite nanorods using a fruit extract template.Dyna20188520428328810.15446/dyna.v85n204.65773
    [Google Scholar]
  34. BensalahH. BekheetM.F. Alami YounssiS. OuammouM. GurloA. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste.J. Environ. Chem. Eng.2018611347135210.1016/j.jece.2018.01.052
    [Google Scholar]
  35. RyuG.U. KimG.M. KhalidH.R. LeeH.K. The effects of temperature on the hydrothermal synthesis of hydroxyapatite-zeolite using blast furnace slag.Materials20191213213110.3390/ma1213213131269736
    [Google Scholar]
  36. WangY. RenX. MaX. SuW. ZhangY. SunX. LiX. Alginate-intervened hydrothermal synthesis of hydroxyapatite nanocrystals with nanopores.Cryst. Growth Des.20151541949195610.1021/acs.cgd.5b00113
    [Google Scholar]
  37. PardoA. RomeroJ. OrtizE. High-temperature behaviour of ammonium dihydrogen phosphate.J. Phys. Conf. Ser.2017935112050
    [Google Scholar]
  38. YangH. WangY. Morphology control of hydroxyapatite microcrystals: Synergistic effects of citrate and CTAB.Mater. Sci. Eng. C20166216016510.1016/j.msec.2016.01.05226952410
    [Google Scholar]
  39. InY. AmornkitbamrungU. HongM.H. ShinH. On the crystallization of hydroxyapatite under hydrothermal conditions: Role of sebacic acid as an additive.ACS Omega2020542272042721010.1021/acsomega.0c0329733134681
    [Google Scholar]
  40. SivaperumalV.R. ManiR. NachiappanM.S. ArumugamK. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite.Mater. Charact.201713441642110.1016/j.matchar.2017.11.016
    [Google Scholar]
  41. PaiS. KiniM.S. SelvarajR. A review on adsorptive removal of dyes from wastewater by hydroxyapatite nanocomposites.Environ. Sci. Pollut. Res. Int.202128101183511849
    [Google Scholar]
  42. Mohd Pu’adN.A.S. KoshyP. AbdullahH.Z. IdrisM.I. LeeT.C. Syntheses of hydroxyapatite from natural sources.Heliyon201955e0158810.1016/j.heliyon.2019.e01588
    [Google Scholar]
  43. Pon-OnW. SuntornsaratoonP. CharoenphandhuN. ThongbunchooJ. KrishnamraN. TangI.M. Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material.Mater. Sci. Eng. C20166218318910.1016/j.msec.2016.01.05126952413
    [Google Scholar]
  44. DaneshvarH. ShafaeiM. ManouchehriF. KakaeiS. ZiaieF. The role of La, Eu, Gd, and Dy lanthanides on thermoluminescence characteristics of nano-hydroxyapatite induced by gamma radiation.SN Appl. Sci.2019110114610.1007/s42452‑019‑1162‑4
    [Google Scholar]
  45. ZarinfarA. ShafaeiM. ZiaieF. Synthesis, characterization and thermoluminescence properties of nano-structure gadolinium doped hydroxyapatite (HAP:Gd).Procedia Mater. Sci.20151129329810.1016/j.mspro.2015.11.075
    [Google Scholar]
  46. WangM.C. ChenH.T. ShihW.J. ChangH.F. HonM.H. HungI.M. Crystalline size, microstructure and biocompatibility of hydroxyapatite nanopowders by hydrolysis of calcium hydrogen phosphate dehydrate (DCPD).Ceram. Int.20154122999300810.1016/j.ceramint.2014.10.135
    [Google Scholar]
  47. HarifiT. MontazerM. A review on textile sonoprocessing: A special focus on sonosynthesis of nanomaterials on textile substrates Ultrason.Sonochem.20152311010.1016/j.ultsonch.2014.08.022
    [Google Scholar]
  48. MohammadiM. ZiaieF. MajdabadiA. AkhavanA. ShafaeiM. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nanocomposite.Radiat. Phys. Chem.201713022923510.1016/j.radphyschem.2016.09.002
    [Google Scholar]
  49. YadollahpourA. Magnetic nanoparticles in medicine: A review of synthesis methods and important characteristics.Orient J Chem201531Special Issue110.13005/ojc/31.Special‑Issue1.33
    [Google Scholar]
  50. HinmanJ.J. SuslickK.S. Nanostructured materials synthesis using ultrasound.sonochemistry ColmenaresJ.C. ChatelG. Topics in Current Chemistry; Springer: Cham2017375599410.1007/978‑3‑319‑54271‑3_3
    [Google Scholar]
  51. OroojiY. Mortazavi-DerazkolaS. GhoreishiS.M. AmiriM. Salavati-NiasariM. Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity.J. Hazard. Mater.202040012314010.1016/j.jhazmat.2020.12314032563904
    [Google Scholar]
  52. EdralinE.J.M. GarciaJ.L. dela RosaF.M. PunzalanE.R. Sonochemical synthesis, characterization and photocatalytic properties of hydroxyapatite nano-rods derived from mussel shells.Mater. Lett.2017196333610.1016/j.matlet.2017.03.016
    [Google Scholar]
  53. KlinkaewnarongJ. UtaraS. Ultrasonic-assisted conversion of limestone into needle-like hydroxyapatite nanoparticles.Ultrason. Sonochem.201846182510.1016/j.ultsonch.2018.04.00229739509
    [Google Scholar]
  54. LiuG. ChenK. LiJ. Combustion synthesis: An effective tool for preparing inorganic materials.Scr. Mater.201815716717310.1016/j.scriptamat.2018.08.022
    [Google Scholar]
  55. DengS. YuH. LiuD. BiY. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor.Appl. Phys., A Mater. Sci. Process.20171231064210.1007/s00339‑017‑1243‑4
    [Google Scholar]
  56. NasiriH. KhakiJ.V. ShahtahmassebiN. Effect of alumina percentage on size and superparamagnetic properties of Ni-Al2O3 nanocomposite synthesized by solution combustion.Mater. Des.201610947648410.1016/j.matdes.2016.07.101
    [Google Scholar]
  57. DeganelloF. TyagiA.K. Solution combustion synthesis, energy and environment: Best parameters for better materials.Prog. Cryst. Growth Charact. Mater.2018642236110.1016/j.pcrysgrow.2018.03.001
    [Google Scholar]
  58. GaoY. MengF. LiX. WenJ.Z. LiZ. Factors controlling nanosized Ni–Al 2 O 3 catalysts synthesized by solution combustion for slurry-phase CO methanation: The ratio of reducing valences to oxidizing valences in redox systems.Catal. Sci. Technol.20166217800781110.1039/C6CY01603K
    [Google Scholar]
  59. AjameinH. HaghighiM. On the microwave enhanced combustion synthesis of CuO–ZnO–Al2O3 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production: Effect of microwave irradiation and fuel ratio.Energy Convers. Manage.201611823124210.1016/j.enconman.2016.04.002
    [Google Scholar]
  60. CoxS.C. WaltonR.I. MallickK.K. Comparison of techniques for the synthesis of hydroxyapatite.Bioinspir. Biomim. Nanobiomater.201541374710.1680/bbn.14.00010
    [Google Scholar]
  61. KavithaM. SubramanianR. VinothK.S. NarayananR. VenkateshG. EsakkirajaN. Optimization of process parameters for solution combustion synthesis of Strontium substituted Hydroxyapatite nanocrystals using design of experiments approach.Powder Technol.201527116718110.1016/j.powtec.2014.10.046
    [Google Scholar]
  62. KaygiliO. KeserS. BulutN. AtesT. Characterization of Mg-containing hydroxyapatites synthesized by combustion method.Physica B2018537636710.1016/j.physb.2018.02.007
    [Google Scholar]
  63. BatistaH.A. SilvaF.N. LisboaH.M. CostaA.C.F.M. Modeling and optimization of combustion synthesis for hydroxyapatite production.Ceram. Int.2020468116381164610.1016/j.ceramint.2020.01.194
    [Google Scholar]
  64. EaliasA.M. SaravanakumarM.P. A review on the classification, characterisation, synthesis of nanoparticles and their applicationIOP Conf. Ser.: Mater. Sci. Eng2017263032019.10.1088/1757‑899X/263/3/032019
    [Google Scholar]
  65. MajeričP. FriedrichB. RudolfR. Au-nanoparticle synthesis via ultrasonic spray pyrolysis with a separate evaporation zone.Mater. Tehnol.201549579179610.17222/mit.2014.264
    [Google Scholar]
  66. SoleroG. Synthesis of nanoparticles through flame spray pyrolysis: Experimental apparatus and preliminary results.Nanoscience Nanotechnol.201771212510.5923/j.nn.20170701.05
    [Google Scholar]
  67. Rahemi ArdekaniS. Sabour Rouh AghdamA. NazariM. BayatA. YazdaniE. Saievar-IranizadE. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter.J. Anal. Appl. Pyrolysis201914110463110.1016/j.jaap.2019.104631
    [Google Scholar]
  68. YokotaT. HondaM. AizawaM. Fabrication of potassium-substituted hydroxyapatite ceramics via ultrasonic spray-pyrolysis route.Phosphorus Res. Bull.201733354010.3363/prb.33.35
    [Google Scholar]
  69. AizawaM. Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their surface properties.Key Eng. Mater.2012529–530109113
    [Google Scholar]
  70. The use of magnetic nanoparticles in sample preparation devices and tools. Hussain, C.M., Ed.; Handbook of Nanomaterials in Analytical Chemistry.Elsevier2020759510.1016/B978‑0‑12‑816699‑4.00005‑0
    [Google Scholar]
  71. ChenJ. WenZ. ZhongS. WangZ. WuJ. ZhangQ. Synthesis of hydroxyapatite nanorods from abalone shells via hydrothermal solid-state conversion.Mater. Des.20158744544910.1016/j.matdes.2015.08.056
    [Google Scholar]
  72. JamilM. ElouatliB. KhallokH. ElouahliA. GourriE. EzzahmoulyM. AbidaF. HatimZ. Silicon substituted hydroxyapatite: Preparation with solid-state reaction, characterization and dissolution properties.J. Mater. Environ. Sci.20189823222327[https://www.jmaterenvironsci.com/Document/vol9/vol9_N8/255-JMES-4082-Jamil.pdf
    [Google Scholar]
  73. JavadinejadH.R. Ebrahimi-KahrizsangiR. Thermal and kinetic study of hydroxyapatite formation by solid‐state reaction.Int. J. Chem. Kinet.202153558359510.1002/kin.21467
    [Google Scholar]
  74. El KhouriA. ZegzoutiA. ElaatmaniM. CapitelliF. Bismuth-substituted hydroxyapatite ceramics synthesis: Morphological, structural, vibrational and dielectric properties.Inorg. Chem. Commun.201911010756810.1016/j.inoche.2019.107568
    [Google Scholar]
  75. ShahathaS.H. TahaA.A. MohammedM.A. Preparation and characterization of hydroxyapatite, titaniaporous bioceramic via polymeric sponge method.Biochem. Cell. Arch.20202011415141910.35124/bca.2020.20.1.1415
    [Google Scholar]
  76. NordinJ.A. PrajitnoD.H. SaidinS. NurH. HermawanH. Structure–property relationships of iron–hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.Mater. Sci. Eng. C20155129429910.1016/j.msec.2015.03.01925842138
    [Google Scholar]
  77. OliveiraI.R. AndradeT.L. AraujoK.C.M.L. LuzA.P. PandolfelliV.C. Hydroxyapatite synthesis and the benefits of its blend with calcium aluminate cement.Ceram. Int.20164222542254910.1016/j.ceramint.2015.10.056
    [Google Scholar]
  78. FakharzadehA. Ebrahimi-KahrizsangiR. Nasiri-TabriziB. Jefrey BasirunW. Effect of dopant loading on the structural features of silver-doped hydroxyapatite obtained by mechanochemical method.Ceram. Int.20174315125881259810.1016/j.ceramint.2017.06.136
    [Google Scholar]
  79. JavadinejadH.R. Saboktakin RiziM. Aghababaei MobarakehE. EbrahimianM. Thermal stability of nano-hydroxyapatite synthesized via mechanochemical treatment.Arab. J. Sci. Eng.201742104401440810.1007/s13369‑017‑2498‑y
    [Google Scholar]
  80. HannoraA. MostafaM.M. Synthesis of silica/hydroxyapatite nanocomposite by mechanochemical methodpreprint202110.21203/rs.3.rs‑566561/v1
    [Google Scholar]
  81. IshakA.Q. Nik AliN.A. NurhaziqahA.M.S. SallehH. Biocompatible hydroxyapatite derive from selayang fish bone via mechanochemical treatment.Diffus. Defect Data Solid State Data Pt. B Solid State Phenom.202030733934410.4028/www.scientific.net/SSP.307.339
    [Google Scholar]
  82. NikamA.V. PrasadB.L.V. KulkarniA.A. Wet chemical synthesis of metal oxide nanoparticles: A review.CrystEngComm201820355091510710.1039/C8CE00487K
    [Google Scholar]
  83. DąbrowskaS. ChudobaT. WojnarowiczJ. ŁojkowskiW. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review.Crystals201881037910.3390/cryst8100379
    [Google Scholar]
  84. QiC. ZhuY.J. DingG.J. WuJ. ChenF. Solvothermal synthesis of hydroxyapatite nanostructures with various morphologies using adenosine 5′-monophosphate sodium salt as an organic phosphorus source.RSC Advances2015553792379810.1039/C4RA13151G
    [Google Scholar]
  85. MaryI.R. SoniaS. VijiS. MangalarajD. ViswanathanC. PonpandianN. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism.Appl. Surf. Sci.2016361253210.1016/j.apsusc.2015.11.123
    [Google Scholar]
  86. GotoT. ChoS.H. OhtsukiC. SekinoT. Selective adsorption of dyes on TiO2-modified hydroxyapatite photocatalysts morphologically controlled by solvothermal synthesis.J. Environ. Chem. Eng.20219410573810.1016/j.jece.2021.105738
    [Google Scholar]
  87. NosratiH. Sarraf-MamooryR. AhmadiA.H. Canillas PerezM. Synthesis of graphene nanoribbons–hydroxyapatite nanocomposite applicable in biomedicine and theranostics.J. Nanotheranostics20201161810.3390/jnt1010002
    [Google Scholar]
  88. ChenR. ShenJ. The synthesis of hydroxyapatite crystals with various morphologies via the solvothermal method using double surfactants.Mater. Lett.202025912688110.1016/j.matlet.2019.126881
    [Google Scholar]
  89. MolinoG. PalmieriM.C. MontalbanoG. FiorilliS. Vitale-BrovaroneC. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: A short review.Biomed. Mater.202015202200110.1088/1748‑605X/ab5f1a31805539
    [Google Scholar]
  90. SinghG. SinghR.P. JollyS.S. Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: A review.J. Sol-Gel Sci. Technol.20209450553010.1007/s10971‑020‑05222‑1
    [Google Scholar]
  91. PadmanabhanV.P. Microwave synthesis of hydroxyapatite encumbered with ascorbic acid intended for drug leaching studies.Mater. Res. Innov.2019243171178
    [Google Scholar]
  92. Tolga DemirtaşT. KaynakG. GümüşderelioğluM. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation.Mater. Sci. Eng. C20154971371910.1016/j.msec.2015.01.057
    [Google Scholar]
  93. KumarG.S. KarunakaranG. GirijaE.K. KolesnikovE. MinhN.V. GorshenkovM.V. KuznetsovD. Size and morphology-controlled synthesis of mesoporous hydroxyapatite nanocrystals by microwave-assisted hydrothermal method.Ceram. Int.20184410112571126410.1016/j.ceramint.2018.03.170
    [Google Scholar]
  94. KarunakaranG. KumarG.S. ChoE.B. SunwooY. KolesnikovE. KuznetsovD. Microwave-assisted hydrothermal synthesis of mesoporous carbonated hydroxyapatite with tunable nanoscale characteristics for biomedical applications.Ceram. Int.201945197097710.1016/j.ceramint.2018.09.273
    [Google Scholar]
  95. LamkhaoS. PhayaM. JansakunC. ChandetN. ThongkornK. RujijanagulG. BangrakP. RandornC. Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method.Sci. Rep.201991401510.1038/s41598‑019‑40488‑830850662
    [Google Scholar]
  96. SharmaA.K. MishraR.R. Role of particle size in microwave processing of metallic material systems.Mater. Sci. Technol.201834212313710.1080/02670836.2017.1412043
    [Google Scholar]
  97. MartinaK. Combined microwaves/ultrasound, a hybrid technology.Top. Curr. Chem.201737479
    [Google Scholar]
  98. HassanM.N. MahmoudM.M. El-FattahA.A. KandilS. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes.Ceram. Int.20164233725374410.1016/j.ceramint.2015.11.044
    [Google Scholar]
  99. MohammadiE. Hierarchical and complex ZnO nanostructures by microwave-assisted synthesis: Morphologies, growth mechanism and classification.Crit. Rev. Solid State Mater. Sci.2018436475541
    [Google Scholar]
  100. ZhouH. ZhangM. ChaiH. HouS. TanM. WangL. BhaduriS.B. DengL. Microwave-assisted rapid preparation of Ca10Na(PO4)7 using sodium triphosphate as a phosphorus source.Ceram. Int.20154110151111511510.1016/j.ceramint.2015.08.082
    [Google Scholar]
  101. GenchiG. SinicropiM.S. LauriaG. CarocciA. CatalanoA. The effects of cadmium toxicity.Int. J. Environ. Res. Public Health20201711378210.3390/ijerph17113782
    [Google Scholar]
  102. FernandoM.S. WimalasiriA.K.D.V.K. DziemidowiczK. WilliamsG.R. KoswattageK.R. DissanayakeD.P. de SilvaK.M.N. de SilvaR.M. Biopolymer-based nanohydroxyapatite composites for the removal of fluoride, lead, cadmium, and arsenic from water.ACS Omega20216128517853010.1021/acsomega.1c0031633817513
    [Google Scholar]
  103. KarunakaranG. ChoE.B. KumarG.S. KolesnikovE. JanarthananG. PillaiM.M. RajendranS. BoobalanS. GorshenkovM.V. KuznetsovD. Ascorbic acid-assisted microwave synthesis of mesoporous Ag-doped hydroxyapatite nanorods from biowaste seashells for implant applications.ACS Appl. Bio Mater.2019252280229310.1021/acsabm.9b0023935030667
    [Google Scholar]
  104. ChandrasekarA. SagadevanS. DakshnamoorthyA. Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique.Int. J. Phys. Sci. Full Length Res. Pap.20138321639164510.5897/IJPS2013.3990
    [Google Scholar]
  105. LiuG. TalleyJ.W. NaC. LarsonS.L. WolfeL.G. Copper doping improves hydroxyapatite sorption for arsenate in simulated groundwaters.Environ. Sci. Technol.20104441366137210.1021/es901573420095528
    [Google Scholar]
  106. ZhongQ. ZhouY. TsangD.C.W. LiuJ. YangX. YinM. WuS. WangJ. XiaoT. ZhangZ. Cadmium isotopes as tracers in environmental studies: A review.Sci. Total Environ.202073613958510.1016/j.scitotenv.2020.13958532497890
    [Google Scholar]
  107. World Health Organization. Cadmium in drinking-water: Background document for development of WHO guidelines for drinking- water quality. World Health Organization.20043113 https://iris.who.int/handle/10665/75364
  108. ZhangH. ReynoldsM. Cadmium exposure in living organisms: A short review.Sci. Total Environ.201967876176710.1016/j.scitotenv.2019.04.395
    [Google Scholar]
  109. HuangT. SongD. ZhouL. TaoH. LiA. ZhangS. LiuL. Non-thermal plasma irradiated polyaluminum chloride for the heterogeneous adsorption enhancement of Cs+ and Sr2+ in a binary system.J. Hazard. Mater.2022424Pt B12744110.1016/j.jhazmat.2021.12744134673396
    [Google Scholar]
  110. WangM. WuS. GuoJ. ZhangX. YangY. ChenF. ZhuR. Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite.J. Hazard. Mater.201936668469310.1016/j.jhazmat.2018.12.04930580143
    [Google Scholar]
  111. HayatM.T. NaumanM. NazirN. AliS. BangashN. Environmental hazards of cadmium: past, present, and future.Cadmium toxicity and tolerance in plants. HasanuzzamanM. PrasadM.N.V. FujitaM. Elsevier201916318310.1016/B978‑0‑12‑814864‑8.00007‑3
    [Google Scholar]
  112. ShenX. GaoX. WeiW. ZhangY. ZhangY. MaL. LiuH. HanR. LinJ. Combined performance of hydroxyapatite adsorption and magnetic separation processes for Cd(II) removal from aqueous solution.J. Dispers. Sci. Technol.202142566467610.1080/01932691.2019.1703734
    [Google Scholar]
  113. JaafarA. DarchenA. HamziS.E. LakbaibiZ. DriouichA. BoussaoudA. YaacoubiA. El MakhfoukM. HachkarM. Optimization of cadmium ions biosorption by fish scale from aqueous solutions using factorial design analysis and Monte Carlo simulation studies.J. Environ. Chem. Eng.20219110472710.1016/j.jece.2020.104727
    [Google Scholar]
  114. HuangTao CaoZhen-xing JinJun-xun ZhouLulu ZhangShu-wen LiuLong-fei. Hydroxyapatite nanoparticle functionalized activated carbon particle electrode that removes strontium from spiked soils in a unipolar three-dimensional electrokinetic system.J. Environ. Manage.202128011169710.1016/j.jenvman.2020.111697
    [Google Scholar]
  115. HerawatiR.A. FaisalM. Utilization of hydroxyapatite from tuna fish bone waste as adsorbent for cadmium from aqueous solutionsIOP Conf. Ser.: Mater. Sci. Eng2020845101202510.1088/1757‑899X/845/1/012025
    [Google Scholar]
  116. OulguidoumA. BouyarmaneH. LaghzizilA. NunziJ.M. SaoiabiA. Development of sulfonate-functionalized hydroxyapatite nanoparticles for cadmium removal from aqueous solutions.Colloid Interface Sci. Commun.20193010017810.1016/j.colcom.2019.100178
    [Google Scholar]
  117. FaisalA.A.H. AhmedD.N. RezakazemiM. SivarajasekarN. SharmaG. Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline.J. Environ. Chem. Eng.20219310519410.1016/j.jece.2021.105194
    [Google Scholar]
  118. AouayR. JebriS. RebeloA. FerreiraJ.M.F. KhattechI. Enhanced cadmium removal from water by hydroxyapatite subjected to different thermal treatments.J. Water Supply202069767869310.2166/aqua.2020.069
    [Google Scholar]
  119. DasK.C. DharS.S. Removal of cadmium(II) from aqueous solution by hydroxyapatite-encapsulated zinc ferrite (HAP/ZnFe2O4) nanocomposite: Kinetics and isotherm study.Environ. Sci. Pollut. Res. Int.202027303797737988
    [Google Scholar]
  120. NgueagniP.T. KumarP.S. WoumfoE.D. AbilarasuA. JoshibaG.J. Femina CarolinC. PrasannamedhaG. FotsingP.N. SieweM. Effectiveness of a biogenic composite derived from cattle horn core/iron nanoparticles via wet chemical impregnation for cadmium (II) removal in aqueous solution.Chemosphere202127212980610.1016/j.chemosphere.2021.12980633601206
    [Google Scholar]
  121. AraujoG.S. PavlakiM.D. SoaresA.M.V.M. AbessaD.M.S. LoureiroS. Bioaccumulation and morphological traits in a multi-generation test with two Daphnia species exposed to lead.Chemosphere201921963664410.1016/j.chemosphere.2018.12.04930554050
    [Google Scholar]
  122. National Institutes of Health U.S. Department of Health and Human Services. Report on Lead and Your Health202112https://niehs.nih.gov
  123. Royal Society of Chemistry. Periodic Table-Lead2024Available from: https://periodic-table.rsc.org/element/82/lead Lead - Element information, properties and uses | Periodic Table
  124. MitraP. SharmaS. PurohitP. SharmaP. Clinical and molecular aspects of lead toxicity: An update.Crit. Rev. Clin. Lab. Sci.2017547-850652810.1080/10408363.2017.140856229214886
    [Google Scholar]
  125. ApteA. BradfordK. DenteC. SmithR.N. Lead toxicity from retained bullet fragments: A systematic review and meta-analysis.J. Trauma Acute Care Surg.201987370771610.1097/TA.000000000000228730939573
    [Google Scholar]
  126. LenntechB.V. Periodic Table-Elements. Lead - Pb Chemical properties of lead - Health effects of lead - Environmental effects of lead.2024Available from: https://www.lenntech.com/periodic/elements/pb.htm/
  127. World Health Organization . Lead in drinking-water: background document for development of WHO guidelines for drinking-water quality.World Health Organization20032 ed.;2 https://iris.who.int/handle/10665/75370
    [Google Scholar]
  128. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service202024824910.15620/cdc:95222
    [Google Scholar]
  129. HarveyP.J. HandleyH.K. TaylorM.P. Identification of the sources of metal (lead) contamination in drinking waters in north-eastern Tasmania using lead isotopic compositions.Environ. Sci. Pollut. Res. Int.20152216122761228810.1007/s11356‑015‑4349‑225895456
    [Google Scholar]
  130. MitraA. ChatterjeeS. VoroninaA.V. WaltherC. GuptaD.K. Lead toxicity in plants: A review.Lead in plants and the environment. Radionuclides and heavy metals in the environment. GuptaD. ChatterjeeS. WaltherC. ChamSpringer202010.1007/978‑3‑030‑21638‑2_6
    [Google Scholar]
  131. World health organization. Report on childhood lead poisoning.20101746Available from: https://www.who.int/publications/i/item/9789241500333 Publication Item
    [Google Scholar]
  132. KumarA. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches.Int. J. Environ. Res. Public Health2020177217910.3390/ijerph17072179
    [Google Scholar]
  133. FatimaR. TariqU. MehmoodM. YaqubG. Childhood lead poisoning and associated health impacts- A brief review.Int. J. Environ. Agric. Biotechnol.20161342242510.22161/ijeab/1.3.18
    [Google Scholar]
  134. KimW. SinghR. Modified oyster waste shells as a value-added sorbent for lead removal from water.Bull. Environ. Contam. Toxicol.2022108351852510.1007/s00128‑021‑03133‑733704549
    [Google Scholar]
  135. NúñezD. CáceresR. IdeW. VaraprasadK. OyarzúnP. An ecofriendly nanocomposite of bacterial cellulose and hydroxyapatite efficiently removes lead from water.Int. J. Biol. Macromol.2020165Pt B2711272010.1016/j.ijbiomac.2020.10.05533069824
    [Google Scholar]
  136. LiuW.K. LiawB.S. ChangH.K. WangY.F. ChenP.Y. From waste to health: Synthesis of hydroxyapatite scaffolds from fish scales for lead ion removal.J. Miner. Met. Mater. Soc.201769471371810.1007/s11837‑017‑2270‑5
    [Google Scholar]
  137. StevensM.G.F. BatlokwaB.S. Environmentally friendly and cheap removal of Lead (II) and Zinc (II) from wastewater with fish scales waste remains.Int. J. Chem.2017942210.5539/ijc.v9n4p22
    [Google Scholar]
  138. SafatianF. DoagoZ. TorabbeigiM. Rahmani ShamsH. AhadiN. Lead ion removal from water by hydroxyapatite nanostructures synthesized from egg shells with microwave irradiation.Appl. Water Sci.20199410810.1007/s13201‑019‑0979‑8
    [Google Scholar]
  139. ZhuY. JiangY. ZhuZ. DengH. DingH. LiY. ZhangL. LinJ. Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb(II) removal.J. Clean. Prod.201818765066110.1016/j.jclepro.2018.03.275
    [Google Scholar]
  140. BernalteE. KamieniakJ. RandviirE.P. Bernalte-GarcíaÁ. BanksC.E. The preparation of hydroxyapatite from unrefined calcite residues and its application for lead removal from aqueous solutions.RSC Advances2019974054406210.1039/C8RA04701D35518096
    [Google Scholar]
  141. CheraghipourE. PakshirM. Process optimization and modeling of Pb(II) ions adsorption on chitosan-conjugated magnetite nano-biocomposite using response surface methodology.Chemosphere202026012756010.1016/j.chemosphere.2020.12756032688314
    [Google Scholar]
  142. SinghR. BhateriaR. Experimental and modeling process optimization of Lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies.ACS Omega2020519108261083710.1021/acsomega.0c0045032455203
    [Google Scholar]
  143. YangH. MasseS. RouelleM. AubryE. LiY. RouxC. JournauxY. LiL. CoradinT. Magnetically recoverable iron oxide–hydroxyapatite nanocomposites for lead removal.Int. J. Environ. Sci. Technol.20151241173118210.1007/s13762‑014‑0514‑2
    [Google Scholar]
  144. ZendehdelM. Shoshtari-YeganehB. CrucianiG. Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/ zeolite nanocomposite: Preparation and characterization.J. Iran. Chem. Soc.201613101739174710.1007/s13738‑016‑0908‑9
    [Google Scholar]
  145. ZhuangF. TanR. ShenW. ZhangX. XuW. SongW. Monodisperse magnetic hydroxyapatite/Fe3O4 microspheres for removal of lead(II) from aqueous solution.J. Alloys Compd.201563753153710.1016/j.jallcom.2015.02.216
    [Google Scholar]
  146. AnutrasakdaW. PhasukA. TangkuC. Effect of different CO32− to PO43− molar ratios on the properties, morphology, and Pb(II) removal performance of carbonated hydroxyapatite.J. Environ. Chem. Eng.20219110465810.1016/j.jece.2020.104658
    [Google Scholar]
  147. AlbertB.R. CheethamA.K. StuartJ.A. AdamsC.J. Investigations on P zeolites: Synthesis, characterisation, and structure of highly crystalline low-silica NaP.Microporous Mesoporous Mater.1998211-313314210.1016/S1387‑1811(97)00059‑0
    [Google Scholar]
  148. AhmedD.N. FaisalA.A.H. Effect of operational conditions on the removal of cadmium ions from simulated wastewater using composite sorbent.Plant Arch.202121Supplement 1828510.51470/PLANTARCHIVES.2021.v21.S1.016
    [Google Scholar]
  149. RamdaniA. KadecheA. AdjdirM. TalebZ. IkhouD. TalebS. DerataniA. Lead and cadmium removal by adsorption process using hydroxyapatite porous materials.Water Pract. Technol.202015113014110.2166/wpt.2020.003
    [Google Scholar]
  150. MahmoudiE. AzizkhaniS. MohammadA.W. NgL.Y. BenamorA. AngW.L. Ba-AbbadM. Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide–silica composite as a multifunctional adsorbent.J. Environ. Sci.20209815116010.1016/j.jes.2020.05.01333097147
    [Google Scholar]
  151. GoogerdchianF. MohebA. EmadiR. Lead sorption properties of nanohydroxyapatite–alginate composite adsorbents.Chem. Eng. J.2012200-20247147910.1016/j.cej.2012.06.084
    [Google Scholar]
  152. HuangG. WangD. MaS. ChenJ. JiangL. WangP. A new, low-cost adsorbent: Preparation, characterization, and adsorption behavior of Pb(II) and Cu(II).J. Colloid Interface Sci.201544529430210.1016/j.jcis.2014.12.09925626135
    [Google Scholar]
  153. LiuG. LiaoL. DaiZ. QiQ. WuJ. MaL.Q. TangC. XuJ. Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions.Chem. Eng. J.202039512510810.1016/j.cej.2020.125108
    [Google Scholar]
  154. ŠolićM. MaletićS. IsakovskiM.K. NikićJ. WatsonM. KónyaZ. RončevićS. Removing low levels of Cd(II) and Pb(II) by adsorption on two types of oxidized multiwalled carbon nanotubes.J. Environ. Chem. Eng.20219410540210.1016/j.jece.2021.105402
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461363673250311134721
Loading
/content/journals/cgc/10.2174/0122133461363673250311134721
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cadmium; ecosystem; Hydroxyapatite; lead; nanoscale structures; wastewater treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test