Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Ionic fluids, known as magnetic ionic liquids, are paramagnetic at room temperature and do not require the addition of magnetic particles. Magnetic ionic liquids (MILs) exhibit unique and configurable physicochemical properties of ionic liquids as well as a significant response to external magnetic fields. MILs, as opposed to ferrofluids, are transparent, particle-free magnetic liquids. Since their discovery, major work has been done on finding the perfect applications of MILs, and since the last decade, it has been established that MILs could replace conventional, toxic solvents and become the suitable green solvents that can be used for a wide range of analytical experiments. MILs have been used extensively in analytical procedures like catalytic reactions and sample preparation, and a large amount of discoveries have been made in their applications for a variety of extraction procedures. Along with these, MILs have been used not only in analytical procedures but also in bioanalytical and biomedical procedures. MILs are being used in biological/biomedical applications because of their non-toxicity, ability to mould themselves according to the usage and generally easy-to-handle properties. This review aims to share these biomedical applications of MILs along with describing how the synthesis of MILs occurs and the important characteristics that these MILs should have.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461359131250312062947
2025-03-21
2025-12-13
Loading full text...

Full text loading...

References

  1. RogersR.D. VothG.A. Ionic liquids.Acc. Chem. Res.200740111077107810.1021/ar700221n18020399
    [Google Scholar]
  2. ZhaoH. Review: Current studies on some physical properties of ionic liquids.Phys. Chem. Liquids200341654555710.1080/003191031000117319
    [Google Scholar]
  3. ZhangS. SunN. HeX. LuX. ZhangX. Physical properties of ionic liquids: database and evaluation.J. Phys. Chem. Ref. Data20063541475151710.1063/1.2204959
    [Google Scholar]
  4. LeiZ. ChenB. KooY.M. MacFarlaneD.R. Introduction: Ionic liquids.Chem. Rev.2017117106633663510.1021/acs.chemrev.7b0024628535681
    [Google Scholar]
  5. BenedettoA. Room-temperature ionic liquids meet bio-membranes: the state-of-the-art.Biophys. Rev.20179430932010.1007/s12551‑017‑0279‑128779453
    [Google Scholar]
  6. SowińskaA. MaciejewskaM. GuoL. DelebecqE. Task-specific ionic liquids with lactate anion applied to improve ZnO dispersibility in the ethylene-propylene-diene elastomer.Polymers (Basel)202113577410.3390/polym1305077433802422
    [Google Scholar]
  7. ShaplovA.S. PonkratovD.O. VygodskiiY.S. Poly(ionic liquid)s: Synthesis, properties, and application.Polym. Sci. Ser. B20165827314210.1134/S156009041602007X
    [Google Scholar]
  8. WangH. MaS. SunY. GaoM. WangX. Detection of 4-nitrophenol by a naphthene carboxylic acid-based fluorescent dicationic ionic liquid in environmental waters and soils.Microchem. J.202319010872010.1016/j.microc.2023.108720
    [Google Scholar]
  9. ClarkK.D. NachamO. PurslowJ.A. PiersonS.A. AndersonJ.L. Magnetic ionic liquids in analytical chemistry: A review.Anal. Chim. Acta201693492110.1016/j.aca.2016.06.01127506339
    [Google Scholar]
  10. SinghS.K. SavoyA.W. Ionic liquids synthesis and applications: An overview.J. Mol. Liq.202029711203810.1016/j.molliq.2019.112038
    [Google Scholar]
  11. BrownL.C. HoggJ.M. Swadźba-KwaśnyM. Lewis acidic ionic liquids.Top. Curr. Chem. (Cham)201737557810.1007/s41061‑017‑0166‑z28828725
    [Google Scholar]
  12. DaiX. LiJ. MaY. LanX. SongH. Synthesis, properties of pentaalkylguanidinium-based magnetic room temperature ionic liquids (MRTILs) and the mutual solubility of (MRTILs + cyclohexane) and (MRTILs + n-octane) binary systems.J. Mol. Liq.201825422623010.1016/j.molliq.2018.01.107
    [Google Scholar]
  13. HayashiS. HamaguchiH. Discovery of a magnetic ionic liquid [bmim]FeCl4.Chem. Lett.200433121590159110.1246/cl.2004.1590
    [Google Scholar]
  14. NachamO. ClarkK.D. YuH. AndersonJ.L. Synthetic strategies for tailoring the physicochemical and magnetic properties of hydrophobic magnetic ionic liquids.Chem. Mater.201527392393110.1021/cm504202v
    [Google Scholar]
  15. PiersonS.A. NachamO. ClarkK.D. NanH. MudrykY. AndersonJ.L. Synthesis and characterization of low viscosity hexafluoroacetylacetonate-based hydrophobic magnetic ionic liquids.New J. Chem.201741135498550510.1039/C7NJ00206H
    [Google Scholar]
  16. DengN. LiM. ZhaoL. LuC. de RooyS.L. WarnerI.M. Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation.J. Hazard. Mater.201119231350135710.1016/j.jhazmat.2011.06.05321783320
    [Google Scholar]
  17. YaoT. LiH. RenY. FengM. HuY. YanH. PengL. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system.Separ. Purif. Tech.202228212003410.1016/j.seppur.2021.120034
    [Google Scholar]
  18. JahromiZ. MostafaviA. ShamspurT. MohamadimM. Magnetic ionic liquid assisted single‐drop microextraction of ascorbic acid before its voltammetric determination.J. Sep. Sci.201740204041404910.1002/jssc.20170066428841257
    [Google Scholar]
  19. ChatzimitakosT.G. AndersonJ.L. StalikasC.D. Matrix solid-phase dispersion based on magnetic ionic liquids: An alternative sample preparation approach for the extraction of pesticides from vegetables.J. Chromatogr. A20181581-158216817210.1016/j.chroma.2018.11.00830424965
    [Google Scholar]
  20. ChatzimitakosT. AnagnostouP. ConstantinouI. DakidiK. StalikasC. Magnetic ionic liquids in sample preparation: recent advances and future trends.Separations20218915310.3390/separations8090153
    [Google Scholar]
  21. BwambokD.K. ThuoM.M. AtkinsonM.B.J. MiricaK.A. ShapiroN.D. WhitesidesG.M. Paramagnetic ionic liquids for measurements of density using magnetic levitation.Anal. Chem.201385178442844710.1021/ac401899u23972068
    [Google Scholar]
  22. ElikA. AltunayN. Optimization of magnetic ionic based dispersive liquid-liquid microextraction of cadmium in water and food samples using experimental design prior to flame atomic absorption spectrophotometry.Sustain. Chem. Pharm.20222710069710.1016/j.scp.2022.100697
    [Google Scholar]
  23. AnJ. RahnK.L. AndersonJ.L. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents.Talanta201716726827810.1016/j.talanta.2017.01.07928340720
    [Google Scholar]
  24. MafraG. WillC. HuelsmannR. MeribJ. CarasekE. A proof‐of‐concept of parallel single‐drop microextraction for the rapid and sensitive biomonitoring of pesticides in urine.J. Sep. Sci.20214491961196810.1002/jssc.20200115733599065
    [Google Scholar]
  25. ChatzimitakosT. BinellasC. MaidatsiK. StalikasC. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: Proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals.Anal. Chim. Acta2016910535910.1016/j.aca.2016.01.01526873468
    [Google Scholar]
  26. WangX. XuG. GuoX. ChenX. DuanJ. GaoZ. ZhengB. ShenQ. Effervescent tablets containing magnetic ionic liquids as a non-conventional extraction and dispersive agent for speciation of arsenite and arsenate in vegetable samples.J. Mol. Liq.201827287187710.1016/j.molliq.2018.10.112
    [Google Scholar]
  27. ChisvertA. BenedéJ.L. AndersonJ.L. PiersonS.A. SalvadorA. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction.Anal. Chim. Acta201798313014010.1016/j.aca.2017.06.02428811019
    [Google Scholar]
  28. ChapmanJ. IsmailA.E. DinuC.Z. Industrial applications of enzymes: recent advances, techniques, and outlooks.Catalysts20188623810.3390/catal8060238
    [Google Scholar]
  29. GholinejadM. ZarehF. SheibaniH. NájeraC. YusM. Magnetic ionic liquids as catalysts in organic reactions.J. Mol. Liq.202236712039510.1016/j.molliq.2022.120395
    [Google Scholar]
  30. Del SestoR.E. McCleskeyT.M. BurrellA.K. BakerG.A. ThompsonJ.D. ScottB.L. WilkesJ.S. WilliamsP. Structure and magnetic behavior of transition metal based ionic liquids.Chem. Commun. (Camb.)2008444744910.1039/B711189D18188463
    [Google Scholar]
  31. YaoT. YaoS. TangD. JingL. WangD. SongH. Synthesis, magnetism, aqueous-two phase formation and physical properties of novel guanidinium-based magnetic ionic liquids.RSC Advances2016658528985290410.1039/C6RA09879G
    [Google Scholar]
  32. WangT. YuW. LiT. WangY. TanJ. HuB. NieL. Synthesis of novel magnetic ionic liquids as high efficiency catalysts for extraction-catalytic oxidative desulfurization in fuel oil.New J. Chem.20194348192321924110.1039/C9NJ04015C
    [Google Scholar]
  33. WangY. FuX. LiuS. YangF. WangJ. PanY. LuC. XinT. ZhangT. A new gadolinium complex with 1, 3-bis (carboxymethyl) imidazolium chloride ionic liquid: Solvothermal synthesis, structure and magnetic properties.J. Mol. Struct.2020121712834010.1016/j.molstruc.2020.128340
    [Google Scholar]
  34. LiM. De RooyS.L. BwambokD.K. El-ZahabB. DiTusaJ.F. WarnerI.M. Magnetic chiral ionic liquids derived from amino acids.Chem. Commun. (Camb.)2009456922692410.1039/b917683g19904348
    [Google Scholar]
  35. AbbasiN.M. ZegerV.R. BiswasA. AndersonJ.L. Synthesis and characterization of magnetic ionic liquids containing multiple paramagnetic lanthanide and transition metal centers and functionalized diglycolamide ligands.J. Mol. Liq.202236111953010.1016/j.molliq.2022.119530
    [Google Scholar]
  36. SantosE. AlboJ. IrabienA. Magnetic ionic liquids: synthesis, properties and applications.RSC Advances2014475400084001810.1039/C4RA05156D
    [Google Scholar]
  37. BrownP. ButtsC.P. EastoeJ. Padrón HernándezE. MachadoF.L.A. de OliveiraR.J. Dication magnetic ionic liquids with tuneable heteroanions.Chem. Commun. (Camb.)201349272765276710.1039/c3cc00103b23443740
    [Google Scholar]
  38. FarooqM.Q. ChandD. OdugbesiG.A. VaronaM. MudrykY. AndersonJ.L. Investigating the effect of ligand and cation on the properties of metal fluorinated acetylacetonate based magnetic ionic liquids.New J. Chem.20194328113341134110.1039/C9NJ02595B
    [Google Scholar]
  39. ChandD. FarooqM.Q. PathakA.K. LiJ. SmithE.A. AndersonJ.L. Magnetic ionic liquids based on transition metal complexes with N -alkylimidazole ligands.New J. Chem.2019431202310.1039/C8NJ05176C
    [Google Scholar]
  40. RosatellaA.A. SiopaF. FradeR.F.M. AfonsoC.A.M. New low viscous cholinium-based magnetic ionic liquids.New J. Chem.20164043124312910.1039/C5NJ03165F
    [Google Scholar]
  41. Trujillo-RodríguezM.J. NachamO. ClarkK.D. PinoV. AndersonJ.L. AyalaJ.H. AfonsoA.M. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons.Anal. Chim. Acta201693410611310.1016/j.aca.2016.06.01427506350
    [Google Scholar]
  42. MeribJ. SpudeitD.A. CorazzaG. CarasekE. AndersonJ.L. Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection.Anal. Bioanal. Chem.2018410194689469910.1007/s00216‑017‑0823‑729313077
    [Google Scholar]
  43. CaoD. XuX. XueS. FengX. ZhangL. An in situ derivatization combined with magnetic ionic liquid-based fast dispersive liquid-liquid microextraction for determination of biogenic amines in food samples.Talanta201919921221910.1016/j.talanta.2019.02.06530952249
    [Google Scholar]
  44. YoshidaY. SaitoG. Influence of structural variations in 1-alkyl-3-methylimidazolium cation and tetrahalogenoferrate(iii) anion on the physical properties of the paramagnetic ionic liquids.J. Mater. Chem.20061613125410.1039/b515391c
    [Google Scholar]
  45. ZhuravlevO.E. VerolainenN.V. VoronchikhinaL.I. Thermal stability of 1,3-disubstituted imidazolium tetrachloroferrates, magnetic ionic liquids.Russ. J. Appl. Chem.20118471158116410.1134/S1070427211070068
    [Google Scholar]
  46. TangY. QinB. ZhangB. Correlation between structure and thermal properties of N-vinyl-3-alkylimidazolium magnetic ionic liquids.J. Wuhan Univ. Technol. Mater. Sci. Ed.2020351263110.1007/s11595‑020‑2222‑8
    [Google Scholar]
  47. WahsnerJ. GaleE.M. Rodríguez-RodríguezA. CaravanP. Chemistry of MRI contrast agents: Current challenges and new frontiers.Chem. Rev.20191192957105710.1021/acs.chemrev.8b0036330350585
    [Google Scholar]
  48. Singh GehlotP. KumarA. Iron-based ionic liquids for magnetic resonance imaging application.Industrial Applications of Ionic LiquidsIntechOpen: London, UK2023110794810.5772/intechopen.107948
    [Google Scholar]
  49. GehlotP.S. GuptaH. RathoreM.S. KhatriK. KumarA. Intrinsic MRI contrast from amino acid-based paramagnetic ionic liquids.Mater. Adv.2020161980198710.1039/D0MA00339E
    [Google Scholar]
  50. AvasthiA. CaroC. Pozo-TorresE. LealM.P. García-MartínM.L. Magnetic nanoparticles as MRI contrast agents.Top. Curr. Chem. (Cham)202037834010.1007/s41061‑020‑00302‑w32382832
    [Google Scholar]
  51. YuX. YuanX. HuangZ. ZhangW. HuangF. RenL. Dual-mode fluorescence and magnetic resonance imaging by perylene diimide-based Gd-containing magnetic ionic liquids.ACS Biomater. Sci. Eng.20206116405641410.1021/acsbiomaterials.0c0107633449639
    [Google Scholar]
  52. DanielC.I. Vaca ChávezF. PortugalC.A.M. CrespoJ.G. SebastiãoP.J. 1 H NMR relaxation study of a magnetic ionic liquid as a potential contrast agent.J. Phys. Chem. B201511935117401174710.1021/acs.jpcb.5b0477226252801
    [Google Scholar]
  53. SantosE. AlboJ. RosatellaA. AfonsoC.A.M. IrabienÁ. Synthesis and characterization of Magnetic Ionic Liquids (MILs) for CO2 separation.J. Chem. Technol. Biotechnol.201489686687110.1002/jctb.4323
    [Google Scholar]
  54. FiorentiniE.F. CanizoB.V. WuilloudR.G. Determination of As in honey samples by magnetic ionic liquid-based dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry.Talanta201919814615310.1016/j.talanta.2019.01.09130876542
    [Google Scholar]
  55. ZhuK. WeiQ. LiuK. LiH. RenX. Design and combination of magnetic ionic liquids and hydrophobic deep eutectic solvents for safer extraction of titanium: physicochemical properties and toxicity studies.Green Chem.202224197481749110.1039/D2GC01874H
    [Google Scholar]
  56. KreuterJ. Bica-SchröderK. PálvölgyiÁ.M. KrskaR. SommerR. FarnleitnerA.H. KolmC. ReischerG.H. A novel ionic liquid-based approach for DNA and RNA extraction simplifies sample preparation for bacterial diagnostics.Anal. Bioanal. Chem.2024416297109712010.1007/s00216‑024‑05615‑z39516288
    [Google Scholar]
  57. ZhuC. VaronaM. AndersonJ.L. Magnetic ionic liquids as solvents for RNA extraction and preservation.ACS Omega2020519111511115910.1021/acsomega.0c0109832455238
    [Google Scholar]
  58. FigueiredoN.M. VoroshylovaI.V. FerreiraE.S.C. MarquesJ.M.C. CordeiroM.N.D.S. Magnetic ionic liquids: current achievements and future perspectives with a focus on computational approaches.Chem. Rev.202412463392341510.1021/acs.chemrev.3c0067838466339
    [Google Scholar]
  59. RykowskaI. NowakI. WasiakW. Selected microextraction techniques using ionic liquids in the study of biologically active compounds.Handbook of Bioanalytics.ChamSpringer International Publishing202295797310.1007/978‑3‑030‑95660‑8_45
    [Google Scholar]
  60. MarengoA. CaglieroC. SgorbiniB. AndersonJ.L. EmausM.N. BicchiC. BerteaC.M. RubioloP. Development of an innovative and sustainable one-step method for rapid plant DNA isolation for targeted PCR using magnetic ionic liquids.Plant Methods20191512310.1186/s13007‑019‑0408‑x30899320
    [Google Scholar]
  61. ClarkK.D. NachamO. YuH. LiT. YamsekM.M. RonningD.R. AndersonJ.L. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis.Anal. Chem.20158731552155910.1021/ac504260t25582771
    [Google Scholar]
  62. EmausM.N. AndersonJ.L. Simultaneous cell lysis and DNA extraction from whole blood using magnetic ionic liquids.Anal. Bioanal. Chem.2020412298039804910.1007/s00216‑020‑02941‑w32918171
    [Google Scholar]
  63. BowersA.N. Trujillo-RodríguezM.J. FarooqM.Q. AndersonJ.L. Extraction of DNA with magnetic ionic liquids using in situ dispersive liquid–liquid microextraction.Anal. Bioanal. Chem.2019411287375738510.1007/s00216‑019‑02163‑931655857
    [Google Scholar]
  64. EmausM.N. ClarkK.D. HinnersP. AndersonJ.L. Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification.Anal. Bioanal. Chem.2018410174135414410.1007/s00216‑018‑1092‑929704032
    [Google Scholar]
  65. ClarkK.D. SorensenM. NachamO. AndersonJ.L. Preservation of DNA in nuclease-rich samples using magnetic ionic liquids.RSC Advances2016646398463985110.1039/C6RA05932E
    [Google Scholar]
  66. NetoL.C.F. AlvesM.S. PrichulaJ. AgnesG. de OliveiraT.F. TrentinD. MeribJ. An affordable and semiautomated approach as a novel strategy for the extraction of DNA using magnetic ionic liquids followed by real time-polymerase chain reaction.Anal. Methods202315303752375710.1039/D3AY00751K37475605
    [Google Scholar]
  67. ClarkK.D. YamsekM.M. NachamO. AndersonJ.L. Magnetic ionic liquids as PCR-compatible solvents for DNA extraction from biological samples.Chem. Commun. (Camb.)20155194167711677310.1039/C5CC07253K26434366
    [Google Scholar]
  68. WangX. LiuM. DingX. Guanidinium hydrophobic magnetic ionic liquid-based dispersive droplet extraction for the selective extraction of DNA.Langmuir20213740116651167510.1021/acs.langmuir.1c0156734581577
    [Google Scholar]
  69. EmausM.N. ZhuC. AndersonJ.L. Selective hybridization and capture of KRAS DNA from plasma and blood using ion-tagged oligonucleotide probes coupled to magnetic ionic liquids.Anal. Chim. Acta2020109411010.1016/j.aca.2019.10.05731761034
    [Google Scholar]
  70. DingX. ClarkK.D. VaronaM. EmausM.N. AndersonJ.L. Magnetic ionic liquid-enhanced isothermal nucleic acid amplification and its application to rapid visual DNA analysis.Anal. Chim. Acta2019104513214010.1016/j.aca.2018.09.01430454568
    [Google Scholar]
  71. WangD. FarhanaA. Biochemistry, RNA Structure.StatPearls.Treasure Island, FLStatPearls Publishing202316[PMID: 32644425
    [Google Scholar]
  72. MushtaqS. TayyebA. Firdaus-e-Bareen, A comparison of total RNA extraction methods for RT-PCR based differential expression of genes from Trichoderma atrobrunneum.J. Microbiol. Methods202220010653510.1016/j.mimet.2022.10653535798135
    [Google Scholar]
  73. EmausM.N. AndersonJ.L. Magnetic ionic liquids as microRNA extraction solvents and additives for the exponential amplification reaction.Anal. Chim. Acta2021118133890010.1016/j.aca.2021.33890034556230
    [Google Scholar]
  74. MaY. ChenY. PengF. DingX. Phenylpropyl guanidinium magnetic ionic liquid for green and selective extraction of RNA.Langmuir20223842128331284010.1021/acs.langmuir.2c0176336245232
    [Google Scholar]
  75. XingY. MengB. ChenQ. Cyclodextrin-containing drug delivery systems and their applications in neurodegenerative disorders.Int. J. Mol. Sci.202425191083410.3390/ijms25191083439409162
    [Google Scholar]
  76. MitraD. Microemulsion and its application: An inside story.Mater. Today Proc.202383758210.1016/j.matpr.2023.01.149
    [Google Scholar]
  77. DaiX. QiangX. GaoJ. TengJ. ZangH. SongH. Phase behaviors and characterization of magnetic microemulsions containing pentaalkylguanidinium-based magnetic room-temperature ionic liquids (MRTILs).New J. Chem.201842118783879010.1039/C8NJ01049H
    [Google Scholar]
  78. SuhailN. AlzahraniA.K. BashaW.J. KizilbashN. ZaidiA. AmbreenJ. KhachfeH.M. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery.Front. Nanotechnol.2021375488910.3389/fnano.2021.754889
    [Google Scholar]
  79. LiL. QuJ. LiuW. PengB. CongS. YuH. ZhangB. LiY. Advancements in characterization techniques for microemulsions: from molecular insights to macroscopic phenomena.Molecules20242912290110.3390/molecules2912290138930964
    [Google Scholar]
  80. EgitoE.S.T. Amaral-MachadoL. AlencarE.N. OliveiraA.G. Microemulsion systems: From the design and architecture to the building of a new delivery system for multiple-route drug delivery.Drug Deliv. Transl. Res.20211152108213310.1007/s13346‑020‑00872‑833164165
    [Google Scholar]
  81. KlierJ. TuckerC.J. KalantarT.H. GreenD.P. Properties and applications of microemulsions.Adv. Mater.200012231751175710.1002/1521‑4095(200012)12:23<1751:AID‑ADMA1751>3.0.CO;2‑I
    [Google Scholar]
  82. Ait-TouchenteZ. ZineN. Jaffrezic-RenaultN. ErrachidA. LebazN. FessiH. ElaissariA. Exploring the versatility of microemulsions in cutaneous drug delivery: Opportunities and challenges.Nanomaterials (Basel)20231310168810.3390/nano1310168837242104
    [Google Scholar]
  83. XiongY. MiB.B. ShahbaziM.A. XiaT. XiaoJ. Microenvironment-responsive nanomedicines: A promising direction for tissue regeneration.Mil. Med. Res.20241116910.1186/s40779‑024‑00573‑039434177
    [Google Scholar]
  84. SivakumarM. MuthuY. ElumalaiK. Advancements in drug delivery systems: A focus on microsphere-based targeted delivery.Biomed. Mater. Devices202460024510.1007/s44174‑024‑00245‑6
    [Google Scholar]
  85. KleeA. PrevostS. KunzW. SchweinsR. KieferK. GradzielskiM. Magnetic microemulsions based on magnetic ionic liquids.Phys. Chem. Chem. Phys.20121444153551536010.1039/c2cp43048g23060241
    [Google Scholar]
  86. KleeA. PrevostS. GasserU. GradzielskiM. Understanding and optimizing microemulsions with magnetic room temperature ionic liquids (MRTILs).J. Phys. Chem. B2015119104133414210.1021/jp512545c25679318
    [Google Scholar]
  87. DaiX. QiangX. YaoT. ChenP. Magnetic microemulsions stabilized by alkyltrimethylammonium-based magnetic ionic liquids surfactants (MILSs).J. Phys. Chem. B202112571846185110.1021/acs.jpcb.0c0930533570956
    [Google Scholar]
  88. de la Fuente-NunezC. BrownP. TorresM.D.T. CaoJ. LuT.K. Magnetic surfactant ionic liquids and polymers with tetrahaloferrate (III) anions as antimicrobial agents with low cytotoxicity.Coll. Interf. Sci. Commun.201822111310.1016/j.colcom.2017.11.002
    [Google Scholar]
  89. TulsiyanK.D. MahalikA. DandekarB.R. MondalJ. BiswalH.S. Enhancement of peroxidase activity in magnetic ionic liquids.ACS Sustain. Chem.& Eng.202311238487849410.1021/acssuschemeng.3c00740
    [Google Scholar]
  90. KulshresthaA. GehlotP.S. KumarA. Magnetic proline-based ionic liquid surfactant as a nano-carrier for hydrophobic drug delivery.J. Mater. Chem. B Mater. Biol. Med.20208153050305710.1039/D0TB00176G32196055
    [Google Scholar]
  91. KulshresthaA. SharmaS. SinghK. KumarA. Magnetoresponsive biocomposite hydrogels comprising gelatin and valine based magnetic ionic liquid surfactant as controlled release nanocarrier for drug delivery.Mater. Adv.20223148449210.1039/D1MA00758K
    [Google Scholar]
  92. TangL. XiaoQ. MeiY. HeS. ZhangZ. WangR. WangW. Insights on functionalized carbon nanotubes for cancer theranostics.J. Nanobiotechnology202119142310.1186/s12951‑021‑01174‑y34915901
    [Google Scholar]
  93. FernandesL. MeiraR. CorreiaD. RibeiroC. FernandezE. TubioC. Lanceros-MéndezS. Electrospun magnetic ionic liquid based electroactive materials for tissue engineering applications.Nanomaterials (Basel)20221217307210.3390/nano1217307236080109
    [Google Scholar]
  94. BelBrunoJ.J. Molecularly imprinted polymers.Chem. Rev.201911919411910.1021/acs.chemrev.8b0017130246529
    [Google Scholar]
  95. XuW. DaiQ. WangY. HuX. XuP. NiR. MengJ. Creating magnetic ionic liquid-molecularly imprinted polymers for selective extraction of lysozyme.RSC Advances2018839218502185610.1039/C8RA03818J35541737
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461359131250312062947
Loading
/content/journals/cgc/10.2174/0122133461359131250312062947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test