Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Spiroheterocycles are widely distributed among the naturally occurring bioactive compounds. Various spiroheterocycles have gained significant attention in drug design and discovery as a number of commercially available drug molecules consist of spiroheterocyclic skeletons. Many synthetic structurally diverse spiroheterocycles reported to possess a broad range of biological efficacies. A large number of methods have been reported for the synthesis of a wide variety of spiroheterocycles under conventional methods. These reported methods definitely have some merits but on many occasions suffered from some common demerits like harsh reaction conditions, longer reaction times, use of toxic organic solvents and catalysts, strong oxidizing or reducing agents . Involvement of electrochemically induced pathways helped a lot to overcome these drawbacks. Thus electrochemically induced methods are more environments friendly and sustainable. In this review article we have summarized a large number of recently reported electrochemically induced methods for the synthesis of structurally diverse spiroheterocycles. The plausible mechanisms of these transformations are also discussed in this review.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461332614240919091051
2024-10-01
2025-12-05
Loading full text...

Full text loading...

References

  1. BanerjeeB. Multicomponent synthesis of biologically relevant spiroheterocycles in water.Mat. Res. Found.201950269319
    [Google Scholar]
  2. Youseftabar-MiriL. Hosseinjani-PirdehiH. AkramiA. HallajianS. Recent investigations in the synthesis of spirooxindole derivatives by Iranian researchers.J. Iranian Soc.20201792179223110.1007/s13738‑020‑01921‑2
    [Google Scholar]
  3. ChupakhinE. BabichO. ProsekovA. AsyakinaL. KrasavinM. Spirocyclic motifs in natural products.Molecules20192422416510.3390/molecules2422416531744211
    [Google Scholar]
  4. ZhengY. TiceC.M. SinghS.B. The use of spirocyclic scaffolds in drug discovery.Bioorg. Med. Chem. Lett.201424163673368210.1016/j.bmcl.2014.06.08125052427
    [Google Scholar]
  5. RajA.A. RaghunathanR. SrideviKumariM.R. RamanN. Synthesis, antimicrobial and antifungal activity of a new class of spiro pyrrolidines.Bioorg. Med. Chem.200311340741910.1016/S0968‑0896(02)00439‑X12517436
    [Google Scholar]
  6. GuptaA.K. AdamP. DlovaN. LyndeC.W. HofstaderS. MorarN. AboobakerJ. SummerbellR.C. Therapeutic options for the treatment of tinea capitis caused by Trichophyton species: griseofulvin versus the new oral antifungal agents, terbinafine, itraconazole, and fluconazole.Pediatr. Dermatol.200118543343810.1046/j.1525‑1470.2001.01978.x11737692
    [Google Scholar]
  7. Abdel-RahmanA.H. KeshkE.M. HannaM.A. El-BadyS.M. Synthesis and evaluation of some new spiro indoline-based heterocycles as potentially active antimicrobial agents.Bioorg. Med. Chem.20041292483248810.1016/j.bmc.2003.10.06315080944
    [Google Scholar]
  8. KaralıN. GüzelÖ. ÖzsoyN. ÖzbeyS. SalmanA. Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents.Eur. J. Med. Chem.20104531068107710.1016/j.ejmech.2009.12.00120045221
    [Google Scholar]
  9. KhazirJ. SinghP.P. ReddyD.M. HyderI. ShafiS. SawantS.D. ChashooG. MahajanA. AlamM.S. SaxenaA.K. ArvindaS. GuptaB.D. KumarH.M.S. Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin.Eur. J. Med. Chem.20136327928910.1016/j.ejmech.2013.01.00323501113
    [Google Scholar]
  10. ArumugamN. AlmansourA.I. Suresh KumarR. Ibrahim AlaqeelS. Siva KrishnaV. SriramD. Anti-tubercular activity of novel class of spiropyrrolidine tethered indenoquinoxaline heterocyclic hybrids.Bioorg. Chem.20209910379910.1016/j.bioorg.2020.10379932247109
    [Google Scholar]
  11. RajopadhyeM. PoppF.D. Potential anticonvulsants. 11. Synthesis and anticonvulsant activity of spiro[1,3-dioxolane-2,3′-indolin]-2′-ones and structural analogs.J. Med. Chem.19883151001100510.1021/jm00400a0183361568
    [Google Scholar]
  12. AlmansourA. KumarR. BeeviF. ShiraziA. OsmanH. IsmailR. ChoonT. SullivanB. McCaffreyK. NahhasA. ParangK. AliM. Facile, regio- and diastereoselective synthesis of spiro-pyrrolidine and pyrrolizine derivatives and evaluation of their antiproliferative activities.Molecules2014197100331005510.3390/molecules19071003325014532
    [Google Scholar]
  13. ButeraJ.A. Current and emerging targets to treat neuropathic pain.J. Med. Chem.200750112543254610.1021/jm061015w17489576
    [Google Scholar]
  14. AzizF. Neurokinin-1 receptor antagonists for chemotherapy-induced nausea and vomiting.Ann. Palliat. Med.20121213013625841473
    [Google Scholar]
  15. KramerM.S. CutlerN. FeighnerJ. ShrivastavaR. CarmanJ. SramekJ.J. ReinesS.A. LiuG. SnavelyD. Wyatt-KnowlesE. HaleJ.J. MillsS.G. MacCossM. SwainC.J. HarrisonT. HillR.G. HeftiF. ScolnickE.M. CascieriM.A. ChicchiG.G. SadowskiS. WilliamsA.R. HewsonL. SmithD. CarlsonE.J. HargreavesR.J. RupniakN.M.J. Distinct mechanism for antidepressant activity by blockade of central substance P receptors.Science199828153831640164510.1126/science.281.5383.16409733503
    [Google Scholar]
  16. SinghG.S. DestaZ.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks.Chem. Rev.2012112116104615510.1021/cr300135y22950860
    [Google Scholar]
  17. SaraswatP. JeyabalanG. HassanM.Z. RahmanM.U. NyolaN.K. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities.Synth. Commun.201646201643166410.1080/00397911.2016.1211704
    [Google Scholar]
  18. BabarK. ZahoorA.F. AhmadS. AkhtarR. Recent synthetic strategies toward the synthesis of spirocyclic compounds comprising six-membered carbocyclic/heterocyclic ring systems.Mol. Divers.20212542487253210.1007/s11030‑020‑10126‑x32696299
    [Google Scholar]
  19. WangY.C. WangJ.L. BurgessK.S. ZhangJ.W. ZhengQ.M. PuY.D. YanL.J. ChenX.B. Green synthesis of new pyrrolidine-fused spirooxindoles via three-component domino reaction in EtOH/H2O.RSC Advances20188115702571310.1039/C7RA13207G35539589
    [Google Scholar]
  20. PitternaT. CassayreJ. MolleyresL.P. MaienfischP.U.S. Patent 8,110,684 B22012
  21. SumiK. KonishiG. Synthesis of a highly luminescent three-dimensional pyrene dye based on the spirobifluorene skeleton.Molecules201015117582759210.3390/molecules1511758221030911
    [Google Scholar]
  22. YuW.L. PeiJ. HuangW. HeegerA.J. Spiro-functionalized polyfluorene derivatives as blue light-emitting materials.Adv. Mater.2000121182883110.1002/(SICI)1521‑4095(200006)12:11<828:AID‑ADMA828>3.0.CO;2‑H
    [Google Scholar]
  23. JiangY. XuK. ZengC. Use of electrochemistry in the synthesis of heterocyclic structures.Chem. Rev.201811894485454010.1021/acs.chemrev.7b0027129039924
    [Google Scholar]
  24. XuH.C. CampbellJ.M. MoellerK.D. Cyclization reactions of anode-generated amidyl radicals.J. Org. Chem.201479137939110.1021/jo402623r24328239
    [Google Scholar]
  25. ZhuL. XiongP. MaoZ.Y. WangY.H. YanX. LuX. XuH.C. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: Use of solvent effects to enable anilide oxidation.Angew. Chem. Int. Ed.20165562226222910.1002/anie.20151041826732232
    [Google Scholar]
  26. XiongP. XuH.H. XuH.C. Metal- and reagent-free intramolecular oxidative amination of tri- and tetrasubstituted alkenes.J. Am. Chem. Soc.201713982956295910.1021/jacs.7b0101628199102
    [Google Scholar]
  27. AndersonL.A. ReddenA. MoellerK.D. Connecting the dots: using sunlight to drive electrochemical oxidations.Green Chem.20111371652165410.1039/c1gc15207f
    [Google Scholar]
  28. NguyenB.H. ReddenA. MoellerK.D. Sunlight, electrochemistry, and sustainable oxidation reactions.Green Chem.2014161697210.1039/C3GC41650J
    [Google Scholar]
  29. BroeseT. FranckeR. Electrosynthesis using a recyclable mediator–electrolyte system based on ionically tagged phenyl iodide and 1,1,1,3,3,3-hexafluoroisopropanol.Org. Lett.201618225896589910.1021/acs.orglett.6b0297927788013
    [Google Scholar]
  30. SickerD. HartensteinH. MouatsC. HazardR. TallecA. Electrochemical reduction of o-nitrophenylthioacetic derivatives. Production of 2H-1,4-benzothiazines.Electrochim. Acta199540111669167410.1016/0013‑4686(95)00083‑Q
    [Google Scholar]
  31. DuP. BrosmerJ.L. PetersD.G. Electrosynthesis of substituted 1H-indoles from o-nitrostyrenes.Org. Lett.201113154072407510.1021/ol200604921739940
    [Google Scholar]
  32. SuttererA. MoellerK.D. Reversing the polarity of enol ethers: An anodic route to tetrahydrofuran and tetrahydropyran rings.J. Am. Chem. Soc.2000122235636563710.1021/ja001063k
    [Google Scholar]
  33. LiuB. DuanS. SuttererA.C. MoellerK.D. Oxidative cyclization based on reversing the polarity of enol ethers and ketene dithioacetals. Construction of a tetrahydrofuran ring and application to the synthesis of (+)-nemorensic acid.J. Am. Chem. Soc.200212434101011011110.1021/ja026739l12188674
    [Google Scholar]
  34. SugawaraM. MoriK. YoshidaJ.I. Anodic oxidation of carbamates using organothio groups as electroauxiliaries.Electrochim. Acta19974213-141995200310.1016/S0013‑4686(97)85473‑4
    [Google Scholar]
  35. ZhuC. AngN.W.J. MeyerT.H. QiuY. AckermannL. Organic electrochemistry: Molecular syntheses with potential.ACS Cent. Sci.20217341543110.1021/acscentsci.0c0153233791425
    [Google Scholar]
  36. SunY. LiuB. KaoJ. d’AvignonD.A. MoellerK.D. Anodic cyclization reactions: reversing the polarity of ketene dithioacetal groups.Org. Lett.20013111729173210.1021/ol015925d11405697
    [Google Scholar]
  37. WuZ.J. XuH.C. Synthesis of C3-fluorinated oxindoles through reagent-free cross-dehydrogenative coupling.Angew. Chem. Int. Ed.201756174734473810.1002/anie.20170132928295965
    [Google Scholar]
  38. ElinsonM.N. DorofeevA.S. MiloserdovF.M. IlovaiskyA.I. FeducovichS.K. BelyakovP.A. NikishinG.I. Catalysis of salicylaldehydes and two different C-H acids with electricity: First example of an efficient multicomponent approach to the design of functionalized medicinally privileged 2-amino-4H-chromene scaffold.Adv. Synth. Catal.2008350459160110.1002/adsc.200700493
    [Google Scholar]
  39. ElinsonM.N. DorofeevA.S. FeducovichS.K. GorbunovS.V. NasybullinR.F. MiloserdovF.M. NikishinG.I. The implication of electrocatalysis in mcr strategy: Electrocatalytic multicomponent transformation of cyclic 1,3-diketones, aldehydes and malononitrile into substituted 5,6,7,8-tetrahydro-4H-chromenes.Eur. J. Org. Chem.20062006194335433910.1002/ejoc.200600544
    [Google Scholar]
  40. HotaP. DasP. RahamanR. MaitiD.K. Synthesis of heterocycles through electrolysis.Non-Conventional Synthesis: Bioactive Heterocycles. KeglevichG. BanerjeeB. Berlin, BostonDe Gruyter202420926010.1515/9783110980189‑008
    [Google Scholar]
  41. KaurM. PriyaA. SharmaA. SinghA. BanerjeeB. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles.Synth. Commun.202252161635165610.1080/00397911.2022.2090262
    [Google Scholar]
  42. PriyaA. SharmaA. KaurM. SinghA. BanerjeeB. Preyssler catalyst: A heterogeneous polyacidic catalyst for the efficient synthesis of diverse bioactive heterocyclic scaffolds.Arkivoc2022202238511110.24820/ark.5550190.p011.783
    [Google Scholar]
  43. BanerjeeB. SinghA. KaurG. Baker’s yeast (Saccharomyces cerevisiae) catalyzed synthesis of bioactive heterocycles and some stereoselective reactions.Phys. Sci. Rev.202274-530132310.1515/psr‑2021‑0021
    [Google Scholar]
  44. SharmaA. PriyaA. KaurM. SinghA. KaurG. BanerjeeB. Ultrasound-assisted synthesis of bioactive S-heterocycles.Synth. Commun.202151213209323610.1080/00397911.2021.1970775
    [Google Scholar]
  45. BanerjeeB. KaurG. KaurN. p-Sulfonic acid calix[n]arene catalyzed synthesis of bioactive heterocycles: A review.Curr. Org. Chem.202125120922210.2174/1385272824999201019162655
    [Google Scholar]
  46. BanikB.K. BanerjeeB. KaurG. SarochS. KumarR. Tetrabutylammonium bromide (TBAB) catalyzed synthesis of bioactive heterocycles.Molecules20202524591810.3390/molecules2524591833327504
    [Google Scholar]
  47. BanerjeeB. KaurG. Microwave assisted catalyst-free synthesis of bioactive heterocycles.Curr. Microw. Chem.20207152210.2174/2213335607666200226102010
    [Google Scholar]
  48. KaurG. SinghA. BalaK. DeviM. KumariA. DeviS. DeviR. GuptaV.K. BanerjeeB. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature.Curr. Org. Chem.201923161778178810.2174/1385272822666190924182538
    [Google Scholar]
  49. KaurG. BalaK. DeviS. BanerjeeB. Camphorsulfonic acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities.Curr. Green Chem.20185315016710.2174/2213346105666181001113413
    [Google Scholar]
  50. KaurG. DeviP. ThakurS. KumarA. ChandelR. BanerjeeB. Magnetically separable transition metal ferrites: Versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles.ChemistrySelect2019472181219910.1002/slct.201803600
    [Google Scholar]
  51. SandanayakaV.P. PrashadA.S. YangY. WilliamsonR.T. LinY.I. MansourT.S. Spirocyclopropyl β-lactams as mechanism-based inhibitors of serine β-lactamases. Synthesis by rhodium-catalyzed cyclopropanation of 6-diazopenicillanate sulfone.J. Med. Chem.200346132569257110.1021/jm034056q12801220
    [Google Scholar]
  52. ElinsonM.N. VereshchaginA.N. KorshunovA.D. ZaimovskayaT.A. EgorovM.P. Electrochemical cascade assembling of heterocyclic ketones and two molecules of malononitrile: Facile and efficient ‘one-pot’ approach to 6-heterospiro[2.5]octane-1,1,2,2-tetracarbonitrile scaffold.Monatsh. Chem.201814961069107410.1007/s00706‑018‑2158‑2
    [Google Scholar]
  53. ElinsonM. VereshchaginA. TretyakovaE. BushmarinovI. NikishinG. Stereoselective Electrocatalytic Cyclization of 4,4′-(Arylmethylene)bis(1H-pyrazol¬-5-ols) to (5R*,6R*)-11-Aryl-4,10-dimethyl-2,8-diphenyl-2,3,8,9-tetraazadispiro[4.0.4.1]undeca-3,9-diene-1,7-diones.Synthesis20112011183015301910.1055/s‑0030‑1261031
    [Google Scholar]
  54. ElinsonM.N. DorofeevaE.O. VereshchaginA.N. NasybullinR.F. EgorovM.P. Electrocatalytic stereoselective transformation of aldehydes and two molecules of pyrazolin-5-one into (R*,R*)-bis(spiro-2,4-dihydro-3H-pyrazol-3-one)cyclopropanes.Catal. Sci. Technol.2015542384238710.1039/C4CY01681E
    [Google Scholar]
  55. NikolaienkoP. JentschM. KaleA.P. CaiY. RuepingM. Electrochemical and scalable dehydrogenative C(sp3)−H amination via remote hydrogen atom transfer in batch and continuous flow.Chem. Eur. J.201925297177718410.1002/chem.20180609230861204
    [Google Scholar]
  56. YuK. KongX. YangJ. LiG. XuB. ChenQ. Electrochemical oxidative halogenation of N-aryl alkynamides for the synthesis of spiro[4.5]trienones.J. Org. Chem.202186191792810.1021/acs.joc.0c0242933284614
    [Google Scholar]
  57. HuaJ. FangZ. BianM. MaT. YangM. XuJ. LiuC. HeW. ZhuN. YangZ. GuoK. Electrochemical synthesis of spiro[4.5]trienones through radical-initiated dearomative spirocyclization.ChemSusChem20201382053205910.1002/cssc.20200009832012457
    [Google Scholar]
  58. PakravanN. Shayani-JamH. BeiginejadH. TavafiH. PazireshS. A green method for the synthesis of novel spiro compounds: Enhancement of antibacterial properties of caffeic acid through electrooxidation in the presence of barbituric acid derivatives.J. Electroanal. Chem. (Lausanne)201984811328610.1016/j.jelechem.2019.113286
    [Google Scholar]
  59. VereshchaginA.N. ElinsonM.N. DorofeevaE.O. DemchukD.V. BushmarinovI.S. GoloveshkinA.S. NikishinG.I. Chemical and electrocatalytic cascade cyclization of Guareschi imides: ‘One-pot’ simple and efficient way to the 2,4-dioxo-3-azabicyclo[3.1.0]hexane scaffold.Tetrahedron201369255234524110.1016/j.tet.2013.04.035
    [Google Scholar]
  60. ElinsonM.N. FeducovichS.K. LizunovaT.L. NikishinG.I. Electrochemical transformation of malononitrile and carbonyl compounds into functionally substituted cyclopropanes: Electrocatalytic variant of the wideqvist reaction.Tetrahedron200056193063306910.1016/S0040‑4020(00)00195‑2
    [Google Scholar]
  61. ZhangS. XuG. YanH. WuQ. MengJ. DuanJ. GuoK. Electrooxidative [3 + 2] annulation of amidines with alkenes for the synthesis of spiroimidazolines.Chin. Chem. Lett.202233125128513110.1016/j.cclet.2022.04.006
    [Google Scholar]
  62. GaoW.C. XiongZ.Y. PirhaghaniS. WirthT. Enantioselective electrochemical lactonization using chiral iodoarenes as mediators.Synthesis201951127628410.1055/s‑0037‑1610373
    [Google Scholar]
  63. MalkowskyI.M. RommelC.E. WedekingK. FröhlichR. BerganderK. NiegerM. QuaiserC. GriesbachU. PütterH. WaldvogelS.R. Facile and highly diastereoselective formation of a novel pentacyclic scaffold by direct anodic oxidation of 2,4-dimethylphenol.Eur. J. Org. Chem.20062006124124510.1002/ejoc.200500517
    [Google Scholar]
  64. YaoC. WangY. LiT. YuC. LiL. WangC. A pseudo multi-component electrochemical synthesis of spiro dihydrofuran derivatives.Tetrahedron20136949105931059710.1016/j.tet.2013.10.056
    [Google Scholar]
  65. KozukaM. SawadaT. KasaharaF. MizutaE. AmanoT. KomiyaT. GotoM. The granulation-inhibiting principles from eucalyptus globulus LABILL. II. The structures of euglobal -Ia1, -Ia2, -Ib, -Ic, -IIa, -IIb and –IIc.Chem. Pharm. Bull. (Tokyo)19823061952196310.1248/cpb.30.1952
    [Google Scholar]
  66. TakasakiM. KonoshimaT. FujitaniK. YoshidaS. NishimuraH. TokudaH. NishinoH. IwashimaA. KozukaM. Inhibitors of skin-tumor promotion. VIII. Inhibitory effects of euglobals and their related compounds on Epstein-Barr virus activation. (1).Chem. Pharm. Bull. (Tokyo)199038102737273910.1248/cpb.38.27371963812
    [Google Scholar]
  67. ChibaK. SonoyamaJ. TadaM. Electrochemical synthesis of chroman and euglobal skeletons via cycloaddition reaction of o-quinone methides and alkenes.J. Chem. Soc., Perkin Trans. 119961121435144310.1039/p19960001435
    [Google Scholar]
  68. LebreuxF. BuzzoF. MarkóI.E. Synthesis of five-and six-membered-ring compounds by environmentally friendly radical cyclizations using kolbe electrolysis.Synlett20081828152820
    [Google Scholar]
  69. ZhangS. LianF. XueM. QinT. LiL. ZhangX. XuK. Electrocatalytic dehydrogenative esterification of aliphatic carboxylic acids: Access to bioactive lactones.Org. Lett.201719246622662510.1021/acs.orglett.7b0333329185759
    [Google Scholar]
  70. RyzhkovaY.E. ElinsonM.N. VereshchaginA.N. KarpenkoK.A. RyzhkovF.V. UshakovI.E. EgorovM.P. Multicomponent electrocatalytic selective approach to unsymmetrical spiro[furo[3,2-c]pyran-2,5′-pyrimidine] scaffold under a column chromatography-free protocol at room temperature.Chemistry (Basel)20224261562910.3390/chemistry4020044
    [Google Scholar]
  71. ElinsonM.N. RyzhkovaY.E. VereshchaginA.N. RyzhkovF.V. EgorovM.P. Electrocatalytic multicomponent one‐pot approach to tetrahydro‐2′H, 4H‐spiro[benzofuran‐2,5′‐pyrimidine] scaffold.J. Heterocycl. Chem.20215871484149510.1002/jhet.4274
    [Google Scholar]
  72. RyzhkovF.V. ElinsonM.N. RyzhkovaY.E. VereshchaginA.N. FakhrutdinovA.N. EgorovM.P. Electrocatalytic cascade approach to the synthesis of dihydro-2‘H,3H-spiro[1-benzofuran-2,5’-pyrimidines].Chem. Heterocycl. Compd.202157667267810.1007/s10593‑021‑02966‑8
    [Google Scholar]
  73. ElinsonM.N. IlovaiskyA.I. DorofeevA.S. MerkulovaV.M. StepanovN.O. MiloserdovF.M. OgibinY.N. NikishinG.I. Electrocatalytic multicomponent transformation of cyclic 1,3-diketones, isatins, and malononitrile: facile and convenient way to functionalized spirocyclic (5,6,7,8-tetrahydro-4H-chromene)-4,3′-oxindole system.Tetrahedron20076342105431054810.1016/j.tet.2007.07.080
    [Google Scholar]
  74. DarvishZ.M. MirzaB. MakaremS. Electrocatalytic multicomponent reaction for synthesis of nanoparticles of spirooxindole derivatives from isatins, malononitrile, and dimedone.J. Heterocycl. Chem.20175431763176610.1002/jhet.2755
    [Google Scholar]
  75. MakaremS. KarimiP. Electro synthesis of spirocyclic oxindole and computational studies for investigating the relationship between molecular properties and stability.Monatsh. Chem.2019150122053205910.1007/s00706‑019‑02520‑5
    [Google Scholar]
  76. ElinsonM.N. MerkulovaV.M. IlovaiskyA.I. DemchukD.V. BelyakovP.A. NikishinG.I. Electrochemically induced multicomponent assembling of isatins, 4-hydroxyquinolin-2(1H)-one and malononitrile: a convenient and efficient way to functionalized spirocyclic [indole-3,4′-pyrano[3,2-c]quinoline] scaffold.Mol. Divers.201014483383910.1007/s11030‑009‑9207‑z19921455
    [Google Scholar]
  77. ElinsonM.N. DorofeevA.S. MiloserdovF.M. NikishinG.I. Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: Facile and convenient way to functionalized spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazole] system.Mol. Divers.2009131475210.1007/s11030‑008‑9100‑119048382
    [Google Scholar]
  78. MalviyaJ. SinghR.K.P. One‐pot three‐component synthesis of chromeno [2,3‐d] pyrimidine derivatives: Novel, simple, and efficient electrochemical approach.J. Heterocycl. Chem.2020571394910.1002/jhet.3741
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461332614240919091051
Loading
/content/journals/cgc/10.2174/0122133461332614240919091051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test