Skip to content
2000
image of Advancements in Bio-resource-based Polymers and Composites: Sustainable Alternatives to Non-biodegradable Plastics for a Greener Future: A Review

Abstract

There is an urgent need to investigate viable alternatives to address the significant environmental concerns created by the widespread use of non-biodegradable and non-recyclable synthetic plastics. Bioresource-based polymers from natural materials such as starch, cellulose, chitosan, lignin, and agricultural waste have shown great promise. These biodegradable, cost-effective, and environmentally benign materials address major concerns about the environmental and health effects of petroleum-based polyolefin plastics, which are widely utilized in the packaging, automotive, medical, and agricultural sectors. This review focuses on recent advances in bio-based polymers, blends, and composites reinforced with natural fibers and fillers, demonstrating their potential to replace traditional plastics. It also tackles the difficulties of cost reduction, performance improvement, and processing efficiency. Bioresource-based polymers have the potential to reduce plastic pollution and promote a more sustainable future by prioritizing innovation in material selection and manufacturing techniques.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461372269250503082219
2025-05-09
2025-09-28
Loading full text...

Full text loading...

References

  1. Reichert C.L. Bugnicourt E. Coltelli M.B. Cinelli P. Lazzeri A. Canesi I. Braca F. Martínez B.M. Alonso R. Agostinis L. Verstichel S. Six L. Mets S.D. Gómez E.C. Ißbrücker C. Geerinck R. Nettleton D.F. Campos I. Sauter E. Pieczyk P. Schmid M. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers 2020 12 7 1558 10.3390/polym12071558 32674366
    [Google Scholar]
  2. Walther B.A. Kusui T. Yen N. Hu C.S. Lee H. Plastic pollution in East Asia: Microplastics and microplastics in the aquatic environment and mitigation efforts by various actors. Plastic Aquatic Environ Part I. Cham, Switzerland Springer Nature 2020 353 403 10.1007/698_2020_508
    [Google Scholar]
  3. Hottle T.A. Bilec M.M. Landis A.E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stabil. 2013 98 9 1898 1907 10.1016/j.polymdegradstab.2013.06.016
    [Google Scholar]
  4. Otto S. Strenger M. Maier-Nöth A. Schmid M. Food packaging and sustainability – Consumer perception vs. correlated scientific facts: A review. J. Clean. Prod. 2021 298 126733 10.1016/j.jclepro.2021.126733
    [Google Scholar]
  5. Stark N.M. Matuana L.M. 2021 Trends in sustainable biobased packaging materials: A mini review. Mat. Today Sustainab. 15 100084 10.1016/j.mtsust.2021.100084
    [Google Scholar]
  6. Álvarez-Chávez C.R. Edwards S. Moure-Eraso R. Geiser K. Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J. Clean. Prod. 2012 23 1 47 56 10.1016/j.jclepro.2011.10.003
    [Google Scholar]
  7. Han J.H. New technologies in food packaging: Overview in Innovations in Food Packaging. Cambridge, MA, USA Academic Press 2005 3 11 10.1016/B978‑012311632‑1/50033‑4
    [Google Scholar]
  8. Mendes A.C. Pedersen G.A. Perspectives on sustainable food packaging:– is bio-based plastics a solution? Trends Food Sci. Technol. 2021 112 839 846 10.1016/j.tifs.2021.03.049
    [Google Scholar]
  9. Hamouda T. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications. Saba N. Jawaid M. Thariq M. Sawston, UK Woodhead Publishing 2021 113 126 10.1016/B978‑0‑12‑819953‑4.00006‑9
    [Google Scholar]
  10. Muneer F. Nadeem H. Arif A. Zaheer W. Bioplastics from biopolymers: an ECO-friendly and sustainable solution of plastic pollution. Polym. Sci. Ser. C 2021 63 1 47 63 10.1134/S1811238221010057
    [Google Scholar]
  11. Miller S.A. Five misperceptions surrounding the environmental impacts of single-use plastic. Environ. Sci. Technol. 2020 54 22 14143 14151 10.1021/acs.est.0c05295 33103887
    [Google Scholar]
  12. Borg K. Lennox A. Kaufman S. Tull F. Prime R. Rogers L. Dunstan E. Curbing plastic consumption: A review of single-use plastic behaviour change interventions. J. Clean. Prod. 2022 344 131077 10.1016/j.jclepro.2022.131077
    [Google Scholar]
  13. Idris S.N. Amelia T.S.M. Bhubalan K. Lazim A.M.M. Zakwan N.A.M.A. Jamaluddin M.I. Santhanam R. Amirul A.A.A. Vigneswari S. Ramakrishna S. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review. Environ. Res. 2023 231 Pt 1 115988 10.1016/j.envres.2023.115988 37105296
    [Google Scholar]
  14. Ho K.T.H. Kwok P.W.H. Chang S.S.Y. Chu A.M.Y. Gaps between attitudes and behavior in the use of disposable plastic tableware (DPT) and factors influencing sustainable dpt consumption: a study of hong kong undergraduates. Sustainability 2023 15 11 8958 10.3390/su15118958
    [Google Scholar]
  15. Silva R.R.A. Marques C.S. Arruda T.R. Teixeira S.C. Oliveira D.T.V. Biodegradation of polymers: stages, measurement, standards and prospects. Macromol 2023 3 2 371 399 10.3390/macromol3020023
    [Google Scholar]
  16. Sun Y. Wang D. Li X. Chen Y. Guo H. Public attitudes toward the whole life cycle management of plastics: A text-mining study in China. Sci. Total Environ. 2023 859 Pt 1 159981 10.1016/j.scitotenv.2022.159981 36356749
    [Google Scholar]
  17. Bozeman J.F. III Chopra S.S. James P. Muhammad S. Cai H. Tong K. Carrasquillo M. Rickenbacker H. Nock D. Ashton W. Heidrich O. Derrible S. Bilec M. Three research priorities for just and sustainable urban systems: Now is the time to refocus. J. Ind. Ecol. 2023 27 2 382 394 10.1111/jiec.13360
    [Google Scholar]
  18. Silvia L Louisa G João C João C M Leonel P Ana M M Chapter 8 - Algae-based bioplastics: Expanding algal polymers as materials for industrial applications. Applications Benefitting Health Developments in Applied Microbiology and Biotechnology United States Academic Press 2023 133 156 10.1016/B978‑0‑443‑18816‑9.00024‑1
    [Google Scholar]
  19. Ammala A. Bateman S. Dean K. Petinakis E. Sangwan P. Wong S. Yuan Q. Yu L. Patrick C. Leong K.H. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011 36 8 1015 1049 10.1016/j.progpolymsci.2010.12.002
    [Google Scholar]
  20. Karbalaei S. Hanachi P. Walker T.R. Cole M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. Int. 2018 25 36 36046 36063 10.1007/s11356‑018‑3508‑7 30382517
    [Google Scholar]
  21. Vijayaraman S. Mondal P. Nandan A. Siddiqui N.A. Presence of microplastic in water bodies and its impact on human health. Advances in Air Pollution Profiling and Control. Springer Transactions in Civil and Environmental Engineering 57-65. Siddiqui N. Tauseef S. Abbasi S. Khan F. Singapore Springer 2020 10.1007/978‑981‑15‑0954‑4_4
    [Google Scholar]
  22. Tian W. Song P. Zhang H. Duan X. Wei Y. Wang H. Wang S. Microplastic materials in the environment: Problem and strategical solutions. Prog. Mater. Sci. 2023 132 101035 10.1016/j.pmatsci.2022.101035
    [Google Scholar]
  23. Prata J.C. Costa D.J.P. Lopes I. Andrady A.L. Duarte A.C. Rocha-Santos T. A One Health perspective of the impacts of microplastics on animal, human and environmental health. Sci. Total Environ. 2021 777 146094 10.1016/j.scitotenv.2021.146094 33677304
    [Google Scholar]
  24. Sharma S. Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ. Sci. Pollut. Res. Int. 2017 24 27 21530 21547 10.1007/s11356‑017‑9910‑8 28815367
    [Google Scholar]
  25. Gateuille D. Naffrechoux E. Transport of persistent organic pollutants: Another effect of microplastic pollution? WIREs. Water 2022 9 5 e1600 10.1002/wat2.1600
    [Google Scholar]
  26. Zhang Y. Wang S. Olga V. Xue Y. Lv S. Diao X. Zhang Y. Han Q. Zhou H. The potential effects of microplastic pollution on human digestive tract cells. Chemosphere 2022 291 Pt 1 132714 10.1016/j.chemosphere.2021.132714 34743871
    [Google Scholar]
  27. Chang X. Fang Y. Wang Y. Wang F. Shang L. Zhong R. Microplastic pollution in soils, plants, and animals: A review of distributions, effects and potential mechanisms. Sci. Total Environ. 2022 850 157857 10.1016/j.scitotenv.2022.157857 35932864
    [Google Scholar]
  28. Michele S.H. Chapter 8 - The effects of microplastic pollution on aquatic organisms. Microplastic Contamination in Aquatic Environments Amsterdam, Netherlands Elsevier 2018 10.1016/B978‑0‑12‑813747‑5.00008‑4
    [Google Scholar]
  29. Xi M. Yuchen X. Zhong C. Yunbo Y. Zetang G. Lu J. Kai T. The impact of microplastic pollution on ecological environment: A review. Front. Biosci. 2022 27 2 46 10.31083/j.fbl2702046
    [Google Scholar]
  30. Pironti C. Ricciardi M. Motta O. Miele Y. Proto A. Montano L. Microplastics in the environment: intake through the food web, human exposure and toxicological effects. Toxics 2021 9 9 224 10.3390/toxics9090224 34564375
    [Google Scholar]
  31. Cole M. Lindeque P. Halsband C. Galloway T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011 62 12 2588 2597 10.1016/j.marpolbul.2011.09.025 22001295
    [Google Scholar]
  32. Hale R.C. Seeley M.E. Guardia M.J. Mai L. Zeng E.Y. A global perspective on microplastics. J. Geophys. Res. Oceans 2020 125 1 9 10.1029/2018JC014719
    [Google Scholar]
  33. Wright S.L. Thompson R.C. Galloway T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013 178 483 492 10.1016/j.envpol.2013.02.031 23545014
    [Google Scholar]
  34. Qi R. Jones D.L. Li Z. Liu Q. Yan C. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Sci. Total Environ. 2020 703 134722 10.1016/j.scitotenv.2019.134722 31767311
    [Google Scholar]
  35. Anitha A. Sowmya S. Kumar P.T.S. Deepthi S. Chennazhi K.P. Ehrlich H. Tsurkan M. Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014 39 9 1644 1667 10.1016/j.progpolymsci.2014.02.008
    [Google Scholar]
  36. Geyer R. Jambeck J.R. Law K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017 3 7 e1700782 10.1126/sciadv.1700782 28776036
    [Google Scholar]
  37. Hopewell J. Dvorak R. Kosior E. Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009 364 1526 2115 2126 10.1098/rstb.2008.0311 19528059
    [Google Scholar]
  38. Jiang T. Duan Q. Starch-based biodegradable materials: Challenges and opportunities. Adv Ind Eng. Poly Res. 3 8 18 2020 10.1016/j.aiepr.2019.11.003
    [Google Scholar]
  39. Chen Y.J. Bioplastics and their role in achieving global sustainability. J. Chem. Pharm. Res. 2014 6 226 231
    [Google Scholar]
  40. Surendren A. Mohanty A.K. Liu Q. Misra M. A review of biodegradable thermoplastic starches, their blends and composites: recent developments and opportunities for single-use plastic packaging alternatives. Green Chem. 2022 24 22 8606 8636 10.1039/D2GC02169B
    [Google Scholar]
  41. Ismail N.A. Tahir M.S. Yahya N. Wahid A.M.F. Khairuddin N.E. Hashim I. Synthesis and characterization of biodegradable starch-based bioplastics. Mat. Sci. Forum. 2016 846 673 678 10.4028/www.scientific.net/MSF.846.673
    [Google Scholar]
  42. Lambert S. Wagner M. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 2017 46 22 6855 6871 10.1039/C7CS00149E 28932844
    [Google Scholar]
  43. Babu R.P. O’Connor K. Seeram R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013 2 1 8 10.1186/2194‑0517‑2‑8 29470779
    [Google Scholar]
  44. Jesudason J.J. Marchessault R.H. Saito T. Enzymatic degradation of poly([R,S] β-hydroxybutyrate). J. Environ. Polym. Degrad. J. Polym. Environ. 1993 1 89 98 10.1007/BF01418201
    [Google Scholar]
  45. Kalia S. Averous L. 2011
  46. Iwata T. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 2015 54 11 3210 3215 10.1002/anie.201410770 25583677
    [Google Scholar]
  47. Garrison T. Murawski A. Quirino R. Bio-based polymers with potential for biodegradability. Polymers 2016 8 7 262 10.3390/polym8070262 30974537
    [Google Scholar]
  48. Gu J.D. Ford T.E. Mitchell R. Chapter 30 Microbial degradation of materials: General processes. 28th March. Uhlig’s Corrosion Handbook. Hoboken, NJ, USA John Wiley and Sons 2011 10.1002/9780470872864.ch26
    [Google Scholar]
  49. Okolie O. Kumar A. Edwards C. Lawton L.A. Oke A. McDonald S. Thakur V.K. Njuguna J. Bio-based sustainable polymers and materials: from processing to biodegradation. J. Compos. Sci. 2023 7 6 213 10.3390/jcs7060213
    [Google Scholar]
  50. Samir A. Ashour F.H. Hakim A.A.A. Bassyouni M. Mohamed B. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 2022 6 1 68 10.1038/s41529‑022‑00277‑7
    [Google Scholar]
  51. Abdullah A.H.D. Fikriyyah A.K. Putri O.D. Asri P.P.P. Fabrication and characterization of poly lactic acid (PLA)-starch based bioplastic composites. IOP Conf. Series Mater. Sci. Eng. 2019 553 1 012052 10.1088/1757‑899X/553/1/012052
    [Google Scholar]
  52. Tsuji H. Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol. Chem. Phys. 1996 197 10 3483 3499 10.1002/macp.1996.021971033
    [Google Scholar]
  53. Zhong Y. Godwin P. Jin Y. Xiao H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research 2020 3 1 27 35 10.1016/j.aiepr.2019.11.002
    [Google Scholar]
  54. Marichelvam M.K. Jawaid M. Asim M. Corn and Rice Starch-based Bio-plastics as alternative packaging materials. Fibers (Basel) 2019 7 4 32 10.3390/fib7040032
    [Google Scholar]
  55. Nishida H. Tokiwa Y. Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. II. Effects of crystal structure on microbial degradation. J. Environ. Polym. Degrad. 1993 1 1 65 80 10.1007/BF01457654
    [Google Scholar]
  56. Kumagai Y. Doi Y. Synthesis of a block copolymer of poly(3-hydroxybutyrate) and poly(ethylene glycol) and its application to biodegradable polymer blends. J. Environ. Polym. Degrad. 1993 1 2 81 87 10.1007/BF01418200
    [Google Scholar]
  57. Jones A. Mandal A. Sharma S. Protein‐based bioplastics and their antibacterial potential. J. Appl. Polym. Sci. 2015 132 18 app.41931 10.1002/app.41931
    [Google Scholar]
  58. Rahman A Miller C Microalgae as a source of Bioplastics. Algal Green Chemistry Recent Progress in Biotechnology Amsterdam, Netherlands Elsevier 2017 121 138 10.1016/B978‑0‑444‑63784‑0.00006‑0
    [Google Scholar]
  59. J B.R. V S.G. Review on food waste valorisation for bioplastic production towards a circular economy: sustainable approaches and biodegradability assessment. Sustain. Energy Fuels 2023 7 14 3165 3184 10.1039/D3SE00500C
    [Google Scholar]
  60. Liang G Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production. Crit. Rev. Biotechnol. 2023 44 2 236 254 10.1080/07388551.2022.2157241
    [Google Scholar]
  61. Yaradoddi J. Patil V. Ganachari S. Banapurmath N. Hunashyal A. Shettar A. Biodegradable plastic production from fruit waste material and its sustainable use for green applications. Int. J. Pharm. Res. Allied. Sci. 2016 5 72 81
    [Google Scholar]
  62. Jabeen N. Majid I. Nayik G.A. Fatih Y. Bioplastics and food packaging: A review. Cogent Food Agric. 2015 1 1 1117749 10.1080/23311932.2015.1117749
    [Google Scholar]
  63. Perotto G. Ceseracciu L. Simonutti R. Paul U.C. Bioplastics from vegetable waste via an eco-friendly water-based process. Green Chem 2018 20 4 894 902
    [Google Scholar]
  64. Chumee J Khemmakama P Carboxymethyl cellulose from pineapple peel: Useful green bioplastic. Adv. Mater. Res. Trans. Tech. Publicat. 2014 979 366 369 10.4028/www.scientific.net/AMR.979.366
    [Google Scholar]
  65. Santana R.F. Bonomo R.C.F. Gandolfi O.R.R. Rodrigues L.B. Santos L.S. dos Santos Pires A.C. Oliveira D.C.P. Costa Ilhéu Fontan D.R. Veloso C.M. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. J. Food Sci. Technol. 2018 55 1 278 286 10.1007/s13197‑017‑2936‑6 29358820
    [Google Scholar]
  66. Sultan N.F.K. Johari W.L.W. The development of banana peel/corn starch bioplastic film: a preliminary study. Bioremed. Sci. Technol. Res. 2017 5 1 12 17 10.54987/bstr.v5i1.352
    [Google Scholar]
  67. Bof M.J. Bordagaray V.C. Locaso D.E. García M.A. Chitosan molecular weight effect on starch-composite film properties. Food Hydrocoll. 2015 51 281 294 10.1016/j.foodhyd.2015.05.018
    [Google Scholar]
  68. Wu C.S. Preparation and characterization of polyhydroxyalkanoate bioplastic-based green renewable composites from rice husk. J. Polym. Environ. 2014 22 3 384 392 10.1007/s10924‑014‑0662‑y
    [Google Scholar]
  69. Swain S.N. Biswal S.M. Nanda P.K. Nayak P.L. Biodegradable soy-based plastics: opportunities and challenges. J. Polym. Environ. 2004 12 1 35 42 10.1023/B:JOOE.0000003126.14448.04
    [Google Scholar]
  70. Li H. Zhou M. Mohammed A.E.G.A.Y. Chen L. Zhou C. From fruit and vegetable waste to degradable bioplastic films and advanced materials: A review. Sustain. Chem. Pharm. 2022 30 100859 10.1016/j.scp.2022.100859
    [Google Scholar]
  71. Adeshina F. Production of smart packaging from sustainable materials, Book edi; Green Sustainable Process for Chemical and Environmental Engineering and Science. Methods for Producing Smart Packaging Amsterdam, Netherlands Elsevier 2023 185 196
    [Google Scholar]
  72. Jayasekara S. Dissanayake L. Jayakody L.N. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int. J. Food Microbiol. 2022 377 109785 10.1016/j.ijfoodmicro.2022.109785 35752069
    [Google Scholar]
  73. Marya R. Abdellah H. Kacem A.Q. Rachid B. Chapter 21: Bioplastic-Based Nanocomposites for Smart Materials. Handbook of Bioplastics and Bio composites Engineering Applications. Hoboken, New Jersey Wiley Blackwell 2022 457 470
    [Google Scholar]
  74. Breslin V.T. Degradation of starch-plastic composites in a municipal solid waste landfill. J. Environ. Polym. Degrad. 1993 1 2 127 141 10.1007/BF01418206
    [Google Scholar]
  75. Narencic T. Recent advances in bioplastics: application and biodegradation. Polymers MDPI 2020 12 920 1 38
    [Google Scholar]
  76. Padermshoke A. Kajiwara T. An Y. Takigawa M. Nguyen V.T. Masunaga H. Kobayashi Y. Ito H. Sasaki S. Takahara A. Characterization of photo-oxidative degradation process of polyolefins containing oxo-biodegradable additives. Polymer 2022 262 125455 10.1016/j.polymer.2022.125455
    [Google Scholar]
  77. Nita T. Constantin N.C. Mihai R. Biodegradable polymer blends based on polyethylene and natural polymers degradation in Soil. J. Polym. Eng. 2004 20 287
    [Google Scholar]
  78. Laurie W Understanding how polyolefins biodegrade. Polymers and Soft Materials News Materials Amsterdam, Netherlands Elsevier 2022
    [Google Scholar]
  79. Wiphanurat C. Hanthanon P. Kaisone T. Magaraphan R. Nampitch T. Properties of HDPE/biodegradable polymer blends using modified rubber. Appl. Mech. Mater. 2017 873 101 106 10.4028/www.scientific.net/AMM.873.101
    [Google Scholar]
  80. Madhu G. Bhunia H. Bajpai P.K. Nando G.B. Physico-mechanical properties and biodegradation of oxo-degradable HDPE/PLA blends. Polym. Sci. Ser. A 2016 58 1 57 75 10.1134/S0965545X16010077
    [Google Scholar]
  81. Madhu G. Bhunia H. Bajpai P.K. Blends of high density polyethylene and poly( l ‐lactic acid): Mechanical and thermal properties. Polym. Eng. Sci. 2014 54 9 2155 2160 10.1002/pen.23764
    [Google Scholar]
  82. Zeraatpishe M. Hassanajili S. Investigation of physical and rheological properties of LDPE / HDPE /thermoplastic starch biodegradable blend films. Polym. Eng. Sci. 2023 63 9 3116 3134 10.1002/pen.26432
    [Google Scholar]
  83. Arcana I.M. Bundjali B. Yudistira I. Jariah B. Sukria L. Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability. Polym. J. 2007 39 12 1337 1344 10.1295/polymj.PJ2006250
    [Google Scholar]
  84. Imre B. Pukánszky B. Compatibilization in bio-based and biodegradable polymer blends. Eur. Polym. J. 2013 49 6 1215 1233 10.1016/j.eurpolymj.2013.01.019
    [Google Scholar]
  85. Chiellini E. Cinelli P. Chiellini F. Imam S.H. Environmentally degradable bio-based polymeric blends and composites. Macromol. Biosci. 2004 4 3 218 231 10.1002/mabi.200300126 15468211
    [Google Scholar]
  86. Rosa D.S. Grillo D. Bardi M.A.G. Calil M.R. Guedes C.G.F. Ramires E.C. Frollini E. Mechanical, thermal and morphological characterization of polypropylene/biodegradable polyester blends with additives. Polym. Test. 2009 28 8 836 842 10.1016/j.polymertesting.2009.07.006
    [Google Scholar]
  87. Kumar R. Sadeghi K. Jang J. Seo J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. Sci. Total Environ. 2023 882 163446 10.1016/j.scitotenv.2023.163446 37075991
    [Google Scholar]
  88. Chinedu H.O. Onyekachi O. Egeolu O.F.C. Comparative Analysis of the Tensile and Biodegradable Performances of Some Selected Modified Starch Filled Polypropylene Blends. Amer. J. Chem. Mat. Sci. 2015 2 6 13
    [Google Scholar]
  89. żuchowska D. Steller R. Meissner W. Structure and properties of degradable polyolefin-starch blends. Polym. Degrad. Stabil. 1998 60 2-3 471 480 10.1016/S0141‑3910(97)00110‑9
    [Google Scholar]
  90. Santosh D.W. Jyoti P.J. Polyolefin-Based Natural Fiber Composites. Cellulose Fibers: Bio- and Nano-Polymer Composites. Kalia S. Kaith B. Kaur I. Berlin, Heidelberg Springer 2011 10.1007/978‑3‑642‑17370‑7_14
    [Google Scholar]
  91. Lee B.H. Kim H.J. Yu W.R. Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers Polym. 2009 10 1 83 90 10.1007/s12221‑009‑0083‑z
    [Google Scholar]
  92. Mohanty A.K. Misra M. Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000 276-277 1 1 24 10.1002/(SICI)1439‑2054(20000301)276:1<1::AID‑MAME1>3.0.CO;2‑W
    [Google Scholar]
  93. Rana A.K. Mandal A. Bandyopadhyay S. Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos. Sci. Technol. 2003 63 6 801 806 10.1016/S0266‑3538(02)00267‑1
    [Google Scholar]
  94. George J. Bhagawan S.S. Prabhakaran N. Thomas S. Short pineapple‐leaf‐fiber‐reinforced low‐density polyethylene composites. J. Appl. Polym. Sci. 1995 57 7 843 854 10.1002/app.1995.070570708
    [Google Scholar]
  95. Lee H.S. Cho D. Han S.O. Effect of natural fiber surface treatments on the interfacial and mechanical properties of henequen/polypropylene biocomposites. Macromol. Res. 2008 16 5 411 417 10.1007/BF03218538
    [Google Scholar]
  96. Kim S.J. Moon J.B. Kim G.H. Ha C-S. Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polym. Test. 2008 27 7 801 806 10.1016/j.polymertesting.2008.06.002
    [Google Scholar]
  97. Celia D. Eduardo F. Eloi G. Jaume G. Development and characterization of environmentally friendly wood plastic composites from biobased polyethylene and short natural fibers processed by injection moulding. Polymers 1692 13 11 1692 10.3390/polym13111692
    [Google Scholar]
  98. Pracella M. Haque M.M-U. Alvarez V. Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2010 2 4 554 574 10.3390/polym2040554
    [Google Scholar]
  99. Popov A.A. Biodegradable polymer compositions based on polyolefins. Polym. Sci. Ser. A 2021 63 6 623 636 10.1134/S0965545X21060092
    [Google Scholar]
  100. Pracella M. Chionna D. Anguillesi I. Kulinski Z. Piorkowska E. Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos. Sci. Technol. 2006 66 13 2218 2230 10.1016/j.compscitech.2005.12.006
    [Google Scholar]
  101. Saheb D.N. Jog J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999 18 4 351 363 10.1002/(SICI)1098‑2329(199924)18:4<351::AID‑ADV6>3.0.CO;2‑X
    [Google Scholar]
  102. Yu L. Dean K. Li L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006 31 6 576 602 10.1016/j.progpolymsci.2006.03.002
    [Google Scholar]
  103. George J. Sreekala M.S. Thomas S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 2001 41 9 1471 1485 10.1002/pen.10846
    [Google Scholar]
  104. Oksman K. Lindberg H. Holmgren A. The nature and location of SEBS-MA compatibilizer in polyethylene-wood flour composites. J. Appl. Polym. Sci. 1998 69 1 201 209 10.1002/(SICI)1097‑4628(19980705)69:1<201::AID‑APP23>3.0.CO;2‑0
    [Google Scholar]
  105. Ramachandran A. Rangappa M.S. Kushvaha V. Khan A. Seingchin S. Dhakal H.N. Modification of fibers and matrices in natural fiber reinforced polymer composites: A comprehensive review. Macromol. Rapid Commun. 2022 43 17 2100862 10.1002/marc.202100862 35609116
    [Google Scholar]
  106. Gassan J. Bledzki A.K. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Compos., Part A Appl. Sci. Manuf. 1997 28 12 1001 1005 10.1016/S1359‑835X(97)00042‑0
    [Google Scholar]
  107. Feng D. Caulfield D.F. Sanadi A.R. Effect of compatibilizer on the structure‐property relationships of kenaf‐fiber/polypropylene composites. Polym. Compos. 2001 22 4 506 517 10.1002/pc.10555
    [Google Scholar]
  108. Espert A. Camacho W. Karlson S. Thermal and thermomechanical properties of biocomposites made from modified recycled cellulose and recycled polypropylene. J. Appl. Polym. Sci. 2003 89 9 2353 2360 10.1002/app.12091
    [Google Scholar]
  109. Zampaloni M. Pourboghrat F. Yankovich S.A. Rodgers B.N. Moore J. Drzal L.T. Mohanty A.K. Misra M. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Compos., Part A Appl. Sci. Manuf. 2007 38 6 1569 1580 10.1016/j.compositesa.2007.01.001
    [Google Scholar]
  110. Naikwadi A.T. Sharma B.K. Bhatt K.D. Mahanwar P.A. Gamma radiation processed polymeric materials for high performance applications: a review. Front Chem. 2022 10 837111 10.3389/fchem.2022.837111 35360545
    [Google Scholar]
  111. Thakur S. Choudhury J. Sharma B. Verma A. Tamulevicius S. Thakur V.K. Recent developments in recycling of polystyrene based plastics. Curr. Opin. Green Sustain. Chem. 2018 13 32 38 10.1016/j.cogsc.2018.03.011
    [Google Scholar]
  112. Mtibe A. Motloung M.P. Bandyopadhyay J. Ray S.S. Synthetic biopolymers and their composites: Advantages and limitations-An overview. Macromol. Rapid Commun. 2021 42 15 2100130 10.1002/marc.202100130 34216411
    [Google Scholar]
  113. George N. Debroy A. Bhat S. Bindal S. Singh S. Bio-waste to bioplastics: an eco-friendly approach for a sustainable future. J. Appl. Biotech. Rep. 2021 8 3 221 233 10.30491/JABR.2021.259403.1318
    [Google Scholar]
  114. Hashimah N.A. Sustainability Challenges and Future Perspective of Biopolymer. Cham Springer 2022 373 389
    [Google Scholar]
  115. Hamad K. Kaseem M. Deri F. Biodegradable polymer blends and their applications. J. Polym. Res. 2021 28 12 345 360
    [Google Scholar]
  116. John M.J. Thomas S. Biofibres and biocomposites. Carbohydr. Polym. 2022 71 3 343 364 10.1016/j.carbpol.2007.05.040
    [Google Scholar]
  117. Gupta B. Revagade N. Hilborn J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2020 32 4 455 482 10.1016/j.progpolymsci.2007.01.005
    [Google Scholar]
  118. Thakur V.K. Singh K. Ahuja T. Bio-composites for sustainable applications. Mater. Today Proc. 2021 45 5 1289 1302
    [Google Scholar]
  119. Chen G.Q. Patel M.K. Plastics derived from biological sources: Present and future prospects. Chem. Rev. 2021 121 6 12345 12378
    [Google Scholar]
  120. Jambeck J.R. Law K.L. Geyer R. Bioplastics: The new frontier in the fight against plastic pollution. Nat. Sustain. 2022 5 2 98 110
    [Google Scholar]
  121. Wei R. Zimmermann W. Yoshida S. Biodegradable plastics in medical applications: Advances and challenges. Prog. Polym. Sci. 2023 134 7 210 234
    [Google Scholar]
  122. Scientific D PHA-based bioplastics: Applications and environmental benefits. J. Mater. Sci. 2022 56 9 4501 4512
    [Google Scholar]
  123. Nagaraj K. Thangamuniyandi P. Velmurugan G. Alotaibi K.M. Raja K. Sharma B.K. Green synthesis of eosin-y coated silver nanoparticles for sensitive and selective fluorometric detection of L-dopa. J. Fluoresc. 2025 1 12 10.1007/s10895‑024‑04116‑7 39812755
    [Google Scholar]
  124. Patil H.V. Kulkarni R.D. Wadaan M.A. Badgujar N.P. Nagaraj K. Raja K. Ghodake G.S. Synthesis and characterization of oleyl-based green surfactants for enhanced pigment dispersion. J. Indian Chem. Soc. 2025 102 2 101583 10.1016/j.jics.2025.101583
    [Google Scholar]
  125. Nagaraj K. Radha S. Deepa C.G. Raja K. Umapathy V. Badgujar N.P. Parekh N.M. Manimegalai T. Devi L.A. Uthra C. Photocatalytic advancements and applications of titanium dioxide (TiO2): progress in biomedical, environmental, and energy sustainability. Next Research 2025 2 1 100180 10.1016/j.nexres.2025.100180
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461372269250503082219
Loading
/content/journals/cgc/10.2174/0122133461372269250503082219
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test