Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Artificial Intelligence (AI) has made significant advancements in recent years in the development and genetic editing of living organisms, especially yeasts, which play a key role in producing biofuels. This article examines how AI contributes to accelerating the growth of yeast strains for biofuel production and progress toward sustainable development. In this review, extensive searches were conducted using keywords such as artificial intelligence, yeast, biofuel, and fermentation to find articles relevant to the research objective. The results revealed that using AI-modified yeasts to create alcohol allows for higher yield production, heavy metal absorption and conversion, more efficient use of bioplastics, and lactic acid synthesis. This turns them into a reliable and environmentally friendly alternative to fossil fuels. Thus, Artificial Intelligence plays a significant role in advancing yeasts for biofuel production. These advancements lead to the development of yeast strains with higher biofuel production yields and a reduction in biological pollution.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461336557241210051632
2025-02-04
2025-12-14
Loading full text...

Full text loading...

References

  1. López-SandinI. Zavala-GarcíaF. LevinL. RuizH.A. Hernández-LunaC.E. Gutiérrez-SotoG. Evaluation of bioethanol production from sweet sorghum variety roger under different tillage and fertilizer treatments.BioEnergy Res.20211441058106910.1007/s12155‑020‑10215‑7
    [Google Scholar]
  2. KhaireK.C. MoholkarV.S. GoyalA. Bioconversion of sugarcane tops to bioethanol and other value added products: An overview.Mater. Sci. Energy Technol.20214546810.1016/j.mset.2020.12.004
    [Google Scholar]
  3. BessouC. FerchaudF. GabrielleB. MaryB. Biofuels, greenhouse gases and climate change.Sustain. Agric20112365468
    [Google Scholar]
  4. KhannaM. ChenX. Economic, energy security, and greenhouse gas effects of biofuels: Implications for policy.Am. J. Agric. Econ.20139551325133110.1093/ajae/aat037
    [Google Scholar]
  5. MallaF.A. BandhS.A. WaniS.A. HoangA.T. SofiN.A. Biofuels: Potential alternatives to fossil fuels.Biofuels in circular economy.Springer2023115
    [Google Scholar]
  6. LiuZ. MoradiH. ShiS. DarvishiF. Yeasts as microbial cell factories for sustainable production of biofuels.Renew. Sustain. Energy Rev.202114311090710.1016/j.rser.2021.110907
    [Google Scholar]
  7. KoJ.K. LeeJ.H. JungJ.H. LeeS.M. Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production.Renew. Sustain. Energy Rev.202013411039010.1016/j.rser.2020.110390
    [Google Scholar]
  8. RuchalaJ. SibirnyA.A. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.FEMS Microbiol. Rev.2021454fuaa06910.1093/femsre/fuaa06933316044
    [Google Scholar]
  9. ChatterjeeS. MohanS.V. Yeast fermentation towards biodiesel: Maximizing resource recovery by integrating with biohydrogen production in biorefinery framework.Biomass Bioenergy202014210574710.1016/j.biombioe.2020.105747
    [Google Scholar]
  10. RuanR. ZhangY. ChenP. LiuS. FanL. ZhouN. Biofuels: Introduction.Biofuels: Alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels.Elsevier201934310.1016/B978‑0‑12‑816856‑1.00001‑4
    [Google Scholar]
  11. MeenaM. ShubhamS. ParitoshK. PareekN. VivekanandV. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling.Bioresour. Technol.202134012564210.1016/j.biortech.2021.12564234315128
    [Google Scholar]
  12. MohantyS.K. SwainM.R. Bioethanol production from corn and wheat: Food, fuel, and future.Bioethanol production from food crops.Elsevier2019455910.1016/B978‑0‑12‑813766‑6.00003‑5
    [Google Scholar]
  13. PinziS. LeivaD. López-GarcíaI. Redel-MacíasM.D. DoradoM.P. Latest trends in feedstocks for biodiesel production.Biofuels Bioprod. Biorefin.20148112614310.1002/bbb.1435
    [Google Scholar]
  14. HuynhL-H. KasimN.S. JuY-H. Biodiesel production from waste oils.Biofuel.Elsevier2011375396
    [Google Scholar]
  15. ChenY. NieX. YeJ. WangY. ChenJ. XuJ. Biodiesel from microorganisms: A review.Energy Technol. (Weinheim)2021910200105310.1002/ente.202001053
    [Google Scholar]
  16. JacobusA.P. GrossJ. EvansJ.H. Ceccato-AntoniniS.R. GombertA.K. Saccharomyces cerevisiae strains used industrially for bioethanol production.Essays Biochem.202165214716110.1042/EBC2020016034156078
    [Google Scholar]
  17. VamvakasS.S. KapolosJ. Factors affecting yeast ethanol tolerance and fermentation efficiency.World J. Microbiol. Biotechnol.202036811410.1007/s11274‑020‑02881‑832656576
    [Google Scholar]
  18. WanZ. HuH. LiuK. QiaoY. GuoF. WangC. XinF. ZhangW. JiangM. Engineering industrial yeast for improved tolerance and robustness.Crit. Rev. Biotechnol.202411710.1080/07388551.2024.232667738503543
    [Google Scholar]
  19. da Silva FernandesF. de SouzaÉ.S. CarneiroL.M. Alves SilvaJ.P. de SouzaJ.V.B. da Silva BatistaJ. Current ethanol production requirements for the yeast Saccharomyces cerevisiae.Int. J. Microbiol.2022222787883010.1155/2022/7878830
    [Google Scholar]
  20. WangW.Y. WangB.P. SuH.S. WeiM.M. WeiY.T. NiuF.X. Key role of K+ and Ca2+ in high-yield ethanol production by] S. Cerevisiae from concentrated sugarcane molasses.Microb. Cell Fact.202423112310.1186/s12934‑024‑02401‑538724968
    [Google Scholar]
  21. NandyS.K. SrivastavaR.K. A review on sustainable yeast biotechnological processes and applications.Microbiol. Res.2018207839010.1016/j.micres.2017.11.01329458873
    [Google Scholar]
  22. SharmaJ. KumarV. PrasadR. GaurN.A. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges.Biotechnol. Adv.20225610792510.1016/j.biotechadv.2022.10792535151789
    [Google Scholar]
  23. AlpersteinL. GardnerJ.M. SundstromJ.F. SumbyK.M. JiranekV. Yeast bioprospecting versus synthetic biology—which is better for innovative beverage fermentation?Appl. Microbiol. Biotechnol.202010451939195310.1007/s00253‑020‑10364‑x31953561
    [Google Scholar]
  24. MichouS. TsoukoE. VastarouchaE.S. DiamantopoulouP. PapanikolaouS. Growth potential of selected yeast strains cultivated on xylose-based media mimicking lignocellulosic wastewater streams: High production of microbial lipids by Rhodosporidium toruloides.Fermentation202281271310.3390/fermentation8120713
    [Google Scholar]
  25. PalladinoF. RodriguesR.C.L.B. CadeteR.M. BarrosK.O. RosaC.A. Novel potential yeast strains for the biotechnological production of xylitol from sugarcane bagasse.Biofuels Bioprod. Biorefin.202115369070210.1002/bbb.2196
    [Google Scholar]
  26. KwakS. JoJ.H. YunE.J. JinY.S. SeoJ.H. Production of biofuels and chemicals from xylose using native and engineered yeast strains.Biotechnol. Adv.201937227128310.1016/j.biotechadv.2018.12.00330553928
    [Google Scholar]
  27. NaveedM.H. KhanM.N.A. MukarramM. NaqviS.R. AbdullahA. HaqZ.U. UllahH. MohamadiH.A. Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches.Renew. Sustain. Energy Rev.202418911390610.1016/j.rser.2023.113906
    [Google Scholar]
  28. PereiraR.D. BadinoA.C. CruzA.J.G. Framework based on artificial intelligence to increase industrial bioethanol production.Energy Fuels20203444670467710.1021/acs.energyfuels.0c00033
    [Google Scholar]
  29. OkolieJ.A. Introduction of machine learning and artificial intelligence in biofuel technology.Curr. Opin. Green Sustain. Chem.20244710092810.1016/j.cogsc.2024.100928
    [Google Scholar]
  30. AhmadJ. AwaisM. RashidU. NgamcharussrivichaiC. Raza NaqviS. AliI. A systematic and critical review on effective utilization of artificial intelligence for bio-diesel production techniques.Fuel202333812737910.1016/j.fuel.2022.127379
    [Google Scholar]
  31. BhardwajA. KishoreS. PandeyD.K. Artificial intelligence in biological sciences.Life2022129143010.3390/life1209143036143468
    [Google Scholar]
  32. TullioV. Yeast genomics and its applications in biotechnological processes: What is our present and near future?J. Fungi20228775210.3390/jof807075235887507
    [Google Scholar]
  33. Itto-NakamaK. WatanabeS. KondoN. OhnukiS. KikuchiR. NakamuraT. OgasawaraW. KasaharaK. OhyaY. AI-based forecasting of ethanol fermentation using yeast morphological data.Biosci. Biotechnol. Biochem.202186112513410.1093/bbb/zbab18834751736
    [Google Scholar]
  34. TseT.J. WiensD.J. ReaneyM.J.T. Production of bioethanol—A review of factors affecting ethanol yield.Fermentation20217426810.3390/fermentation7040268
    [Google Scholar]
  35. KrajangM. MalairuangK. SuknaJ. RattanapraditK. ChamsartS. Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters.Biotechnol. Biofuels20211416810.1186/s13068‑021‑01903‑333726825
    [Google Scholar]
  36. OwusuW.A. MarfoS.A. Artificial intelligence application in bioethanol production.Int. J. Energy Res.202320231784483510.1155/2023/7844835
    [Google Scholar]
  37. MerdanO. ŞişmanA.S. AksoyS.A. KızılS. TüzemenN.Ü. YılmazE. EnerB. Investigation of the defective growth pattern and multidrug resistance in a clinical isolate of Candida glabrata using whole-genome sequencing and computational biology applications.Microbiol. Spectr.2022104e00776e2210.1128/spectrum.00776‑2235867406
    [Google Scholar]
  38. D’AgaroE. Artificial intelligence used in genome analysis studies.EuroBiotech J.201822788810.2478/ebtj‑2018‑0012
    [Google Scholar]
  39. van AalstA.C.A. van der MeulenI.S. JansenM.L.A. MansR. PronkJ.T. Co-cultivation of Saccharomyces cerevisiae strains combines advantages of different metabolic engineering strategies for improved ethanol yield.Metab. Eng.20238015116210.1016/j.ymben.2023.09.01037751790
    [Google Scholar]
  40. AdebamiG.E. KuilaA. AjunwaO.M. FasikuS.A. AsemoloyeM.D. Genetics and metabolic engineering of yeast strains for efficient ethanol production.J. Food Process Eng.2022457e1379810.1111/jfpe.13798
    [Google Scholar]
  41. YuanB. WangW.B. WangY.T. ZhaoX.Q. Regulatory mechanisms underlying yeast chemical stress response and development of robust strains for bioproduction.Curr. Opin. Biotechnol.20248610307210.1016/j.copbio.2024.10307238330874
    [Google Scholar]
  42. QiuX. ZhangJ. ZhouJ. FangZ. ZhuZ. LiJ. DuG. Stress tolerance phenotype of industrial yeast: Industrial cases, cellular changes, and improvement strategies.Appl. Microbiol. Biotechnol.2019103166449646210.1007/s00253‑019‑09993‑831256230
    [Google Scholar]
  43. ShenD. HeX. WengP. LiuY. WuZ. A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation.FEMS Yeast Res.2022221foac05010.1093/femsyr/foac05036288242
    [Google Scholar]
  44. PatraP. B RD. KunduP. DasM. GhoshA. Recent advances in machine learning applications in metabolic engineering.Biotechnol. Adv.20236210806910.1016/j.biotechadv.2022.10806936442697
    [Google Scholar]
  45. de JonghR.P.H. van DijkA.D.J. JulsingM.K. SchaapP.J. de RidderD. Designing eukaryotic gene expression regulation using machine learning.Trends Biotechnol.202038219120110.1016/j.tibtech.2019.07.00731431299
    [Google Scholar]
  46. HelmyM. SmithD. SelvarajooK. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering.Metab. Eng. Commun.202011e0014910.1016/j.mec.2020.e0014933072513
    [Google Scholar]
  47. FiamenghiM.B. BuenoJ.G.R. CamargoA.P. BorelliG. CarazzolleM.F. PereiraG.A.G. dos SantosL.V. JoséJ. Machine learning and comparative genomics approaches for the discovery of xylose transporters in yeast.Biotechnol. Biofuels Bioprod.20221515710.1186/s13068‑022‑02153‑735596177
    [Google Scholar]
  48. GrinbergN.F. OrhoborO.I. KingR.D. An evaluation of machine-learning for predicting phenotype: Studies in yeast, rice, and wheat.Mach. Learn.2020109225127710.1007/s10994‑019‑05848‑532174648
    [Google Scholar]
  49. den HaanR. KroukampH. MertM. BloomM. GörgensJ.F. van ZylW.H. Engineering Saccharomyces cerevisiae for next generation ethanol production.J. Chem. Technol. Biotechnol.201388698399110.1002/jctb.4068
    [Google Scholar]
  50. LaluceC. SchenbergA.C.G. GallardoJ.C.M. CoradelloL.F.C. Pombeiro-SponchiadoS.R. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol-A review.Appl. Biochem. Biotechnol.201216681908192610.1007/s12010‑012‑9619‑622391693
    [Google Scholar]
  51. Ceccato-AntoniniS.R. Microbiology of Ethanol Fermentation in Sugarcane Biofuels: Fundamentals.Springer202210.1007/978‑3‑031‑12292‑7
    [Google Scholar]
  52. Franco-DuarteR. UmekL. ZupanB. SchullerD. Computational approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection.Yeast2009261267569210.1002/yea.172819894212
    [Google Scholar]
  53. KhamwachirapithakP. Sae-TangK. MhuantongW. TanapongpipatS. ZhaoX.Q. LiuC.G. WeiD.Q. ChampredaV. RunguphanW. Optimizing ethanol production in Saccharomyces cerevisiae at ambient and elevated temperatures through machine learning-guided combinatorial promoter modifications.ACS Synth. Biol.202312102897290810.1021/acssynbio.3c0019937681736
    [Google Scholar]
  54. BarbosaC. RamalhosaE. VasconcelosI. ReisM. Mendes-FerreiraA. Machine learning techniques disclose the combined effect of fermentation conditions on yeast mixed-culture dynamics and wine quality.Microorganisms202210110710.3390/microorganisms1001010735056556
    [Google Scholar]
  55. KimG.B. KimW.J. KimH.U. LeeS.Y. Machine learning applications in systems metabolic engineering.Curr. Opin. Biotechnol.2020641910.1016/j.copbio.2019.08.01031580992
    [Google Scholar]
  56. HuangJ. LiC.D. ZhaoH. YuM. ZhangA. FangB. Artificial intelligence system for enhanced automated 1,3-propanediol green biosynthesis.Green Chem.202325229175918610.1039/D3GC01586F
    [Google Scholar]
  57. Sewsynker-SukaiY. FaloyeF. KanaE.B.G. Artificial neural networks: An efficient tool for modelling and optimization of biofuel production (mini review).Biotechnol. Biotechnol. Equip.201731222123510.1080/13102818.2016.1269616
    [Google Scholar]
  58. XuZ. TheodoropoulosC. PittmanJ.K. Optimization of a Chlorella-Saccharomyces co–culture system for enhanced metabolite productivity.Algal Res.20247910345510.1016/j.algal.2024.103455
    [Google Scholar]
  59. EswariJ.S. SuryawanshiN. Optimization of Sustainable Enzymes Production: Artificial Intelligence and Machine Learning Techniques.CRC Press202210.1201/9781003292333
    [Google Scholar]
  60. DixitM. ChhabraD. ShuklaP. Optimization of endoglucanase-lipase-amylase enzyme consortium from Thermomyces lanuginosus VAPS25 using Multi-Objective genetic algorithm and their bio-deinking applications.Bioresour. Technol.202337012846710.1016/j.biortech.2022.12846736509307
    [Google Scholar]
  61. KhanalS.K. TarafdarA. YouS. Artificial intelligence and machine learning for smart bioprocesses.Elsevier2023128826
    [Google Scholar]
  62. WangK. ChenJ. MartiniukJ. MaX. LiQ. MeasdayV. LuX. Species identification and strain discrimination of fermentation yeasts Saccharomyces cerevisiae and Saccharomyces uvarum using Raman spectroscopy and convolutional neural networks.Appl. Environ. Microbiol.20238912e01673e2310.1128/aem.01673‑2338038459
    [Google Scholar]
  63. SharmilaV.G. ShanmugavelS.P. BanuJ.R. A review on emerging technologies and machine learning approaches for sustainable production of biofuel from biomass waste.Biomass Bioenergy202418010699710.1016/j.biombioe.2023.106997
    [Google Scholar]
  64. KhasimS. GhoshH. RahatI.S. ShaikK. YesubabuM. Deciphering microorganisms through intelligent image recognition: machine learning and deep learning approaches, challenges, and advancements.EAI Endorsed Transactions202410
    [Google Scholar]
  65. SahaR. ChauhanA. Rastogi VermaS. Machine learning: An advancement in biochemical engineering.Biotechnol. Lett.202446449751910.1007/s10529‑024‑03499‑838902585
    [Google Scholar]
  66. ScholesA.N. StueckerT.N. HoodS.E. LockeC.J. StacyC.L. ZhangQ. LewisJ.A. Natural variation in yeast reveals multiple paths for acquiring higher stress resistance.BMC Biol.202422114910.1186/s12915‑024‑01945‑738965504
    [Google Scholar]
  67. RilesL. FayJ.C. Genetic basis of variation in heat and ethanol tolerance in Saccharomyces cerevisiae. G3: Genes, genomes.Genetics201991179188[PMID: 31754017
    [Google Scholar]
  68. SreeharshaR.V. Venkata MohanS. Genome mining and metabolic engineering of photosynthetic microbes for value addition.Microbial Photosynthesis.Springer2024139154
    [Google Scholar]
  69. ZafarI. RafiqueA. FazalJ. ManzoorM. AinQ.U. RayanR.A. Genome and Gene editing by Artificial Intelligence programs. Advanced AI Techniques and Applications in Bioinformatics.CRC Press2021165188
    [Google Scholar]
  70. DixitS. KumarA. SrinivasanK. VincentP.M.D.R. Ramu KrishnanN. Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions.Front. Bioeng. Biotechnol.202411133590110.3389/fbioe.2023.133590138260726
    [Google Scholar]
  71. CargolM.G. New synthetic biological functions and their implications for the present and future of society.2021Available from: https://publicacions.iec.cat/repository/pdf/00000308/00000025.pdf
  72. MohanM. ManoharM. MothiR. RahamathullahN. GaneshP. DhanalakshmiM. System-enabled microbial cell factories for the production of biomolecules.Whole-Cell Biocatalysis.Apple Academic Press2024173198
    [Google Scholar]
  73. CaiG. LinZ. ShiS. Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast.Enzyme Microb. Technol.202215911005610.1016/j.enzmictec.2022.11005635561628
    [Google Scholar]
  74. WangL. DengA. ZhangY. LiuS. LiangY. BaiH. CuiD. QiuQ. ShangX. YangZ. HeX. WenT. Efficient CRISPR–Cas9 mediated multiplex genome editing in yeasts.Biotechnol. Biofuels201811127710.1186/s13068‑018‑1271‑030337956
    [Google Scholar]
  75. JakopovićŽ. ValingerD. Hanousek ČičaK. MrvčićJ. DomijanA.M. ČanakI. KostelacD. FreceJ. MarkovK. A Predictive assessment of ochratoxin A’s effects on oxidative stress parameters and the fermentation ability of yeasts using neural networks.Foods202413340810.3390/foods1303040838338543
    [Google Scholar]
  76. DamianC.S. DevarajanY. ThandavamoorthyR. JayabalR. Harnessing artificial intelligence for enhanced bioethanol productions: A cutting-edge approach towards sustainable energy solution.Int. J. Chem. React. Eng.202422771972710.1515/ijcre‑2024‑0074
    [Google Scholar]
  77. LiH. ChenJ. LiX. GanJ. LiuH. JianZ. XuS. ZhangA. LiG. ChenK. Artificial neural network and genetic algorithm coupled fermentation kinetics to regulate L-lysine fermentation.Bioresour. Technol.202439313015110.1016/j.biortech.2023.13015138049019
    [Google Scholar]
  78. Sonu; Rani, G.M.; Pathania, D.; Abhimanyu; Umapathi, R.; Rustagi, S.; Huh, Y.S.; Gupta, V.K.; Kaushik, A.; Chaudhary, V. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications.Sci. Total Environ.202387516266710.1016/j.scitotenv.2023.16266736894105
    [Google Scholar]
  79. AwadD. YounesS. GlemserM. WagnerF.M. SchenkG. MehlmerN. Towards high-throughput optimization of microbial lipid production: From strain development to process monitoring.Sustain. Energy Fuels20204125958596910.1039/D0SE00540A
    [Google Scholar]
  80. GoswamiL. KayalvizhiR. DikshitP.K. SherpaK.C. RoyS. KushwahaA. KimB.S. BanerjeeR. JacobS. RajakR.C. A critical review on prospects of bio-refinery products from second and third generation biomasses.Chem. Eng. J.202244813767710.1016/j.cej.2022.137677
    [Google Scholar]
  81. SasikumarK. SundarL. NampoothiriK.M. Microbial production of sugar alcohols.Handbook of Biorefinery Research and Technology: Production of Biofuels and Biochemicals.Springer202444947210.1007/978‑981‑97‑7586‑6_20
    [Google Scholar]
  82. Rodrigues, AJ Physiological features of Saccharomyces cerevisiae and alternative wine yeast species in relation to alcohol level reduction in wine.2019Available from: https://investigacion.unirioja. es/documentos/5ccb9a4129995248232d4435?lang=en
  83. TingT.Y. LiY. BunawanH. RamziA.B. GohH.H. Current advancements in systems and synthetic biology studies of Saccharomyces cerevisiae.J. Biosci. Bioeng.2023135425926510.1016/j.jbiosc.2023.01.01036803862
    [Google Scholar]
  84. WeiY. JiB. Ledesma-AmaroR. ChenT. JiX.J. Engineering yeast to produce plant natural products.Front. Bioeng. Biotechnol.2021979809710.3389/fbioe.2021.79809734926435
    [Google Scholar]
  85. WegatV. FabariusJ.T. SieberV. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production.Biotechnol. Biofuels Bioprod.202215111310.1186/s13068‑022‑02210‑136273178
    [Google Scholar]
  86. RahmatE. KangY. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites.Appl. Microbiol. Biotechnol.2020104114659467410.1007/s00253‑020‑10587‑y32270249
    [Google Scholar]
  87. PrabhuA.A. ThomasD.J. Ledesma-AmaroR. LeekeG.A. MedinaA. Verheecke-VaessenC. CoulonF. AgrawalD. KumarV. Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica.Microb. Cell Fact.202019112110.1186/s12934‑020‑01378‑132493445
    [Google Scholar]
  88. NaseriG. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast.Nat. Commun.2023141191610.1038/s41467‑023‑37627‑137024483
    [Google Scholar]
  89. ThomasDJ. Bioproduction of xylitol by oleaginous yeast Yarrowia lipolytica.Microb. Cell. Fact2020121
    [Google Scholar]
  90. BeopoulosA. CescutJ. HaddoucheR. UribelarreaJ.L. Molina-JouveC. NicaudJ.M. Yarrowia lipolytica as a model for bio-oil production.Prog. Lipid Res.200948637538710.1016/j.plipres.2009.08.00519720081
    [Google Scholar]
  91. LacerdaM.P. OhE.J. EckertC. The model system Saccharomyces cerevisiae versus emerging non-model yeasts for the production of biofuels.Life2020101129910.3390/life1011029933233378
    [Google Scholar]
  92. Ha-TranD.M. NguyenT.T.M. HuangC.C. Kluyveromyces marxianus: Current state of omics studies, strain improvement strategy and potential industrial implementation.Fermentation20206412410.3390/fermentation6040124
    [Google Scholar]
  93. HosseiniS.N. JavidanbardanA. KhatamiM. Accurate and cost‐effective prediction of HBsAg titer in industrial scale fermentation process of recombinant Pichia pastoris by using neural network based soft sensor.Biotechnol. Appl. Biochem.201966468168910.1002/bab.178531169323
    [Google Scholar]
  94. BastosM.L. BenevidesC.A. ZanchettinC. MenezesF.D. InácioC.P. de Lima NetoR.G. FilhoJ.G.A.T. NevesR.P. AlmeidaL.M. Breaking barriers in Candida spp. detection with electronic noses and artificial intelligence.Sci. Rep.202414195610.1038/s41598‑023‑50332‑938200060
    [Google Scholar]
  95. DilE.A. GhaediM. GhezelbashG.R. AsfaramA. GhaediA.M. MehrabiF. Modeling and optimization of Hg2+ ion biosorption by live yeast Yarrowia lipolytica 70562 from aqueous solutions under artificial neural network-genetic algorithm and response surface methodology: kinetic and equilibrium study.RSC Advances2016659541495416110.1039/C6RA11292G
    [Google Scholar]
  96. AhmadM.F. HaydarS. BhattiA.A. BariA.J. Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution.Biochem. Eng. J.201484839010.1016/j.bej.2014.01.004
    [Google Scholar]
  97. ShelareS.D. BelkhodeP.N. NikamK.C. JatharL.D. ShahapurkarK. SoudagarM.E.M. VezaI. KhanT.M.Y. KalamM.A. NizamiA-S. RehanM. Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production.Energy202328212887410.1016/j.energy.2023.128874
    [Google Scholar]
  98. SunG.L. ReynoldsE.E. BelcherA.M. Designing yeast as plant-like hyperaccumulators for heavy metals.Nat. Commun.2019101508010.1038/s41467‑019‑13093‑631704944
    [Google Scholar]
  99. MoteshareieH. HajikarimlouM. Mulet IndrayantiA. BurnsideD. Paula DiasA. LettlC. AhmedD. OmidiK. KazmirchukT. PuchaczN. ZareN. TakallouS. NaingT. HernándezR.B. WillmoreW.G. BabuM. McKayB. SamanfarB. HolcikM. GolshaniA. Heavy metal sensitivities of gene deletion strains for ITT1 and RPS1A connect their activities to the expression of URE2, a key gene involved in metal detoxification in yeast.PLoS One2018139e019870410.1371/journal.pone.019870430231023
    [Google Scholar]
  100. KumarK. ShindeA. AeronV. VermaA. ArifN.S. Genetic engineering of plants for phytoremediation: Advances and challenges.J. Plant Biochem. Biotechnol.2023321123010.1007/s13562‑022‑00776‑3
    [Google Scholar]
  101. HoffmannS.A. CaiY. Engineering stringent genetic biocontainment of yeast with a protein stability switch.Nat. Commun.2024151106010.1038/s41467‑024‑44988‑838316765
    [Google Scholar]
  102. ZhangF.L. ZhangL. ZengD.W. LiaoS. FanY. ChampredaV. RunguphanW. ZhaoX.Q. Engineering yeast cell factories to produce biodegradable plastics and their monomers: Current status and prospects.Biotechnol. Adv.20236810822210.1016/j.biotechadv.2023.10822237516259
    [Google Scholar]
  103. ZhangY. GuoX. YangH. ShiS. The studies in constructing yeast cell factories for the production of fatty acid alkyl esters.Front. Bioeng. Biotechnol.2022979903210.3389/fbioe.2021.79903235087801
    [Google Scholar]
  104. WilsonA.N. St JohnP.C. MarinD.H. HoytC.B. RognerudE.G. NimlosM.R. CywarR.M. RorrerN.A. ShebekK.M. BroadbeltL.J. BeckhamG.T. CrowleyM.F. PolyID: Artificial intelligence for discovering performance-advantaged and sustainable polymers.Macromolecules202356218547855710.1021/acs.macromol.3c0099438024155
    [Google Scholar]
  105. NdukoJ.M. TaguchiS. Microbial production of biodegradable lactate-based polymers and oligomeric building blocks from renewable and waste resources.Front. Bioeng. Biotechnol.2021861807710.3389/fbioe.2020.61807733614605
    [Google Scholar]
  106. JuturuV. WuJ.C. Microbial production of lactic acid: The latest development.Crit. Rev. Biotechnol.201636696797710.3109/07388551.2015.1066305
    [Google Scholar]
  107. HelmesR.J.K. López-ContrerasA.M. BenoitM. AbreuH. MaguireJ. MoejesF. BurgS.W.K. Environmental impacts of experimental production of lactic acid for bioplastics from Ulva spp.Sustainability2018107246210.3390/su10072462
    [Google Scholar]
  108. AhmadA. BanatF. TaherH. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges.Environ. Technol. Innov.20202010113810.1016/j.eti.2020.101138
    [Google Scholar]
  109. DasM. SantraS. Lactic Acid production from fungal machineries and mechanism of pla synthesis: Application of AI-based technology for improved productivity.Fungi and Fungal Products in Human Welfare and Biotechnology.Springer2023211256
    [Google Scholar]
  110. YamamotoY. YamadaR. MatsumotoT. OginoH. Construction of a machine-learning model to predict the optimal gene expression level for efficient production of D-lactic acid in yeast.World J. Microbiol. Biotechnol.20233936910.1007/s11274‑022‑03515‑x36607503
    [Google Scholar]
  111. KumarR. DhanarajanG. SarkarD. SenR. Multi-fold enhancement in sustainable production of biomass, lipids and biodiesel from oleaginous yeast: An artificial neural network-genetic algorithm approach.Sustain. Energy Fuels20204126075608410.1039/D0SE00922A
    [Google Scholar]
  112. Vega-RamonF. ZhuX. SavageT.R. PetsagkourakisP. JingK. ZhangD. Kinetic and hybrid modeling for yeast astaxanthin production under uncertainty.Biotechnol. Bioeng.2021118124854486610.1002/bit.2795034612511
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461336557241210051632
Loading
/content/journals/cgc/10.2174/0122133461336557241210051632
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test