Skip to content
2000
image of Potentials of Resistant Starch from Unconventional Sources: A Review

Abstract

Starch is an essential component of the human diet worldwide and is also an important energy source. Along with its calorie count, starch accounts for a few health hazards as well. However, resistant starch (RS) has been receiving a lot of attention in food research and development sectors for its functional food properties and its related health benefits. Apart from the health benefits it has been found to improve the quality of processed food as well. Resistant starch has better swelling capacity, water-binding capacity, and rheology which improves the texture and quality of the finished products. Resistant starch can be obtained from conventional sources like corn, potato, yam, sago, rice, and wheat but there are several unconventional sources as well. This review aims to discuss the types of resistant starches, unconventional sources, the health benefits they confer, and their food applications.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461374015250412081133
2025-05-02
2025-09-30
Loading full text...

Full text loading...

References

  1. Farooq U. Di Mattia C. Faieta M. Flamminii F. Pittia P. Colloidal properties and stability of olive oil-in water emulsions stabilized by starch particles. Ital. J. Food Sci. 2021 33 4 1 10 10.15586/ijfs.v33i4.2090
    [Google Scholar]
  2. Zhang J. Zhai A. Microstructure, thermodynamics and rheological properties of different types of red adzuki bean starch. Qual. Assur. Saf. Crops Foods 2020 12 2 89 99 10.15586/qas.v12i2.720
    [Google Scholar]
  3. Brown W.H.T.P. Poon T. Introduction to organic chemistry; John Wiley & Sons: Hoboken, NJ 2014 7 1 6
    [Google Scholar]
  4. Englyst H.N. Cummings J.H. Digestion of polysaccharides of potato in the small intestine of man. Am. J. Clin. Nutr. 1987 45 2 423 431 10.1093/ajcn/45.2.423 3812341
    [Google Scholar]
  5. Fuentes-Zaragoza E. Riquelme-Navarrete M.J. Sánchez-Zapata E. Pérez-Álvarez J.A. Resistant starch as functional ingredient: A review. Food Res. Int. 2010 43 4 931 942 10.1016/j.foodres.2010.02.004
    [Google Scholar]
  6. Tacer-Caba Z. Erdil D.N. Resistant starch. Reference Module in Food Science. Amsterdam, Netherlands Elsevier 2018 1 9
    [Google Scholar]
  7. Martin-Carron N. Alonso A.G. Functionality of dietary starches. Digestion and fermentation. Espana Alimentaria 1997 284
    [Google Scholar]
  8. Bach Knudsen K.E. Lærke H.N. Hedemann M.S. Nielsen T.S. Ingerslev A.K. Gundelund Nielsen D.S. Theil P.K. Purup S. Hald S. Schioldan A.G. Marco M.L. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 2018 10 10 1499 10.3390/nu10101499 30322146
    [Google Scholar]
  9. Hartstra A.V. Bouter K.E.C. Bäckhed F. Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015 38 1 159 165 10.2337/dc14‑0769 25538312
    [Google Scholar]
  10. Huang S. Optional Ingredients for Dough. Steamed Breads. Amsterdam, Netherlands Elsevier 2016 715 10.1016/B978‑0‑08‑100715‑0.00004‑5
    [Google Scholar]
  11. Kovarik J.J. Tillinger W. Hofer J. Hölzl M.A. Heinzl H. Saemann M.D. Zlabinger G.J. Impaired anti-inflammatory efficacy of n-butyrate in patients with IBD. Eur. J. Clin. Invest. 2011 41 3 291 298 10.1111/j.1365‑2362.2010.02407.x 21070220
    [Google Scholar]
  12. DeMartino P. Cockburn D.W. Resistant starch: Impact on the gut microbiome and health. Curr. Opin. Biotechnol. 2020 61 66 71 10.1016/j.copbio.2019.10.008 31765963
    [Google Scholar]
  13. Nugent A.P. Health properties of resistant starch. Nutr. Bull. 2005 30 1 27 54 10.1111/j.1467‑3010.2005.00481.x
    [Google Scholar]
  14. Ratnayake W.S. Jackson D.S. Thermal behavior of resistant starches RS 2, RS 3, and RS 4. J. Food Sci. 2008 73 5 C356 C366 10.1111/j.1750‑3841.2008.00754.x 18576980
    [Google Scholar]
  15. Sajilata M.G. Singhal R.S. Kulkarni P.R. Resistant starch–a review. Compr. Rev. Food Sci. Food Saf. 2006 5 1 1 17 10.1111/j.1541‑4337.2006.tb00076.x 33412740
    [Google Scholar]
  16. Tacer-Caba Z. Erdil D.N. Encyclopedia of Food Chemistry 1st Ed.; Varelis, P.; Melton, L.; Shahidi, F. Elsevier: Amsterdam, Netherlands, 2018 198
    [Google Scholar]
  17. Birkett A.M. Birkett, A.M. Resistant starch and health; Woodhead Publishing: Sawston, Cambridge, 2008 63 85
  18. Birt D.F. Boylston T. Hendrich S. Jane J.L. Hollis J. Li L. McClelland J. Moore S. Phillips G.J. Rowling M. Schalinske K. Scott M.P. Whitley E.M. Resistant starch: Promise for improving human health. Adv. Nutr. 2013 4 6 587 601 10.3945/an.113.004325 24228189
    [Google Scholar]
  19. Hernández O. Emaldi U. Tovar J. In vitro digestibility of edible films from various starch sources. Carbohydr. Polym. 2008 71 4 648 655 10.1016/j.carbpol.2007.07.016
    [Google Scholar]
  20. Haralampu S.G. Resistant starch: A review of the physical properties and biological impact of RS3. Carbohydr. Polym. 2000 41 3 285 292 10.1016/S0144‑8617(99)00147‑2
    [Google Scholar]
  21. Thompson D.B. Strategies for the manufacture of resistant starch. Trends Food Sci. Technol. 2000 11 7 245 253 10.1016/S0924‑2244(01)00005‑X
    [Google Scholar]
  22. Demirkesen-Bicak H. Tacer-Caba Z. Nilufer-Erdil D. Pullulanase treatments to increase resistant starch content of black chickpea (Cicer arietinum L.) starch and the effects on starch properties. Int. J. Biol. Macromol. 2018 111 505 513 10.1016/j.ijbiomac.2018.01.026 29320726
    [Google Scholar]
  23. Sanz T. Salvador A. Fiszman S.M. Resistant starch (RS) in battered fried products: Functionality and high-fibre benefit. Food Hydrocoll. 2008 22 4 543 549 10.1016/j.foodhyd.2007.01.018
    [Google Scholar]
  24. Kim M.J. Choi S.J. Shin S.I. Sohn M.R. Lee C.J. Kim Y. Cho W.I. Moon T.W. Resistant glutarate starch from adlay: Preparation and properties. Carbohydr. Polym. 2008 74 4 787 796 10.1016/j.carbpol.2008.04.043
    [Google Scholar]
  25. Tang M. Copeland L. Analysis of complexes between lipids and wheat starch. Carbohydr. Polym. 2007 67 1 80 85 10.1016/j.carbpol.2006.04.016
    [Google Scholar]
  26. Okumus B. Koseoglu M.A. Ma F. Food and gastronomy research in tourism and hospitality: A bibliometric analysis. Int. J. Hospit. Manag. 2018 73 64 74 10.1016/j.ijhm.2018.01.020
    [Google Scholar]
  27. Roy R. Debnath D. Ray S. Comprehensive assessment of various lignocellulosic biomasses for energy recovery in a hybrid energy system. Arab. J. Sci. Eng. 2022 47 5 5935 5948 10.1007/s13369‑021‑05723‑3
    [Google Scholar]
  28. Roy R. Ray S. Effect of various pretreatments on energy recovery from waste biomass. Ener. Sour. A. Recov. Util. Environ. Effe. 2023 45 3 9616 9628 10.1080/15567036.2019.1680767
    [Google Scholar]
  29. Singh M. Genetic and genomic resources for grain cereals improvement. Cambridge, US Academic Press 2015 1 6
    [Google Scholar]
  30. Punia S. Sandhu K.S. Dhull S.B. Siroha A.K. Purewal S.S. Kaur M. Kidwai M.K. Oat starch: Physico-chemical, morphological, rheological characteristics and its applications - A review. Int. J. Biol. Macromol. 2020 154 Jul 493 498 10.1016/j.ijbiomac.2020.03.083 32173437
    [Google Scholar]
  31. Zhou M. Robards K. Glennie-Holmes M. Helliwell S. Structure and pasting properties of oat starch. Cereal Chem. 1998 75 3 273 281 10.1094/CCHEM.1998.75.3.273
    [Google Scholar]
  32. Hoover R. Vasanthan T. Studies on isolation and characterization of starch from oat (Avena nuda) grains. Carbohydr. Polym. 1992 19 4 285 297 10.1016/0144‑8617(92)90082‑2
    [Google Scholar]
  33. Hartunian Sowa S.M. Characterization of starch isolated from oat groats with different amounts of lipid. Cereal Chem. 1992 69 5 521 527
    [Google Scholar]
  34. Hoover R. Smith C. Zhou Y. Ratnayake R.M.W.S. Physicochemical properties of Canadian oat starches. Carbohydr. Polym. 2003 52 3 253 261 10.1016/S0144‑8617(02)00271‑0
    [Google Scholar]
  35. MacMasters M.M. Jaeger C.M. The possible use of oats and other small grains for starch production. Am Miller. 1947 75 1 82 83
    [Google Scholar]
  36. Sayar S. WPJ. Oat starch: Physicochemical properties and function. Oats: Chemistry and technology. 2nd ed Cambridge, US Academic Press 2016 109 122
    [Google Scholar]
  37. Zhu Y. Dong L. Huang L. Shi Z. Dong J. Yao Y. Shen R. Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. J. Funct. Foods 2020 69 103939 10.1016/j.jff.2020.103939
    [Google Scholar]
  38. Wrigley C.W. Encyclopedia of Grain Science. Cambridge, US Academic Press 2004 490
    [Google Scholar]
  39. Stanca A.M. Gianinetti A. Rizza F. Terzi V. Barley: An Overview of a Versatile Cereal Grain with Many Food and Feed Uses. Encyclopedia of Food Grains. Amsterdam, Netherlands Elsevier 2016 147 152 10.1016/B978‑0‑12‑394437‑5.00021‑8
    [Google Scholar]
  40. Baik B.K. Ullrich S.E. Barley for food: Characteristics, improvement, and renewed interest. J. Cereal Sci. 2008 48 2 233 242 10.1016/j.jcs.2008.02.002
    [Google Scholar]
  41. Zhu F. Barley starch: Composition, structure, properties, and modifications. Compr. Rev. Food Sci. Food Saf. 2017 16 4 558 579 10.1111/1541‑4337.12265 33371568
    [Google Scholar]
  42. Yangcheng H. Gong L. Zhang Y. Jane J. Pysicochemical properties of Tibetan hull-less barley starch. Carbohydr. Polym. 2016 137 525 531 10.1016/j.carbpol.2015.10.061 26686159
    [Google Scholar]
  43. Obadi M. Qi Y. Xu B. Highland barley starch (Qingke): Structures, properties, modifications, and applications. Int. J. Biol. Macromol. 2021 185 725 738
    [Google Scholar]
  44. Eckhoff S.R. Singh S.K. Zehr B.E. Rausch K.D. Fox E.J. Mistry A.K. Haken A.E. Niu Y.X. Zou S.H. Buriak P. Tumbleson M.E. Keeling P.L. A 100-g laboratory corn wet-milling procedure. Cereal Chem., 1996 73 1 54 57
  45. Sharma P. Tejinder S. Extraction of starch from hulled and hull-less barley with papain and aqueous sodium hydroxide. J. Food Sci. Technol. 2014 51 12 3870 3877 10.1007/s13197‑013‑0924‑z 25477655
    [Google Scholar]
  46. Mehboob S. Ali T.M. Alam F. Hasnain A. Dual modification of native white sorghum (Sorghum bicolor) starch via acid hydrolysis and succinylation. Lebensm. Wiss. Technol. 2015 64 1 459 467 10.1016/j.lwt.2015.05.012
    [Google Scholar]
  47. Ge Y. Wang W. Shen M. Kang Z. Wang J. Quan Z. Effect of natural fermentation of sorghum on resistant starch molecular structure and fermentation property. J. Chem., 2020 2020 6 1 11 10.1155/2020/9835214
  48. Teixeira N.C. Queiroz V.A.V. Rocha M.C. Amorim A.C.P. Soares T.O. Monteiro M.A.M. de Menezes C.B. Schaffert R.E. Garcia M.A.V.T. Junqueira R.G. Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Food Chem., 2016 197 Pt A 291 296 10.1016/j.foodchem.2015.10.099 26616952
  49. Tayade R. Kulkarni K.P. Jo H. Song J.T. Lee J.D. Insight into the prospects for the improvement of seed starch in legume: A review. Front. Plant Sci. 2019 10 1213 10.3389/fpls.2019.01213 31736985
    [Google Scholar]
  50. Wani I.A. Sogi D.S. Hamdani A.M. Gani A. Bhat N.A. Shah A. Isolation, composition, and physicochemical properties of starch from legumes: A review. Stärke 2016 68 9-10 834 845 10.1002/star.201600007
    [Google Scholar]
  51. Perez-Rea D. Antezana-Gomez R. The functionality of pseudocereal starches.Starch in Food. Amsterdam, Netherlands Elsevier 2018 509 542 10.1016/B978‑0‑08‑100868‑3.00012‑3
    [Google Scholar]
  52. Li G. Zhu F. Quinoa starch: Structure, properties, and applications. In: Carbohydrate Polymers; Elsevier: Amsterdam, Netherlands, 2018 181 851 861
    [Google Scholar]
  53. Araujo-Farro P.C. Podadera G. Sobral P.J.A. Menegalli F.C. Development of films based on quinoa (Chenopodium quinoa, Willdenow) starch. Carbohydr. Polym. 2010 81 4 839 848 10.1016/j.carbpol.2010.03.051
    [Google Scholar]
  54. Srichuwong S. Curti D. Austin S. King R. Lamothe L. Gloria-Hernandez H. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chem. 2017 233 1 10 10.1016/j.foodchem.2017.04.019 28530552
    [Google Scholar]
  55. Li G. Wang S. Zhu F. Physicochemical properties of quinoa starch. Carbohydr. Polym. 2016 137 328 338 10.1016/j.carbpol.2015.10.064 26686137
    [Google Scholar]
  56. Jan K.N. Panesar P.S. Singh S. Process standardization for isolation of quinoa starch and its characterization in comparison with other starches. J. Food Meas. Charact. 2017 11 4 1919 1927 10.1007/s11694‑017‑9574‑6
    [Google Scholar]
  57. Daysi P. The Challenges of Analyzing the Molecular Properties of Starch. Lund, Sweden Lund University 2014 46
    [Google Scholar]
  58. Rayner M. Sjöö M. Timgren A. Dejmek P. Quinoa starch granules as stabilizing particles for production of Pickering emulsions. Faraday Discuss. 2012 158 139 155 10.1039/c2fd20038d 23234165
    [Google Scholar]
  59. Dmján K. Natural sources of health promoting starch. J. Food Nutr. Res. 2006 45 2 69 76
    [Google Scholar]
  60. Steffolani M.E. León A.E. Pérez G.T. Study of the physicochemical and functional characterization of quinoa and kañiwa starches. Stärke 2013 65 11-12 976 983 10.1002/star.201200286
    [Google Scholar]
  61. Arêas J.A.G. Carlos-Menezes A.C.C.C. Soares R.A.M. Amaranth. Encyclopedia of Food and Health. Amsterdam, Netherlands Elsevier 2016 135 140 10.1016/B978‑0‑12‑384947‑2.00025‑8
    [Google Scholar]
  62. Capriles V.D. Coelho K.D. Guerra-Matias A.C. Arêas J.A.G. Effects of processing methods on amaranth starch digestibility and predicted glycemic index. J. Food Sci. 2008 73 7 H160 H164 10.1111/j.1750‑3841.2008.00869.x 18803711
    [Google Scholar]
  63. Xia X. Li G. Liao F. Zhang F. Zheng J. Kan J. Granular structure and physicochemical properties of starches from amaranth grain. Int. J. Food Prop. 2015 18 5 1029 1037 10.1080/10942912.2013.860168
    [Google Scholar]
  64. Gamel T.H. Linssen J.P. Mesallem A.S. Damir A.A. Shekib L.A. Effect of seed treatments on the chemical composition and properties of two amaranth species: Starch and protein. J. Sci. Food Agric. 2005 85 2 319 327 10.1002/jsfa.1988
    [Google Scholar]
  65. Perez-Rea D. The Challenges of Analyzing the Molecular Properties of Starch. Lund, Sweden Lund University 2014 49
    [Google Scholar]
  66. Perez-Rea D. Antezana-Gomez R. The Functionality of Pseudocereal Starches. Starch in Food: Structure, Function and Applications. Amsterdam, Netherlands Elsevier 2017 509 542
    [Google Scholar]
  67. Zheng G.H. Sosulski F.W. Tyler R.T. Wet-milling, composition and functional properties of starch and protein isolated from buckwheat groats. Food Res. Int. 1997 30 7 493 502 10.1016/S0963‑9969(98)00021‑0
    [Google Scholar]
  68. Zhu F. 2016
  69. Qin P. Wang Q. Shan F. Hou Z. Ren G. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Technol. 2010 45 5 951 958 10.1111/j.1365‑2621.2010.02231.x
    [Google Scholar]
  70. Gregori M. Kreft I. Breakable starch granules in a low-amylose buckwheat (Fagopyrum esculentum Moench) mutant. J. Food Agric. Environ. 2012 10 2 258 262
    [Google Scholar]
  71. Gao J. Kreft I. Chao G. Wang Y. Liu X. Wang L. Wang P. Gao X. Feng B. Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch, a side product in functional food production, as a potential source of retrograded starch. Food Chem. 2016 190 552 558 10.1016/j.foodchem.2015.05.122 26213009
    [Google Scholar]
  72. Noda T. Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr. Polym. 1998 37 2 153 158 10.1016/S0144‑8617(98)00047‑2
    [Google Scholar]
  73. Yoshimoto Y. Egashira T. Hanashiro I. Ohinata H. Takase Y. Takeda Y. Molecular structure and some physicochemical properties of buckwheat starches. Cereal Chem. 2004 81 4 515 520 10.1094/CCHEM.2004.81.4.515
    [Google Scholar]
  74. Christa K. Soral-Śmietana M. Lewandowicz G. Buckwheat starch: Structure, functionality and enzyme in vitro susceptibility upon the roasting process. Int. J. Food Sci. Nutr., 2009 60 sup4 140 154
  75. Gupta M. Gill B.S. Bawa A.S. Gelatinization and X-ray crystallography of buckwheat starch: Effect of microwave and annealing treatments. Int. J. Food Prop. 2008 11 1 173 185 10.1080/10942910701284382
    [Google Scholar]
  76. Pollak L.M. Scott M.P. Duvick S.A. Resistant starch and starch thermal characteristics in exotic corn lines grown in temperate and tropical environments. Cereal Chem. 2011 88 5 435 440 10.1094/CCHEM‑09‑10‑0140
    [Google Scholar]
  77. Krieger K.M. Pollak L.M. Brumm T.J. White P.J. Effects of pollination method and growing location on starch thermal properties of corn hybrids. Cereal Chem. 1998 75 5 656 659 10.1094/CCHEM.1998.75.5.656
    [Google Scholar]
  78. Sestili F. Janni M. Doherty A. Botticella E. D’Ovidio R. Masci S. Jones H.D. Lafiandra D. Increasing the amylose content of durum wheat through silencing of the SBEIIagenes. BMC Plant Biol. 2010 10 1 144 10.1186/1471‑2229‑10‑144 20626919
    [Google Scholar]
  79. Blennow A. Wischmann B. Houborg K. Ahmt T. Jørgensen K. Engelsen S.B. Bandsholm O. Poulsen P. Structure function relationships of transgenic starches with engineered phosphate substitution and starch branching. Int. J. Biol. Macromol. 2005 36 3 159 168 10.1016/j.ijbiomac.2005.05.006 16024070
    [Google Scholar]
  80. Wei C. Xu B. Qin F. Yu H. Chen C. Meng X. Zhu L. Wang Y. Gu M. Liu Q. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J. Agric. Food Chem. 2010 58 12 7383 7388 10.1021/jf100385m 20499916
    [Google Scholar]
  81. Higgins J.A. Resistant starch: Metabolic effects and potential health benefits. J. AOAC Int. 2004 87 3 761 768 10.1093/jaoac/87.3.761 15287677
    [Google Scholar]
  82. Chang R. Jin Z. Lu H. Qiu L. Sun C. Tian Y. Type III resistant starch prepared from debranched starch: Structural changes under simulated saliva, gastric, and intestinal conditions and the impact on short-chain fatty acid production. J. Agric. Food Chem. 2021 69 8 2595 2602 10.1021/acs.jafc.0c07664 33617247
    [Google Scholar]
  83. Bojarczuk A. Skąpska S. Mousavi Khaneghah A. Marszałek K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022 93 105094 10.1016/j.jff.2022.105094
    [Google Scholar]
  84. Ma Y. Olendzki B. Chiriboga D. Hebert J.R. Li Y. Li W. Campbell M. Gendreau K. Ockene I.S. Association between dietary carbohydrates and body weight. Am. J. Epidemiol. 2005 161 4 359 367 10.1093/aje/kwi051 15692080
    [Google Scholar]
  85. Geetha K. Yankanchi G.M. Hulamani S. Hiremath N. Glycemic index of millet based food mix and its effect on pre diabetic subjects. J. Food Sci. Technol. 2020 57 7 2732 2738 10.1007/s13197‑020‑04309‑5 32549623
    [Google Scholar]
  86. Ferguson L.R. Tasman-Jones C. Englyst H. Harris P.J. Comparative effects of three resistant starch preparations on transit time and short-chain fatty acid production in rats. Nutr. Cancer 2000 36 2 230 237 10.1207/S15327914NC3602_13 10890035
    [Google Scholar]
  87. Sharma A. Yadav B.S. Ritika, Resistant starch: Physiological roles and food applications. Food Rev. Int. 2008 24 2 193 234 10.1080/87559120801926237
    [Google Scholar]
  88. Wang Q. Wang P. Xiao Z. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway. Int. J. Mol. Med. 2018 41 4 1887 1898 10.3892/ijmm.2018.3423 29393371
    [Google Scholar]
  89. Zhou D. Ma Z. Hu X. Isolated pea resistant starch substrates with different structural features modulate the production of short-chain fatty acids and metabolism of microbiota in anaerobic fermentation in vitro. J. Agric. Food Chem. 2021 69 18 5392 5404 10.1021/acs.jafc.0c08197 33843218
    [Google Scholar]
  90. Avogaro A. Fadini G.P. Microvascular complications in diabetes: A growing concern for cardiologists. Int. J. Cardiol. 2019 291 29 35 10.1016/j.ijcard.2019.02.030 30833106
    [Google Scholar]
  91. Harazaki T. Inoue S. Imai C. Mochizuki K. Goda T. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue. Nutrition 2014 30 5 590 595 10.1016/j.nut.2013.10.020 24698351
    [Google Scholar]
  92. Polakof S. Díaz-Rubio M.E. Dardevet D. Martin J.F. Pujos-Guillot E. Scalbert A. Sebedio J.L. Mazur A. Comte B. Resistant starch intake partly restores metabolic and inflammatory alterations in the liver of high-fat-diet-fed rats. J. Nutr. Biochem. 2013 24 11 1920 1930 10.1016/j.jnutbio.2013.05.008 24011718
    [Google Scholar]
  93. Haghikia A. Zimmermann F. Schumann P. Jasina A. Roessler J. Schmidt D. Heinze P. Kaisler J. Nageswaran V. Aigner A. Ceglarek U. Cineus R. Hegazy A.N. van der Vorst E.P.C. Döring Y. Strauch C.M. Nemet I. Tremaroli V. Dwibedi C. Kränkel N. Leistner D.M. Heimesaat M.M. Bereswill S. Rauch G. Seeland U. Soehnlein O. Müller D.N. Gold R. Bäckhed F. Hazen S.L. Haghikia A. Landmesser U. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur. Heart J. 2022 43 6 518 533 10.1093/eurheartj/ehab644 34597388
    [Google Scholar]
  94. Demigné C. Morand C. Levrat M.A. Besson C. Moundras C. Rémésy C. Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr. 1995 74 2 209 219 10.1079/BJN19950124 7547838
    [Google Scholar]
  95. Dodevska M.S. Sobajic S.S. Djordjevic P.B. Dimitrijevic-Sreckovic V.S. Spasojevic-Kalimanovska V.V. Djordjevic B.I. Effects of total fibre or resistant starch-rich diets within lifestyle intervention in obese prediabetic adults. Eur. J. Nutr. 2016 55 1 127 137 10.1007/s00394‑015‑0831‑3 25588971
    [Google Scholar]
  96. Yue P. Functionality of resistant starch in food applications. Food Aust. 1998 50 12 615 621
    [Google Scholar]
  97. Morais M.B. Feste A. Miller R.G. Lifschitz C.H. Effect of resistant and digestible starch on intestinal absorption of calcium, iron, and zinc in infant pigs. Pediatr. Res. 1996 39 5 872 876 10.1203/00006450‑199605000‑00022 8726244
    [Google Scholar]
  98. Brown I.L. Applications and uses of resistant starch. J. AOAC Int. 2004 87 3 727 732 10.1093/jaoac/87.3.727 15287672
    [Google Scholar]
  99. Moe P.W. Future directions for energy requirements and food energy values. J. Nutr. 1994 124 9 1738S 1742S 10.1093/jn/124.suppl_9.1738S 8089742
    [Google Scholar]
  100. Livesey G. Determinants of energy density with conventional foods and artificial feeds. Proc. Nutr. Soc. 1991 50 2 371 382 10.1079/PNS19910048 1749805
    [Google Scholar]
  101. Miller D.S. Judd P.A. The metabolisable energy value of foods. J. Sci. Food Agric. 1984 35 1 111 116 10.1002/jsfa.2740350118 6708457
    [Google Scholar]
  102. Ranhotra G.S. Gelroth J.A. Glaser B.K. Energy value of resistant starch. J. Food Sci. 1996 61 2 453 455 10.1111/j.1365‑2621.1996.tb14215.x
    [Google Scholar]
  103. Park H. Seib P.A. Chung O.K. Fortifying bread with a mixture of wheat fiber and Psyllium husk fiber plus three antioxidants. Cereal Chem. 1997 74 3 207 211 10.1094/CCHEM.1997.74.3.207
    [Google Scholar]
  104. Ashwar B.A. Gani A. Shah A. Wani I.A. Masoodi F.A. Preparation, health benefits and applications of resistant starch: A review. Stärke 2016 68 3-4 287 301 10.1002/star.201500064
    [Google Scholar]
  105. Jones P.J. Clinical nutrition: 7. Functional foods-more than just nutrition. CMAJ 2002 166 12 1555 1563 12074125
    [Google Scholar]
  106. Joshi D. Roy S. Banerjee S. Prebiotics. Natural Products and Drug Discovery. Amsterdam, Netherlands Elsevier 2018 507 523 10.1016/B978‑0‑08‑102081‑4.00019‑8
    [Google Scholar]
  107. Moro G. Arslanoglu S. Stahl B. Jelinek J. Wahn U. Boehm G. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 2006 91 10 814 819 10.1136/adc.2006.098251 16873437
    [Google Scholar]
  108. Firmansyah A. Improved humoral immune response to measles vaccine in infants receiving infant cereal with fructo-oligosaccharides. J. Pediatr. Gastroenterol. Nutr. 2001 31 A521
    [Google Scholar]
  109. Forsythe P. Sudo N. Dinan T. Taylor V.H. Bienenstock J. Mood and gut feelings. Brain Behav. Immun. 2010 24 1 9 16 10.1016/j.bbi.2009.05.058 19481599
    [Google Scholar]
  110. Versino F. Lopez O.V. Garcia M.A. Zaritzky N.E. Starch‐based films and food coatings: An overview. Starch 2016 68 11-12 1026 1037
    [Google Scholar]
  111. Cruz-Monterrosa R.G. Rayas-Amor A.A. González-Reza R.M. Zambrano-Zaragoza M.L. Aguilar-Toalá J.E. Liceaga A.M. Application of polysaccharide-based edible coatings on fruits and vegetables: Improvement of food quality and bioactivities. Polysaccharides 2023 4 2 99 115 10.3390/polysaccharides4020008
    [Google Scholar]
  112. Abdullah Z.W. Dong Y. Biodegradable and water resistant poly(vinyl) alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) nanocomposite films for sustainable food packaging. Front. Mater. 2019 6 58 10.3389/fmats.2019.00058
    [Google Scholar]
  113. Rahman W.A.W.A. Sin L.T. Rahmat A.R. Samad A.A. Thermal behaviour and interactions of cassava starch filled with glycerol plasticized polyvinyl alcohol blends. Carbohydr. Polym. 2010 81 4 805 810 10.1016/j.carbpol.2010.03.052
    [Google Scholar]
  114. Junlapong K. Boonsuk P. Chaibundit C. Chantarak S. Highly water resistant cassava starch/poly(vinyl alcohol) films. Int. J. Biol. Macromol. 2019 137 521 527 10.1016/j.ijbiomac.2019.06.223 31260778
    [Google Scholar]
  115. Muller J. González-Martínez C. Chiralt A. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials (Basel) 2017 10 8 952 10.3390/ma10080952 28809808
    [Google Scholar]
  116. García M.A. Martino M.N. Zaritzky N.E. Composite starch-based coatings applied to strawberries (Fragaria ananassa). Nahrung 2001 45 4 267 272 10.1002/1521‑3803(20010801)45:4<267:AID‑FOOD267>3.0.CO;2‑3 11534467
    [Google Scholar]
  117. de Aquino A.B. Blank A.F. de Aquino Santana L.C.L. Impact of edible chitosan–cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015 171 108 116 10.1016/j.foodchem.2014.08.077 25308649
    [Google Scholar]
  118. Guo Q. Zheng B. Yang D. Chen L. Structural changes in chestnut resistant starch constructed by starch-lipid interactions during digestion and their effects on gut microbiota: An in vitro study. Food Hydrocoll. 2024 146 17 109228 10.1016/j.foodhyd.2023.109228
    [Google Scholar]
  119. Jiali L. Wu Z. Liu L. Yang J. Wang L. Li Z. Liu L. The research advance of resistant starch: Structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit. Rev. Food Sci. Nutr. 2024 64 29 10885 10902 10.1080/10408398.2023.2230287 37409451
    [Google Scholar]
  120. Li H. Zhang L. Li J. Wu Q. Qian L. He J. Ni Y. Kovatcheva-Datchary P. Yuan R. Liu S. Shen L. Zhang M. Sheng B. Li P. Kang K. Wu L. Fang Q. Long X. Wang X. Li Y. Ye Y. Ye J. Bao Y. Zhao Y. Xu G. Liu X. Panagiotou G. Xu A. Jia W. Resistant starch intake facilitates weight loss in humans by reshaping the gut microbiota. Nat. Metab. 2024 6 3 578 597 10.1038/s42255‑024‑00988‑y 38409604
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461374015250412081133
Loading
/content/journals/cgc/10.2174/0122133461374015250412081133
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Resistant starch ; encapsulation ; glycemic index ; pseudo-cereal ; gelatinization ; retrogradation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test