Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Late-stage functionalization of pyrido[1,2-a]pyrimidin-4-one at pyrimidine ring structure is crucial to design pharmaceuticals, agrochemicals and materials for sustainable development. 4H-pyrido[1,2-a]pyrimidin-4-ones skeleton, a potent privileged scaffold, ubiquitously exists in numerous bioactive natural and pharmacologic products. Scope of different synthetic methods including their synthetic application to design new materials and biological activity of differently substituted 4H-pyrido[1,2-a]pyrimidin-4-ones are of main interest. Researchers are relentlessly working to develop more efficient and ecofriendly methods for their synthesis. This review provides, a comprehensive discussion of the recent advancements in the field of synthesis and application of 3-hetero-substituted 4H-pyrido[1,2-a]pyrimidin-4-one for sustainable development.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461354583241220045930
2025-01-02
2025-12-15
Loading full text...

Full text loading...

References

  1. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: An overview.RSC Advances20201072442474431110.1039/D0RA09198G35557843
    [Google Scholar]
  2. MandalS.K. GhantaR. Pharmaceutical Chemistry and Production: An Introductory Textbook.Bentham Science Publishers202210.2174/97816810888911220101
    [Google Scholar]
  3. HermeczI. MészárosZ. Pyrido[1,2- a]pyrimidines; New chemical entities in medicinal chemistry.Med. Res. Rev.19888220323010.1002/med.26100802043288821
    [Google Scholar]
  4. FentonC. ScottL.J. Risperidone.CNS Drugs200519542944410.2165/00023210‑200519050‑0000515907153
    [Google Scholar]
  5. KhanB.U. Brief report: Risperidone for severely disturbed behavior and tardive dyskinesia in developmentally disabled adults.J. Autism Dev. Disord.199727447948910.1023/A:10258136070059261670
    [Google Scholar]
  6. JesteD.V. OkamotoA. NapolitanoJ. KaneJ.M. MartinezR.A. Low incidence of persistent tardive dyskinesia in elderly patients with dementia treated with risperidone.Am. J. Psychiatry200015771150115510.1176/appi.ajp.157.7.115010873925
    [Google Scholar]
  7. KennisL.E.J. BischoffF.P. MertensC.J. LoveC.J. Van den KeybusF.A.F. PietersS. BraekenM. MegensA.A.H.P. LeysenJ.E. New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2- c]pyridine having highly active and potent central α2 -antagonistic activity as potential antidepressants.Bioorg. Med. Chem. Lett.2000101717410.1016/S0960‑894X(99)00591‑010636247
    [Google Scholar]
  8. PetterssonA. GradinK. HednerT. PerssonB. Antihypertensive mechanism of action of ketanserin and some ketanserin analogues in the spontaneously hypertensive rat.Naunyn Schmiedebergs Arch. Pharmacol.1985329439439710.1007/BF004963742993926
    [Google Scholar]
  9. YanagiharaY. KasaiH. KawashimaT. ShidaT. Immunopharmacological studies on TBX, a new antiallergic drug (1). Inhibitory effects on passive cutaneous anaphylaxis in rats and guinea pigs.Jpn. J. Pharmacol.19884819110110.1254/jjp.48.912462074
    [Google Scholar]
  10. SanoA. IshiharaM. YoshiharaJ. SuminoM. NawaH. A facile and practical synthesis of 9-Methyl-3-(1H-tetrazol-5-yl)-4H-pyrido(1,2-a)pyrimidin-4-one.Chem. Pharm. Bull.199543468368510.1248/cpb.43.683
    [Google Scholar]
  11. AwoutersF. VermeireJ. SmeyersF. VermoteP. van BeekR. NiemegeersC.J.E. Oral antiallergic activity in ascaris hypersensitive dogs: A study of known antihistamines and of the new compounds ramastine (R 57 959) and levocabastine (R 50 547).Drug Dev. Res.198681-49510210.1002/ddr.430080112
    [Google Scholar]
  12. KapuiZ. VargaM. Urban-SzabóK. MikusE. SzabóT. SzerediJ. BátoriS. FinanceO. ArányiP. Biochemical and pharmacological characterization of 2-(9-(2-Piperidinoethoxy)-4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yloxymethyl)-4-(1-methylethyl)-6-methoxy-1,2-benzisothiazol-3(2H)-one-1,1-dioxide (SSR69071), a novel, orally active elastase inhibitor.J. Pharmacol. Exp. Ther.2003305245145910.1124/jpet.102.04426312606659
    [Google Scholar]
  13. La MottaC. SartiniS. MugnainiL. SimoriniF. TalianiS. SalernoS. MariniA.M. Da SettimoF. LavecchiaA. NovellinoE. CantoreM. FailliP. CiuffiM. Pyrido[1,2-a]pyrimidin-4-one derivatives as a novel class of selective aldose reductase inhibitors exhibiting antioxidant activity.J. Med. Chem.200750204917492710.1021/jm070398a17845019
    [Google Scholar]
  14. PriyadarshaniG. AmrutkarS. NayakA. BanerjeeU.C. KunduC.N. GuchhaitS.K. Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα.Eur. J. Med. Chem.2016122435410.1016/j.ejmech.2016.06.02427343852
    [Google Scholar]
  15. HarrimanG.C.B. ChiS. ZhangM. CroweA. BennettR.A. ParsonsI. Synthesis of 4-trifluoromethylpyrido[1,2-a]pyrimidin-2-ones utilizing activated alkynoates.Tetrahedron Lett.200344183659366210.1016/S0040‑4039(03)00700‑7
    [Google Scholar]
  16. MatsutaniS. MizushimaY. Preparation and formulation of pyrido[1,2-a]pyrimidine, quinolizin-4-ones, and pyrazino[1,2-a]pyrimidinesas antiulcer agents.EP Patents 329126 A11989
    [Google Scholar]
  17. ManeU.R. LiH. HuangJ. GuptaR.C. NadkarniS.S. GiridharR. NaikP.P. YadavM.R. Pyrido[1,2-a]pyrimidin-4-ones as antiplasmodial falcipain-2 inhibitors.Bioorg. Med. Chem.201220216296630410.1016/j.bmc.2012.09.00823040894
    [Google Scholar]
  18. SmithR.L. BarrettR.J. Sanders-BushE. Neurochemical and behavioral evidence that quipazine-ketanserin discrimination is mediated by serotonin2A receptor.J. Pharmacol. Exp. Ther.1995275210501057[PMID: 7473132
    [Google Scholar]
  19. RatniH. ScalcoR.S. StephanA.H. Risdiplam, the first approved small molecule splicing modifier drug as a blueprint for future transformative medicines.ACS Med. Chem. Lett.202112687487710.1021/acsmedchemlett.0c0065934141064
    [Google Scholar]
  20. RatniH. EbelingM. BairdJ. BendelsS. BylundJ. ChenK.S. DenkN. FengZ. GreenL. GuerardM. JablonskiP. JacobsenB. KhwajaO. KletzlH. KoC.P. KustermannS. MarquetA. MetzgerF. MuellerB. NaryshkinN.A. PaushkinS.V. PinardE. PoirierA. ReutlingerM. WeetallM. ZellerA. ZhaoX. MuellerL. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA).J. Med. Chem.201861156501651710.1021/acs.jmedchem.8b0074130044619
    [Google Scholar]
  21. GuoC. LintonA. JalaieM. KephartS. OrnelasM. PairishM. GreasleyS. RichardsonP. MaegleyK. HickeyM. LiJ. WuX. JiX. XieZ. Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators.Bioorg. Med. Chem. Lett.201323113358336310.1016/j.bmcl.2013.03.09023622982
    [Google Scholar]
  22. RomaG. CinoneN. BraccioM.D. GrossiG. LeonciniG. Synthesis, antiplatelet activity and comparative molecular field analysis of substituted 2-amino-4H-pyrido[1,2-a]pyrimidin-4-ones, their congeners and isosteric analogues.Bioorg. Med. Chem. Lett.2000875176810.1016/S0968‑0896(00)00010‑9
    [Google Scholar]
  23. VenkatesanA.M. LevinJ.I. BakerJ.S. ChanP.S. BaileyT. CoupetJ. Substituted 4H-pyrido[1,2-a]pyrimidin-4-one angiotensin II receptor antagonists.Bioorg. Med. Chem. Lett.19944118318810.1016/S0960‑894X(01)81144‑6
    [Google Scholar]
  24. BhawaleR.T. ChillalA.S. KshirsagarU.A. 4H-pyrido [1,2-a] pyrimidin-4-one, biologically important fused heterocyclic scaffold: Synthesis and functionalization.J. Heterocycl. Chem.20236081356137310.1002/jhet.4637
    [Google Scholar]
  25. KatritzkyA.R. RogersJ.W. WitekR.M. NairS.K. Novel syntheses of pyrido[1,2-a]pyrimidin-2-ones, 2H-quinolizin-2-ones, pyrido[1,2-a]quinolin-3-ones, and thiazolo[3,2-a]pyrimidin-7-ones.ARKIVOC200420048526010.3998/ark.5550190.0005.808
    [Google Scholar]
  26. LiJ. LiuT. SinghN. HuangZ. DingY. HuangJ. SudarsanamP. LiH. Photocatalytic C–N bond construction toward high-value nitrogenous chemicals.Chem. Commun.20235997143411435210.1039/D3CC04771G
    [Google Scholar]
  27. LiJ. SudarsanamP. Light-assisted dual catalysis for C–N bond construction.Trends Chem.2023564965210.1016/j.trechm.2023.05.001
    [Google Scholar]
  28. YangZ. ShiW. AlhumadeH. YiH. LeiA. Electrochemical oxidative C(sp3)–H cross-coupling with hydrogen evolution.Nature Synthesis20232321723010.1038/s44160‑022‑00221‑2
    [Google Scholar]
  29. PengL. GaoX. DuanL. RenX. WuD. DingK. Identification of pyrido[1,2-α]pyrimidine-4-ones as new molecules improving the transcriptional functions of estrogen-related receptor α.J. Med. Chem.201154217729773310.1021/jm200976s21958216
    [Google Scholar]
  30. YangK. XiangJ. BaoG. DangQ. BaiX. Synthesis of highly substituted 4H-pyrido[1,2-a]pyrimidines via a one-pot three-component condensation reaction.ACS Comb. Sci.201315951952410.1021/co400086u23914724
    [Google Scholar]
  31. YaleH.L. SpitzmillerE.R. 6- and 7-Substituted 4 H -Pyrido[1,2-a] pyrimidin-4-ones. Synthesis via the acid-catalyzed isomerization of 2-(Acetoacetamido)pyridines.J. Heterocycl. Chem.197714463764610.1002/jhet.5570140420
    [Google Scholar]
  32. YangY. ShuW.M. YuS.B. NiF. GaoM. WuA.X. Auto-tandem catalysis: Synthesis of 4H-pyrido[1,2-a]pyrimidin-4-ones via copper-catalyzed aza-Michael addition–aerobic dehydrogenation–intramolecular amidation.Chem. Commun.201349171729173110.1039/c3cc38131e23340739
    [Google Scholar]
  33. AlamM.A. AlsharifZ. AlkhattabiH. JonesD. DelanceyE. GottsponerA. YangT. Hexafluoroisopropyl alcohol mediated synthesis of 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones.Sci. Rep.2016613631610.1038/srep3631627805054
    [Google Scholar]
  34. DorokhovV.A. BaraninS.V. DibA. BogdanovV.S. YakovlevI.P. StashinaG.A. ZhulinV.M. Synthesis of N-(2-pyridyl)cyanoacetamides and 4-amino-2H-pyrido-[1,2-a]pyrimidin-2-ones from ethyl cyanoacetate and 2-aminopyridine.Russ. Chem. Bull.19903919181923[https://doi.org/10.1007/BF00958262
    [Google Scholar]
  35. SuriO.P. SuriK.A. GuptaB.D. SattiN.K. An unequivocal synthesis of 4-methyl-2-oxo-(2h)-pyrido-[1,2-a]pyrimidines.Synth. Commun.200232574174610.1081/SCC‑120002513
    [Google Scholar]
  36. RomaG. Di BraccioM. BalbiA. MazzeiM. ErmiliA. 1,2-Fused pyrimidines. III. Derivatives of 12H-pyrido[1′,2′:1,2]pyrimido [4,5-b]quinoline, a novel heterocyclic system.J. Heterocycl. Chem.198724232933510.1002/jhet.5570240207
    [Google Scholar]
  37. Al-JalloH.N. Synthesis and nuclear magnetic resonance spectra of 2H-pyrido [1,2-a] pyrimidin-2-ones.J. Heterocycl. Chem.19781580180510.1002/jhet.5570150518
    [Google Scholar]
  38. AchesonR.M. WallisJ.D. Products from dimethyl hex-2-en-1-yne-1,6-dioate and dimethyl penta-2,3-diene-1,5-dioate with compounds possessing two adjacent nucleophilic centres.J. Chem. Soc., Perkin Trans. 119821905191410.1039/p19820001905
    [Google Scholar]
  39. DoadG.J.S. OkorD.I. ScheinmannF. BatesP.A. HursthouseM.B. Cyclophilic reactions of allene-1,3-dicarboxylic ester. Part 7. Synthesis of bicyclic and tricyclic heterocyclic compounds involving nitrogen, sulphur, and carbon as nucleophiles.J. Chem. Soc., Perkin Trans. 11988112993300310.1039/p19880002993
    [Google Scholar]
  40. HussainM. LiuJ. Practical synthesis of 4H-pyrido[1, 2-a]pyrimidin-4-ones using ethylene glycol as a promoting solvent.Tetrahedron Lett.2020613615226915227210.1016/j.tetlet.2020.152269
    [Google Scholar]
  41. YeF.C. ChenB.C. HuangX. Synthesis of 7-substituted 5-oxo-5 H-thiazolo[3,2-a]pyrimidine-6-carboxylic acids, 2-substituted 4-Oxo-4H-pyrido [1,2-a]pyrimidine-3-carboxylic Acids, and 2,6-disubstituted 4-quinolones from meldrum’s acid derivatives.Synthesis19891989431732010.1055/s‑1989‑27241
    [Google Scholar]
  42. FerrariniP.L. MoriC. PrimofioreG. CalzolariL. One step synthesis of pyrimido[1,2- a][1,8]naphthyridinones, pyrido[1,2-a]pyrimidinones and 1,8-naphthyridinones. Antihypertensive agents. V.J. Heterocycl. Chem.199027488188610.1002/jhet.5570270411
    [Google Scholar]
  43. RuyunJ. Dehydroevodiamine chloride.Drugs Future198510755610.1358/dof.1985.010.07.74631
    [Google Scholar]
  44. KanoY. ZongQ. KomatsuK. Pharmacological properties of galenical preparation. XIV. Body temperature retaining effect of the chinese traditional medicine, “Goshuyu-to” and component crude drugs.Chem. Pharm. Bull.199139369069210.1248/cpb.39.6902070449
    [Google Scholar]
  45. HermeczI. KökösiJ. PodányiB. LikoZ. Nitrogen bridgehead compounds 87. Synthesis of 3-azarutecarpine (14-azanauclefine) and its 7-methyl derivative.Tetrahedron199652227789779610.1016/S0040‑4020(96)00347‑X
    [Google Scholar]
  46. RaufA. LiaqatS. QureshiA.M. MuhammadY. RehmanA.U. HassanM.U. ChohanZ. Synthesis, characterization, and urease inhibition of 5-substituted-8-methyl-2 H -pyrido[1,2-a]pyrimidine-2,4(3H)-diones.Med. Chem. Res.2012211607410.1007/s00044‑010‑9491‑2
    [Google Scholar]
  47. LiuW. WangS. ZhangQ. YuJ. LiJ. XieZ. CaoH. Regioselective C3 alkenylation of 4 H-pyrido[1,2-a]pyrimidin-4-ones via palladium-catalyzed C-H activation.Chem. Asian J.2014992436243910.1002/asia.20140245524990766
    [Google Scholar]
  48. GuchhaitS.K. PriyadarshaniG. Pd-catalyzed Ag(I)-promoted C3-arylation of pyrido[1,2-a]pyrimidin-4-ones with bromo/iodo-arenes.J. Org. Chem.201580168482848810.1021/acs.joc.5b01573
    [Google Scholar]
  49. MathavanS. Durai RajA.K. YamajalaR.B.R.D. A metal-free approach for the synthesis of privileged 4 H -pyrido[1,2- a]pyrimidin-4-one derivatives over a heterogeneous catalyst.ChemistrySelect2019436107371074110.1002/slct.201902638
    [Google Scholar]
  50. HorváthG. HermeczI. HorváthÁ. Pongor-CsákváriM. PusztayL. KissÁ. Electronic structure of 4H-pyrido[1,2-a]pyrimidin-4-ones.J. Heterocycl. Chem.19852248148910.1002/jhet.5570220255
    [Google Scholar]
  51. StanovnikB. RečnikS. SveteJ. MedenA. Synthesis of Alkyl 1-(Substituted Pyridin-2-yl)-1H-1,2,3-triazole-4-carboxylates by ‘Ring Switching’ transformation of 4-Oxo-4H-pyridino[1,2-a]pyrimidine-3-diazonium tetrafluoroborates.Heterocycles20005381793180510.3987/COM‑00‑8925
    [Google Scholar]
  52. RečnikS. Ring contractions of 4-Oxoquinolizine-3-diazonium tetrafluoroborates, by an aza wolff rearrangement, to alkyl indolizine-3-carboxylates.Eur. J. Org. Chem.20013705370910.1002/1099‑0690(200110)2001:19
    [Google Scholar]
  53. BasahelS.N. AhmedN.S. NarasimharaoK. MokhtarM. Simple and efficient protocol for synthesis of pyrido[1,2-a]pyrimidin-4-one derivatives over solid heteropolyacid catalysts.RSC Advances2016615119211193210.1039/C5RA22180C
    [Google Scholar]
  54. JadhavS.B. FatemaS. PatilR.B. SangshettiJ.N. FarooquiM. Pyrido[1,2-a]pyrimidin-4-ones: Ligand-based Design, Synthesis, and Evaluation as an Anti-inflammatory Agent.J. Heterocycl. Chem.20175463299331310.1002/jhet.2950
    [Google Scholar]
  55. Del TurcoS. SartiniS. SentieriC. SaponaroC. NavarraT. DarioB. Da SettimoF. La MottaC. BastaG. A novel 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative inhibits endothelial cell dysfunction and smooth muscle cell proliferation/activation.Eur. J. Med. Chem.20147210210910.1016/j.ejmech.2013.11.02124361522
    [Google Scholar]
  56. La MottaC. Da SettimoF. DarioB. SartiniS. BastaG. Dek TurcoS. A therapeutic agent for treatment of blood vessels.Patent W.O. 2013144860A12013
    [Google Scholar]
  57. LiuW. WangS. CaiZ. LiZ. LiJ. WangA. Iodine-catalyzed regioselective sulfenylation of 4H-pyrido-[1,2-a]pyrimidin-4-ones with sulfonyl hydrazides.Synlett20182911612010.1055/s‑0036‑1588549
    [Google Scholar]
  58. GuoL. SuM. LvJ. LiuW. WangS. N -Iodosuccinimide-promoted regioselective selenylation of 4 H -Pyrido-[1,2-a]-pyrimidin-4-ones with diselenides at room temperature.Asian J. Org. Chem.202110112911291510.1002/ajoc.202100576
    [Google Scholar]
  59. GhoshP. ChhetriG. DasS. Metal free C-3 chalcogenation (sulfenylation and selenylation) of 4 H -pyrido[1,2- a]pyrimidin-4-ones.RSC Advances20211117102581026310.1039/D1RA00834J35423521
    [Google Scholar]
  60. ShiJ. WangZ. TengX. ZhangB. SunK. WangX. Electro-oxidative c3-selenylation of pyrido[1,2-a]pyrimidin-4-ones.Molecules20232852206224210.3390/molecules2805220636903450
    [Google Scholar]
  61. GhoshP. ChhetriG. PerlE. DasS. [Bis(trifluoroacetoxy)iodo]benzene Mediated C-3 selenylation of pyrido[1,2-a] pyrimidin-4-ones under ambient conditions.Adv. Synth. Catal.202136382148215610.1002/adsc.202001426
    [Google Scholar]
  62. RoyS. GhoshP. GhoshS. MondalS.K. MandalA. DasS. Regioselective C(sp2)3−H thiocyanation of substituted 4H-pyrido[1,2-a]pyrimidin-4-ones and its derivatizations.ChemistrySelect2023837e20230346510.1002/slct.202303465
    [Google Scholar]
  63. ChillalA.S. BhawaleR.T. KshirsagarU.A. Photoinduced regioselective chalcogenation and thiocyanation of 4 H -Pyrido[1,2-a] pyrimidin-4-ones under benign conditions.Eur. J. Org. Chem.20232634e20230066510.1002/ejoc.202300665
    [Google Scholar]
  64. ModrankaJ. JaneckiT. Efficient synthesis of phosphorylated ortho-fused azaheterocycles.Tetrahedron201167499595960110.1016/j.tet.2011.09.139
    [Google Scholar]
  65. GuoL. SuM. ZhanH. LiuW. WangS. Silver-catalyzed direct regioselective c3 phosphonation of 4H-pyrido[1,2-a]pyrimidin-4-ones with H -phosphites.Asian J. Org. Chem.20211071660166410.1002/ajoc.202100235
    [Google Scholar]
  66. KinzelO.D. BallR.G. DonghiM. MaguireC.K. MuragliaE. PesciS. RowleyM. SummaV. 3-Hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxylates—Fast access to a heterocyclic scaffold for HIV-1 integrase inhibitors.Tetrahedron Lett.200849466556655810.1016/j.tetlet.2008.09.010
    [Google Scholar]
  67. KinzelO.D. DonghiM. SummaV. 3-Hydroxy-4-oxo-4H-pyrido [1, 2-a] pyrimidine-2-carboxylates—A new class of HIV-1 integrase inhibitors.Bioorg. Med. Chem. Lett.2009191930193410.1016/j.bmcl.2009.02.05519269170
    [Google Scholar]
  68. YuanY. YangJ. LeiA. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals.Chem. Soc. Rev.20215018100581008610.1039/D1CS00150G34369504
    [Google Scholar]
  69. ChenJ. XiaoY. YouX. LiS. FuY. OuyangY. Electrochemical oxidative selenation of 4 H -Pyrido-[1,2- a]-pyrimidin-4-ones with diorganyldiselenides.ChemistrySelect202381e20220387910.1002/slct.202203879
    [Google Scholar]
  70. SuM. GuoL. Catalyst- and oxidant-free electrochemical regioselective halogenation and trifluoromethylation of 4H-Pyrido[1,2-a]pyrimidin-4-ones.Eur. J. Org. Chem.202326e20230026810.1002/ejoc.202300268
    [Google Scholar]
  71. BiswasS. GhoshS. DasI. Supporting electrolyte-free electrochemical oxidative c-h sulfonylation and thiocyanation of fused pyrimidin-4-ones in an all-green electrolytic system.Chemistry2024306e20230311810.1002/chem.20230311837934155
    [Google Scholar]
  72. HermeczI. MolnárA. FaiglF. PodányiB. FintaZ. BalázsL. Synthesis of halogenated 4H-Pyrido[1,2-a]pyrimidin-4-ones.Heterocycles200978102477248810.3987/COM‑09‑11746
    [Google Scholar]
  73. MolnárA. KaprosA. PárkányiL. MucsiZ. VládG. HermeczI. Suzuki–Miyaura cross-coupling reactions of halo derivatives of 4H-pyrido[1,2-a]pyrimidin-4-ones.Org. Biomol. Chem.20119196559656510.1039/c1ob05505d21808806
    [Google Scholar]
  74. AntolincK. BrodnikH. GrošeljU. ŠtefaneB. PetekN. SveteJ. Catalytic photoredox C–H arylation of 4-Oxo-4 H -pyrido[1,2- a]pyrimidine-3-diazonium tetrafluoroborates and related heteroaryl diazonium salts.J. Org. Chem.20238819139341394510.1021/acs.joc.3c0151737676813
    [Google Scholar]
  75. BhawaleR.T. KshirsagarU.A. Visible light assisted direct C3–H arylation of pyrido[1,2-a]pyrimidin-4-ones and thiazolo[3,2-a]pyrimidin-5-ones.J. Org. Chem.202388139537954210.1021/acs.joc.3c0078037252904
    [Google Scholar]
  76. RečnikS. SveteJ. StanovnikB. Reactions of quinolizine- and pyridino[1,2–a]pyrimidine-3-diazonium tetrafluoroborates with aliphatic amines.J. Nat. Res. B.200459438038510.1515/znb‑2004‑0405
    [Google Scholar]
  77. ShenaiB.R. SijwaliP.S. SinghA. RosenthalP.J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum.J. Biol. Chem.200027537290002901010.1074/jbc.M00445920010887194
    [Google Scholar]
  78. HuS. HuangY. WuY.J. HeH. Grant-YoungK.A. BertekapR.L. WhiterockV. BrassilP. LentzK. SivaprakasamP. LangleyD.R. WestphalR.S. ScolaP.M. Structure activity relationship studies of 3-arylsulfonyl-pyrido[1,2-a]pyrimidin-4-imines as potent 5-HT6 antagonists.Bioorg. Med. Chem.20142251782179010.1016/j.bmc.2014.01.00324495863
    [Google Scholar]
  79. WuH. LiH. FangZ. Hydrothermal amination of biomass to nitrogenous chemicals.Green Chem.202123186675669710.1039/D1GC02505H
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461354583241220045930
Loading
/content/journals/cgc/10.2174/0122133461354583241220045930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test