Skip to content
2000
image of Recent Advances of 3-Hetero-substituted 4H-pyrido[1,2-a]pyrimidin-4-one: A Review

Abstract

Late-stage functionalization of pyrido[1,2-a]pyrimidin-4-one at pyrimidine ring structure is crucial to design pharmaceuticals, agrochemicals and materials for sustainable development. 4H-pyrido[1,2-a]pyrimidin-4-ones skeleton, a potent privileged scaffold, ubiquitously exists in numerous bioactive natural and pharmacologic products. Scope of different synthetic methods including their synthetic application to design new materials and biological activity of differently substituted 4H-pyrido[1,2-a]pyrimidin-4-ones are of main interest. Researchers are relentlessly working to develop more efficient and ecofriendly methods for their synthesis. This review provides, a comprehensive discussion of the recent advancements in the field of synthesis and application of 3-hetero-substituted 4H-pyrido[1,2-a]pyrimidin-4-one for sustainable development.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461354583241220045930
2025-01-02
2025-09-28
Loading full text...

Full text loading...

References

  1. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  2. Mandal S.K. Ghanta R. Pharmaceutical Chemistry and Production: An Introductory Textbook Bentham Science Publishers 2022 10.2174/97816810888911220101
    [Google Scholar]
  3. Hermecz I. Mészáros Z. Pyrido[1,2‐ a ]pyrimidines; New chemical entities in medicinal chemistry. Med. Res. Rev. 1988 8 2 203 230 10.1002/med.2610080204 3288821
    [Google Scholar]
  4. Fenton C. Scott L.J. Risperidone. CNS Drugs 2005 19 5 429 444 10.2165/00023210‑200519050‑00005 15907153
    [Google Scholar]
  5. Khan B.U. Brief report: Risperidone for severely disturbed behavior and tardive dyskinesia in developmentally disabled adults. J. Autism Dev. Disord. 1997 27 4 479 489 10.1023/A:1025813607005 9261670
    [Google Scholar]
  6. Jeste D.V. Okamoto A. Napolitano J. Kane J.M. Martinez R.A. Low incidence of persistent tardive dyskinesia in elderly patients with dementia treated with risperidone. Am. J. Psychiatry 2000 157 7 1150 1155 10.1176/appi.ajp.157.7.1150 10873925
    [Google Scholar]
  7. Kennis L.E.J. Bischoff F.P. Mertens C.J. Love C.J. Van den Keybus F.A.F. Pieters S. Braeken M. Megens A.A.H.P. Leysen J.E. New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2- c ]pyridine having highly active and potent central α 2 -antagonistic activity as potential antidepressants. Bioorg. Med. Chem. Lett. 2000 10 1 71 74 10.1016/S0960‑894X(99)00591‑0 10636247
    [Google Scholar]
  8. Pettersson A. Gradin K. Hedner T. Persson B. Antihypertensive mechanism of action of ketanserin and some ketanserin analogues in the spontaneously hypertensive rat. Naunyn Schmiedebergs Arch. Pharmacol. 1985 329 4 394 397 10.1007/BF00496374 2993926
    [Google Scholar]
  9. Yanagihara Y. Kasai H. Kawashima T. Shida T. Immunopharmacological studies on TBX, a new antiallergic drug (1). Inhibitory effects on passive cutaneous anaphylaxis in rats and guinea pigs. Jpn. J. Pharmacol. 1988 48 1 91 101 10.1254/jjp.48.91 2462074
    [Google Scholar]
  10. Sano A. Ishihara M. Yoshihara J. Sumino M. Nawa H. A facile and practical synthesis of 9-Methyl-3-(1H-tetrazol-5-yl)-4H-pyrido(1,2-a)pyrimidin-4-one. Chem. Pharm. Bull. 1995 43 4 683 685 10.1248/cpb.43.683
    [Google Scholar]
  11. Awouters F. Vermeire J. Smeyers F. Vermote P. van Beek R. Niemegeers C.J.E. Oral antiallergic activity in ascaris hypersensitive dogs: A study of known antihistamines and of the new compounds ramastine (R 57 959) and levocabastine (R 50 547). Drug Dev. Res. 1986 8 1-4 95 102 10.1002/ddr.430080112
    [Google Scholar]
  12. Kapui Z. Varga M. Urban-Szabó K. Mikus E. Szabó T. Szeredi J. Bátori S. Finance O. Arányi P. Biochemical and pharmacological characterization of 2-(9-(2-Piperidinoethoxy)-4-oxo-4 H -pyrido[1,2- a ]pyrimidin-2-yloxymethyl)-4-(1-methylethyl)-6-methoxy-1,2-benzisothiazol-3(2 H )-one-1,1-dioxide (SSR69071), a novel, orally active elastase inhibitor. J. Pharmacol. Exp. Ther. 2003 305 2 451 459 10.1124/jpet.102.044263 12606659
    [Google Scholar]
  13. La Motta C. Sartini S. Mugnaini L. Simorini F. Taliani S. Salerno S. Marini A.M. Da Settimo F. Lavecchia A. Novellino E. Cantore M. Failli P. Ciuffi M. Pyrido[1,2-a]pyrimidin-4-one derivatives as a novel class of selective aldose reductase inhibitors exhibiting antioxidant activity. J. Med. Chem. 2007 50 20 4917 4927 10.1021/jm070398a 17845019
    [Google Scholar]
  14. Priyadarshani G. Amrutkar S. Nayak A. Banerjee U.C. Kundu C.N. Guchhait S.K. Scaffold-hopping of bioactive flavonoids: Discovery of aryl-pyridopyrimidinones as potent anticancer agents that inhibit catalytic role of topoisomerase IIα. Eur. J. Med. Chem. 2016 122 43 54 10.1016/j.ejmech.2016.06.024 27343852
    [Google Scholar]
  15. Harriman G.C.B. Chi S. Zhang M. Crowe A. Bennett R.A. Parsons I. Synthesis of 4-trifluoromethylpyrido[1,2-a]pyrimidin-2-ones utilizing activated alkynoates. Tetrahedron Lett. 2003 44 18 3659 3662 10.1016/S0040‑4039(03)00700‑7
    [Google Scholar]
  16. Matsutani S. Mizushima Y. Patent EP8910263519890216, 1989
  17. Mane U.R. Li H. Huang J. Gupta R.C. Nadkarni S.S. Giridhar R. Naik P.P. Yadav M.R. Pyrido[1,2-a]pyrimidin-4-ones as antiplasmodial falcipain-2 inhibitors. Bioorg. Med. Chem. 2012 20 21 6296 6304 10.1016/j.bmc.2012.09.008 23040894
    [Google Scholar]
  18. Smith R.L. Barrett R.J. Sanders-Bush E. Neurochemical and behavioral evidence that quipazine-ketanserin discrimination is mediated by serotonin2A receptor. J. Pharmacol. Exp. Ther. 1995 275 2 1050 1057 7473132
    [Google Scholar]
  19. Ratni H. Scalco R.S. Stephan A.H. Risdiplam, the first approved small molecule splicing modifier drug as a blueprint for future transformative medicines. ACS Med. Chem. Lett. 2021 12 6 874 877 10.1021/acsmedchemlett.0c00659 34141064
    [Google Scholar]
  20. Ratni H. Ebeling M. Baird J. Bendels S. Bylund J. Chen K.S. Denk N. Feng Z. Green L. Guerard M. Jablonski P. Jacobsen B. Khwaja O. Kletzl H. Ko C.P. Kustermann S. Marquet A. Metzger F. Mueller B. Naryshkin N.A. Paushkin S.V. Pinard E. Poirier A. Reutlinger M. Weetall M. Zeller A. Zhao X. Mueller L. Discovery of risdiplam, a selective survival of motor neuron-2 ( SMN2 ) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 2018 61 15 6501 6517 10.1021/acs.jmedchem.8b00741 30044619
    [Google Scholar]
  21. Guo C. Linton A. Jalaie M. Kephart S. Ornelas M. Pairish M. Greasley S. Richardson P. Maegley K. Hickey M. Li J. Wu X. Ji X. Xie Z. Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators. Bioorg. Med. Chem. Lett. 2013 23 11 3358 3363 10.1016/j.bmcl.2013.03.090 23622982
    [Google Scholar]
  22. Roma G. Cinone N. Braccio M.D. Grossi G. Leoncini G. Synthesis, antiplatelet activity and comparative molecular field analysis of substituted 2-amino-4H-pyrido[1,2-a]pyrimidin-4-ones, their congeners and isosteric analogues. Bioorg. Med. Chem. Lett. 2000 8 751 768 10.1016/S0968‑0896(00)00010‑9
    [Google Scholar]
  23. Venkatesan A.M. Levin J.I. Baker J.S. Chan P.S. Bailey T. Coupet J. Substituted 4H-pyrido[1,2-a]pyrimidin-4-one angiotensin II receptor antagonists. Bioorg. Med. Chem. Lett. 1994 4 1 183 188 10.1016/S0960‑894X(01)81144‑6
    [Google Scholar]
  24. Bhawale R.T. Chillal A.S. Kshirsagar U.A. 4H‐Pyrido [1,2‐ a ]pyrimidin‐4‐one, biologically important fused heterocyclic scaffold: Synthesis and functionalization. J. Heterocycl. Chem. 2023 60 8 1356 1373 10.1002/jhet.4637
    [Google Scholar]
  25. Katritzky A.R. Rogers J.W. Witek R.M. Nair S.K. Novel syntheses of pyrido[1,2-a]pyrimidin-2-ones, 2H-quinolizin-2-ones, pyrido[1,2-a]quinolin-3-ones, and thiazolo[3,2-a]pyrimidin-7-ones. ARKIVOC 2004 2004 8 52 60 10.3998/ark.5550190.0005.808
    [Google Scholar]
  26. Li J. Liu T. Singh N. Huang Z. Ding Y. Huang J. Sudarsanam P. Li H. Photocatalytic C–N bond construction toward high-value nitrogenous chemicals. Chem. Commun. 2023 59 97 14341 14352 10.1039/D3CC04771G
    [Google Scholar]
  27. Li J. Sudarsanam P. Light-assisted dual catalysis for C–N bond construction. Trends Chem. 2023 5 649 652 10.1016/j.trechm.2023.05.001
    [Google Scholar]
  28. Yang Z. Shi W. Alhumade H. Yi H. Lei A. Electrochemical oxidative C(sp3)–H cross-coupling with hydrogen evolution. Nature Synthesis 2023 2 3 217 230 10.1038/s44160‑022‑00221‑2
    [Google Scholar]
  29. Peng L. Gao X. Duan L. Ren X. Wu D. Ding K. Identification of pyrido[1,2-α]pyrimidine-4-ones as new molecules improving the transcriptional functions of estrogen-related receptor α. J. Med. Chem. 2011 54 21 7729 7733 10.1021/jm200976s 21958216
    [Google Scholar]
  30. Yang K. Xiang J. Bao G. Dang Q. Bai X. Synthesis of highly substituted 4H-pyrido[1,2-a]pyrimidines via a one-pot three-component condensation reaction. ACS Comb. Sci. 2013 15 9 519 524 10.1021/co400086u 23914724
    [Google Scholar]
  31. Yale H.L. Spitzmiller E.R. 6‐ and 7‐Substituted 4 H ‐Pyrido[1,2‐ a ] pyrimidin‐4‐ones. Synthesis via the acid‐catalyzed isomerization of 2‐(Acetoacetamido)pyridines. J. Heterocycl. Chem. 1977 14 4 637 646 10.1002/jhet.5570140420
    [Google Scholar]
  32. Yang Y. Shu W.M. Yu S.B. Ni F. Gao M. Wu A.X. Auto-tandem catalysis: Synthesis of 4H-pyrido[1,2-a]pyrimidin-4-ones via copper-catalyzed aza-Michael addition–aerobic dehydrogenation–intramolecular amidation. Chem. Commun. 2013 49 17 1729 1731 10.1039/c3cc38131e 23340739
    [Google Scholar]
  33. Alam M.A. Alsharif Z. Alkhattabi H. Jones D. Delancey E. Gottsponer A. Yang T. Hexafluoroisopropyl alcohol mediated synthesis of 2,3-dihydro-4H-pyrido[1,2-a]pyrimidin-4-ones. Sci. Rep. 2016 6 1 36316 10.1038/srep36316 27805054
    [Google Scholar]
  34. Dorokhov V.A. Baranin S.V. Dib A. Bogdanov V.S. Yakovlev I.P. Stashina G.A. Zhulin V.M. Chem. Abstr. 1991 114 101911
    [Google Scholar]
  35. Suri O.P. Suri K.A. Gupta B.D. Satti N.K. An unequivocal synthesis of 4-methyl-2-oxo-(2h)-pyrido- [1,2-a]pyrimidines. Synth. Commun. 2002 32 5 741 746 10.1081/SCC‑120002513
    [Google Scholar]
  36. Roma G. Di Braccio M. Balbi A. Mazzei M. Ermili A. 1,2‐Fused pyrimidines. III. Derivatives of 12 H ‐pyrido[1′,2′:1,2]pyrimido[4,5‐ b ]quinoline, a novel heterocyclic system. J. Heterocycl. Chem. 1987 24 2 329 335 10.1002/jhet.5570240207
    [Google Scholar]
  37. Al-Jallo H.N. Synthesis and nuclear magnetic resonance spectra of 2H-pyrido [1,2-a] pyrimidin-2-ones. J. Heterocycl. Chem. 1978 15 801 805 10.1002/jhet.5570150518
    [Google Scholar]
  38. Acheson R.M. Wallis J.D. Products from dimethyl hex-2-en-1-yne-1,6-dioate and dimethyl penta-2,3-diene-1,5-dioate with compounds possessing two adjacent nucleophilic centres. J. Chem. Soc., Perkin Trans. 1 1982 1905 1914 10.1039/p19820001905
    [Google Scholar]
  39. Doad G.J.S. Okor D.I. Scheinmann F. Bates P.A. Hursthouse M.B. Cyclophilic reactions of allene-1,3-dicarboxylic ester. Part 7. Synthesis of bicyclic and tricyclic heterocyclic compounds involving nitrogen, sulphur, and carbon as nucleophiles. J. Chem. Soc., Perkin Trans. 1 1988 11 2993 3003 10.1039/P19880002993
    [Google Scholar]
  40. Hussain M. Liu J. Practical synthesis of 4H-pyrido[1, 2-a]pyrimidin-4-ones using ethylene glycol as a promoting solvent. Tetrahedron Lett. 2020 61 36 152269 152272 10.1016/j.tetlet.2020.152269
    [Google Scholar]
  41. Ye F.C. Chen B.C. Huang X. Synthesis of 7-Substituted 5-Oxo-5 H -thiazolo[3,2- a ]pyrimidine-6-carboxylic Acids, 2-Substituted 4-Oxo-4 H -pyrido [1,2- a ]pyrimidine-3-carboxylic Acids, and 2,6-Disubstituted 4-Quinolones from Meldrum’s Acid Derivatives. Synthesis 1989 1989 4 317 320 10.1055/s‑1989‑27241
    [Google Scholar]
  42. Ferrarini P.L. Mori C. Primofiore G. Calzolari L. One step synthesis of pyrimido[1,2‐ a ][1,8]naphthyridinones, pyrido[1,2‐a]pyrimidinones and 1,8‐naphthyridinones. Antihypertensive agents. V. J. Heterocycl. Chem. 1990 27 4 881 886 10.1002/jhet.5570270411
    [Google Scholar]
  43. Ruyun J. Dehydroevodiamine chloride. Drugs Future 1985 10 7 556 10.1358/dof.1985.010.07.74631
    [Google Scholar]
  44. Kano Y. Zong Q. Komatsu K. Pharmacological properties of galenical preparation. XIV. Body temperature retaining effect of the chinese traditional medicine, “Goshuyu-to” and component crude drugs. Chem. Pharm. Bull. 1991 39 3 690 692 10.1248/cpb.39.690 2070449
    [Google Scholar]
  45. Hermecz I. Kökösi J. Podányi B. Liko Z. Nitrogen bridgehead compounds 87. Synthesis of 3-azarutecarpine (14-azanauclefine) and its 7-methyl derivative. Tetrahedron 1996 52 22 7789 7796 10.1016/S0040‑4020(96)00347‑X
    [Google Scholar]
  46. Rauf A. Liaqat S. Qureshi A.M. Muhammad Y. Rehman A.U. Hassan M.U. Chohan Z. Synthesis, characterization, and urease inhibition of 5-substituted-8-methyl-2 H -pyrido[1,2-a]pyrimidine-2,4(3 H )-diones. Med. Chem. Res. 2012 21 1 60 74 10.1007/s00044‑010‑9491‑2
    [Google Scholar]
  47. Liu W. Wang S. Zhang Q. Yu J. Li J. Xie Z. Cao H. Regioselective C3 alkenylation of 4 H-pyrido[1,2-a]pyrimidin-4-ones via palladium-catalyzed C-H activation. Chem. Asian J. 2014 9 9 2436 2439 10.1002/asia.201402455 24990766
    [Google Scholar]
  48. Guchhait S.K. Priyadarshani G. Pd-catalyzed Ag(I)-promoted C3-arylation of pyrido[1,2- a ]pyrimidin-4-ones with bromo/iodo-arenes. J. Org. Chem. 2015 80 16 8482 8488 10.1021/acs.joc.5b01573
    [Google Scholar]
  49. Mathavan S. Durai Raj A.K. Yamajala R.B.R.D. A metal‐free approach for the synthesis of privileged 4 H ‐pyrido[1,2‐ a ]pyrimidin‐4‐one derivatives over a heterogeneous catalyst. ChemistrySelect 2019 4 36 10737 10741 10.1002/slct.201902638
    [Google Scholar]
  50. Horváth G. Hermecz I. Horváth Á. Pongor-Csákvári M. Pusztay L. Kiss Á. Electronic structure of 4H-pyrido[1,2-a]pyrimidin-4-ones. J. Heterocycl. Chem. 1985 22 481 489 10.1002/jhet.5570220255
    [Google Scholar]
  51. Stanovnik B. Rečnik S. Svete J. Meden A. Synthesis of Alkyl 1-(Substituted Pyridin-2-yl)-1H-1,2,3-triazole-4-carboxylates by ‘Ring Switching’ transformation of 4-Oxo-4H-pyridino[1,2-a]pyrimidine-3-diazonium tetrafluoroborates. Heterocycles 2000 53 8 1793 1805 10.3987/COM‑00‑8925
    [Google Scholar]
  52. Rečnik S. Ring contractions of 4-Oxoquinolizine-3-diazonium tetrafluoroborates, by an aza wolff rearrangement, to alkyl indolizine-3-carboxylates.. Eur. J. Org. Chem. 2001 3705 3709 10.1002/1099‑0690(200110)2001:19
    [Google Scholar]
  53. Basahel S.N. Ahmed N.S. Narasimharao K. Mokhtar M. Simple and efficient protocol for synthesis of pyrido[1,2-a]pyrimidin-4-one derivatives over solid heteropolyacid catalysts. RSC Advances 2016 6 15 11921 11932 10.1039/C5RA22180C
    [Google Scholar]
  54. Jadhav S.B. Fatema S. Patil R.B. Sangshetti J.N. Farooqui M. Pyrido[1,2‐a]pyrimidin‐4‐ones: Ligand‐based Design, Synthesis, and Evaluation as an Anti‐inflammatory Agent. J. Heterocycl. Chem. 2017 54 6 3299 3313 10.1002/jhet.2950
    [Google Scholar]
  55. Del Turco S. Sartini S. Sentieri C. Saponaro C. Navarra T. Dario B. Da Settimo F. La Motta C. Basta G. A novel 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative inhibits endothelial cell dysfunction and smooth muscle cell proliferation/activation. Eur. J. Med. Chem. 2014 72 102 109 10.1016/j.ejmech.2013.11.021 24361522
    [Google Scholar]
  56. La Motta C. Da Settimo F. Dario B. Sartini S. Basta G. Dek Turco S. A therapeutic agent for treatment of blood vessels. Patent W.O. 2013144860A1, 2013
  57. Liu W. Wang S. Cai Z. Li Z. Li J. Wang A. Synlett 2018 29 116 120 10.1055/s‑0036‑1588549
    [Google Scholar]
  58. Guo L. Su M. Lv J. Liu W. Wang S. N ‐Iodosuccinimide‐promoted regioselective selenylation of 4 H ‐Pyrido‐[1,2‐ a ]‐pyrimidin‐4‐ones with diselenides at room temperature. Asian J. Org. Chem. 2021 10 11 2911 2915 10.1002/ajoc.202100576
    [Google Scholar]
  59. Ghosh P. Chhetri G. Das S. Metal free C-3 chalcogenation (sulfenylation and selenylation) of 4 H -pyrido[1,2- a ]pyrimidin-4-ones. RSC Advances 2021 11 17 10258 10263 10.1039/D1RA00834J 35423521
    [Google Scholar]
  60. Shi J. Wang Z. Teng X. Zhang B. Sun K. Wang X. Electro-oxidative c3-selenylation of pyrido[1,2-a]pyrimidin-4-ones. Molecules 2023 28 5 2206 2242 10.3390/molecules28052206 36903450
    [Google Scholar]
  61. Ghosh P. Chhetri G. Perl E. Das S. [Bis(trifluoroacetoxy)iodo]benzene Mediated C‐3 Selenylation of Pyrido[1,2‐ a ] Pyrimidin‐4‐Ones Under Ambient Conditions. Adv. Synth. Catal. 2021 363 8 2148 2156 10.1002/adsc.202001426
    [Google Scholar]
  62. Roy S. Ghosh P. Ghosh S. Mondal S.K. Mandal A. Das S. Regioselective C(sp 2 )3−H thiocyanation of substituted 4 H ‐pyrido[1,2‐ a ]pyrimidin‐4‐ones and its derivatizations. ChemistrySelect 2023 8 37 e202303465 10.1002/slct.202303465
    [Google Scholar]
  63. Chillal A.S. Bhawale R.T. Kshirsagar U.A. Photoinduced regioselective chalcogenation and thiocyanation of 4 H ‐Pyrido[1,2‐ a ] pyrimidin‐4‐ones under benign conditions. Eur. J. Org. Chem. 2023 26 34 e202300665 10.1002/ejoc.202300665
    [Google Scholar]
  64. Modranka J. Janecki T. Efficient synthesis of phosphorylated ortho-fused azaheterocycles. Tetrahedron 2011 67 49 9595 9601 10.1016/j.tet.2011.09.139
    [Google Scholar]
  65. Guo L. Su M. Zhan H. Liu W. Wang S. Silver‐catalyzed direct regioselective c3 phosphonation of 4 H ‐pyrido[1,2‐ a ]pyrimidin‐4‐ones with H ‐phosphites. Asian J. Org. Chem. 2021 10 7 1660 1664 10.1002/ajoc.202100235
    [Google Scholar]
  66. Kinzel O.D. Ball R.G. Donghi M. Maguire C.K. Muraglia E. Pesci S. Rowley M. Summa V. 3-Hydroxy-4-oxo-4H-pyrido[1,2-a]pyrimidine-2-carboxylates—fast access to a heterocyclic scaffold for HIV-1 integrase inhibitors. Tetrahedron Lett. 2008 49 46 6556 6558 10.1016/j.tetlet.2008.09.010
    [Google Scholar]
  67. Kinzel O.D. Donghi M. Summa V. Bioorg. Med. Chem. Lett. 2009 19 1930 1934 10.1016/j.bmcl.2009.02.055 19269170
    [Google Scholar]
  68. Yuan Y. Yang J. Lei A. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals. Chem. Soc. Rev. 2021 50 18 10058 10086 10.1039/D1CS00150G 34369504
    [Google Scholar]
  69. Chen J. Xiao Y. You X. Li S. Fu Y. Ouyang Y. Electrochemical oxidative selenation of 4 H ‐Pyrido‐[1,2‐ a ]‐pyrimidin‐4‐ones with diorganyldiselenides. ChemistrySelect 2023 8 1 e202203879 10.1002/slct.202203879
    [Google Scholar]
  70. Su M. Guo L. Catalyst- and oxidant-free electrochemical regioselective halogenation and trifluoromethylation of 4H-Pyrido[1,2-a]pyrimidin-4-ones. Eur. J. Org. Chem. 2023 26 e202300268 10.1002/ejoc.202300268
    [Google Scholar]
  71. Biswas S. Ghosh S. Das I. Supporting electrolyte-free electrochemical oxidative c-h sulfonylation and thiocyanation of fused pyrimidin-4-ones in an all-green electrolytic system. Chemistry 2024 30 6 e202303118 10.1002/chem.202303118 37934155
    [Google Scholar]
  72. Hermecz I. Molnár A. Faigl F. Podányi B. Finta Z. Balázs L. Synthesis of halogenated 4H-Pyrido[1,2-a]pyrimidin-4-ones. Heterocycles 2009 78 10 2477 2488 10.3987/COM‑09‑11746
    [Google Scholar]
  73. Molnár A. Kapros A. Párkányi L. Mucsi Z. Vlád G. Hermecz I. Suzuki–Miyaura cross-coupling reactions of halo derivatives of 4H-pyrido[1,2-a]pyrimidin-4-ones. Org. Biomol. Chem. 2011 9 19 6559 6565 10.1039/c1ob05505d 21808806
    [Google Scholar]
  74. Antolinc K. Brodnik H. Grošelj U. Štefane B. Petek N. Svete J. Catalytic photoredox C–H arylation of 4-Oxo-4 H -pyrido[1,2- a ]pyrimidine-3-diazonium tetrafluoroborates and related heteroaryl diazonium salts. J. Org. Chem. 2023 88 19 13934 13945 10.1021/acs.joc.3c01517 37676813
    [Google Scholar]
  75. Bhawale R.T. Kshirsagar U.A. Visible light assisted direct C3–H arylation of pyrido[1,2- a ]pyrimidin-4-ones and thiazolo[3,2- a ]pyrimidin-5-ones. J. Org. Chem. 2023 88 13 9537 9542 10.1021/acs.joc.3c00780 37252904
    [Google Scholar]
  76. Rečnik S. Svete J. Stanovnik B. Reactions of Quinolizine- and Pyridino[1,2–a]pyrimidine-3-diazonium Tetrafluoroborates with Aliphatic amines. J. Nat. Res. B. 2004 59 4 380 385 10.1515/znb‑2004‑0405
    [Google Scholar]
  77. Shenai B.R. Sijwali P.S. Singh A. Rosenthal P.J. Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J. Biol. Chem. 2000 275 37 29000 29010 10.1074/jbc.M004459200 10887194
    [Google Scholar]
  78. Hu S. Huang Y. Wu Y.J. He H. Grant-Young K.A. Bertekap R.L. Whiterock V. Brassil P. Lentz K. Sivaprakasam P. Langley D.R. Westphal R.S. Scola P.M. Structure activity relationship studies of 3-arylsulfonyl-pyrido[1,2-a]pyrimidin-4-imines as potent 5-HT6 antagonists. Bioorg. Med. Chem. 2014 22 5 1782 1790 10.1016/j.bmc.2014.01.003 24495863
    [Google Scholar]
  79. Wu H. Li H. Fang Z. Hydrothermal amination of biomass to nitrogenous chemicals. Green Chem. 2021 23 18 6675 6697 10.1039/D1GC02505H
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461354583241220045930
Loading
/content/journals/cgc/10.2174/0122133461354583241220045930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test