Skip to content
2000
image of Antioxidative Effects of Lactobacillus Acidophilus against Zearalenone-Induced Oxidative Stress in the Reproductive System of Mice

Abstract

Introduction

Zearalenone (ZEN) is an estrogenic mycotoxin produced by a specific species of Fusarium fungus. This experimental animal study investigated the antioxidant effects of Lactobacillus acidophilus on oxidative stress caused by ZEA in the ovarian and uterine tissues of an animal model.

Methods

This experimental animal study was conducted on 40 female mice randomly divided into four groups (n=10). The groups received normal saline, ZEN (40 μg/kg/day, IP), L. acidophilus [5×10^9 CFU/ml, intraperitoneally (IP)], or a combination of ZEN and L. acidophilus for one week. At the end of the intervention, blood samples were collected under deep anesthesia, and the uterine and ovarian tissues were isolated. Biochemical markers (MDA, TAC, thiol groups, sex hormones) and histological changes were evaluated. GraphPad Prism 5 was used for statistical analysis.

Results

ZEN significantly reduced total antioxidant capacity (TAC) and thiol levels while increasing malondialdehyde (MDA) in ovarian and uterine tissues (<0.0001), indicating heightened oxidative stress and disrupted hormonal balance by elevating progesterone and lowering estrogen levels ( < 0.0001). L. acidophilus treatment mitigated these effects, partially restoring TAC, thiol, and hormone levels ( < 0.01) while reducing MDA ( < 0.01). Histopathologically, ZEN caused a reduction in follicle count in the ovaries, which was significantly alleviated by L. acidophilus co-treatment.

Discussion

The findings highlighted the significant protective role of Lactobacillus acidophilus against ZEN-induced oxidative stress and endocrine disruption in the murine reproductive system. ZEN markedly impaired antioxidant defenses (reduced TAC and thiol levels, elevated MDA) and altered sex hormone profiles (increased progesterone, decreased estrogen), consistent with its known estrogenic and pro-oxidant effects. These adverse outcomes were accompanied by notable histopathological damage in ovarian and uterine tissues. L. acidophilus supplementation effectively attenuated these effects, likely through multiple mechanisms: direct free radical scavenging, activation of the Nrf2-mediated antioxidant pathway, physical binding and detoxification of ZEN, anti-inflammatory actions, and modulation of the gut-reproductive axis via short-chain fatty acids.

Conclusion

The present study has demonstrated L. acidophilus to exert significant protective effects against ZEN-induced oxidative stress, hormonal disruptions, and tissue damage in the ovary. Thus, probiotic supplementation may serve as an effective strategy to mitigate the adverse effects of ZEN exposure on reproductive health; however, further studies are warranted.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855412402251119072925
2026-01-02
2026-02-03
Loading full text...

Full text loading...

References

  1. Mafe A.N. Büsselberg D. Mycotoxins in food: Cancer risks and strategies for control. Foods 2024 13 21 3502 10.3390/foods13213502 39517285
    [Google Scholar]
  2. Mahato D.K. Devi S. Pandhi S. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins (Basel) 2021 13 2 92 10.3390/toxins13020092 33530606
    [Google Scholar]
  3. Rai A. Das M. Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020 60 16 2710 2729 10.1080/10408398.2019.1655388 31446772
    [Google Scholar]
  4. Kowalska K. Habrowska-Górczyńska D.E. Piastowska-Ciesielska A.W. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 2016 48 141 149 10.1016/j.etap.2016.10.015 27771507
    [Google Scholar]
  5. Lv Q. Xu W. Yang F. Reproductive toxicity of zearalenone and its molecular mechanisms: A review. Molecules 2025 30 3 505 10.3390/molecules30030505 39942610
    [Google Scholar]
  6. Zhou J. Zhao L. Huang S. Zearalenone toxicosis on reproduction as estrogen receptor selective modulator and alleviation of zearalenone biodegradative agent in pregnant sows. J. Anim. Sci. Biotechnol. 2022 13 1 36 10.1186/s40104‑022‑00686‑3 35382876
    [Google Scholar]
  7. Feng Y.Q. Zhao A.H. Wang J.J. Oxidative stress as a plausible mechanism for zearalenone to induce genome toxicity. Gene 2022 829 146511 10.1016/j.gene.2022.146511 35447234
    [Google Scholar]
  8. Jomova K. Raptova R. Alomar S.Y. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  9. Lin X. Zhu L. Gao X. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation. Ecotoxicol. Environ. Saf. 2022 238 113561 10.1016/j.ecoenv.2022.113561 35489292
    [Google Scholar]
  10. Rastogi S. Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front. Pharmacol. 2022 13 1042189 10.3389/fphar.2022.1042189 36353491
    [Google Scholar]
  11. Wu L.Y. Yang T.H. Ou Y.C. Lin H. The role of probiotics in women’s health: An update narrative review. Taiwan. J. Obstet. Gynecol. 2024 63 1 29 36 10.1016/j.tjog.2023.09.018 38216265
    [Google Scholar]
  12. Lehtoranta L. Ala-Jaakkola R. Laitila A. Maukonen J. Healthy vaginal microbiota and influence of probiotics across the female life span. Front. Microbiol. 2022 13 819958 10.3389/fmicb.2022.819958 35464937
    [Google Scholar]
  13. Ma Y.Y. Li L. Yu C.H. Shen Z. Chen L.H. Li Y.M. Effects of probiotics on nonalcoholic fatty liver disease: A meta-analysis. World J. Gastroenterol. 2013 19 40 6911 6918 10.3748/wjg.v19.i40.6911 24187469
    [Google Scholar]
  14. Amabebe E. Anumba D.O.C. The vaginal microenvironment: The physiologic role of Lactobacilli. Front. Med. 2018 5 181 10.3389/fmed.2018.00181 29951482
    [Google Scholar]
  15. Abbasi A. Aghebati-Maleki L. Homayouni-Rad A. The promising biological role of postbiotics derived from probiotic Lactobacillus species in reproductive health. Crit. Rev. Food Sci. Nutr. 2022 62 32 8829 8841 10.1080/10408398.2021.1935701 34152234
    [Google Scholar]
  16. Plaza-Diaz J. Gomez-Llorente C. Fontana L. Gil A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J. Gastroenterol. 2014 20 42 15632 15649 10.3748/wjg.v20.i42.15632 25400447
    [Google Scholar]
  17. Mas-Bargues C. Escrivá C. Dromant M. Borrás C. Viña J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch. Biochem. Biophys. 2021 709 108941 10.1016/j.abb.2021.108941 34097903
    [Google Scholar]
  18. Sen Gupta P. Karmakar S. Biswas I. Vitamin E alleviates chlorpyrifos induced glutathione depletion, lipid peroxidation and iron accumulation to inhibit ferroptosis in hepatocytes and mitigate toxicity in zebrafish. Chemosphere 2024 359 142252 10.1016/j.chemosphere.2024.142252 38735493
    [Google Scholar]
  19. Benzie I.F.F. Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996 239 1 70 76 10.1006/abio.1996.0292 8660627
    [Google Scholar]
  20. Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959 82 1 70 77 10.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  21. Akyüz A. Tekin İ. Aksoy Z. Ersus S. Determination of process parameters and precipitation methods for potential large‐scale production of sugar beet leaf protein concentrate. J. Sci. Food Agric. 2024 104 6 3235 3245 10.1002/jsfa.13210 38072666
    [Google Scholar]
  22. Abid-Essefi S. Ouanes Z. Hassen W. Baudrimont I. Creppy E. Bacha H. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol. In Vitro 2004 18 4 467 474 10.1016/j.tiv.2003.12.011 15130604
    [Google Scholar]
  23. Long M. Yang S.H. Han J.X. The protective effect of grape-seed proanthocyanidin extract on oxidative damage induced by zearalenone in kunming mice liver. Int. J. Mol. Sci. 2016 17 6 808 10.3390/ijms17060808 27231898
    [Google Scholar]
  24. Cao L. Zhao J. Ma L. Lycopene attenuates zearalenone-induced oxidative damage of piglet sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. Ecotoxicol. Environ. Saf. 2021 225 112737 10.1016/j.ecoenv.2021.112737 34482067
    [Google Scholar]
  25. Hassen W. Ayed-Boussema I. Oscoz A.A. De Cerain Lopez A. Bacha H. The role of oxidative stress in zearalenone-mediated toxicity in Hep G2 cells: Oxidative DNA damage, gluthatione depletion and stress proteins induction. Toxicology 2007 232 3 294 302 10.1016/j.tox.2007.01.015 17339071
    [Google Scholar]
  26. Hayes J.D. Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014 39 4 199 218 10.1016/j.tibs.2014.02.002 24647116
    [Google Scholar]
  27. Drzymala S.S. Binder J. Brodehl A. Estrogenicity of novel phase I and phase II metabolites of zearalenone and cis-zearalenone. Toxicon 2015 105 10 12 10.1016/j.toxicon.2015.08.027 26335359
    [Google Scholar]
  28. Banu S.K. Stanley J.A. Taylor R.J. Sexually dimorphic impact of chromium accumulation on human placental oxidative stress and apoptosis. Toxicol. Sci. 2018 161 2 375 387 10.1093/toxsci/kfx224 29069462
    [Google Scholar]
  29. Muthulakshmi S. Hamideh P.F. Habibi H.R. Maharajan K. Kadirvelu K. Mudili V. Mycotoxin zearalenone induced gonadal impairment and altered gene expression in the hypothalamic–pituitary–gonadal axis of adult female zebrafish (Danio rerio). J. Appl. Toxicol. 2018 38 11 1388 1397 10.1002/jat.3652 29923290
    [Google Scholar]
  30. Yang R. Wang Y.M. Zhang L. Zhao Z.M. Zhao J. Peng S.Q. Prepubertal exposure to an oestrogenic mycotoxin zearalenone induces central precocious puberty in immature female rats through the mechanism of premature activation of hypothalamic kisspeptin-GPR54 signaling. Mol. Cell. Endocrinol. 2016 437 62 74 10.1016/j.mce.2016.08.012 27519634
    [Google Scholar]
  31. Hou Y.J. Zhao Y.Y. Xiong B. Mycotoxin-containing diet causes oxidative stress in the mouse. PLoS One 2013 8 3 60374 10.1371/journal.pone.0060374 23555961
    [Google Scholar]
  32. Kang J. Li Y. Ma Z. Wang Y. Zhu W. Jiang G. Protective effects of lycopene against zearalenone-induced reproductive toxicity in early pregnancy through anti-inflammatory, antioxidant and anti-apoptotic effects. Food Chem. Toxicol. 2023 179 113936 10.1016/j.fct.2023.113936 37429407
    [Google Scholar]
  33. Helli B. Kavianpour M. Ghaedi E. Dadfar M. Haghighian H.K. Probiotic effects on sperm parameters, oxidative stress index, inflammatory factors and sex hormones in infertile men. Hum. Fertil. (Camb.) 2022 25 3 499 507 10.1080/14647273.2020.1824080 32985280
    [Google Scholar]
  34. Areloegbe S.E. Obong N.N. Badejogbin O.C. Probiotics ameliorates hypothalamic amenorrhea in a rat model of PCOS. Metab. Brain Dis. 2025 40 3 145 10.1007/s11011‑025‑01573‑2 40072661
    [Google Scholar]
  35. Lin M.Y. Chang F.J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 2000 45 8 1617 1622 10.1023/A:1005577330695 11007114
    [Google Scholar]
  36. El-Nezami H. Polychronaki N. Salminen S. Mykkänen H. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and its derivative (')alpha-earalenol. Appl. Environ. Microbiol. 2002 68 7 3545 3549 10.1128/AEM.68.7.3545‑3549.2002 12089040
    [Google Scholar]
  37. Haskard C.A. El-Nezami H.S. Kankaanpää P.E. Salminen S. Ahokas J.T. Surface binding of aflatoxin B(1) by lactic acid bacteria. Appl. Environ. Microbiol. 2001 67 7 3086 3091 10.1128/AEM.67.7.3086‑3091.2001 11425726
    [Google Scholar]
  38. Rieu A. Aoudia N. Jego G. The biofilm mode of life boosts the anti-inflammatory properties of L actobacillus. Cell. Microbiol. 2014 16 12 1836 1853 10.1111/cmi.12331 25052472
    [Google Scholar]
  39. Jones R.M. Luo L. Ardita C.S. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J. 2013 32 23 3017 3028 10.1038/emboj.2013.224 24141879
    [Google Scholar]
  40. Kumar M. Nagpal R. Verma V. Probiotic metabolites as epigenetic targets in the prevention of colon cancer. Nutr. Rev. 2013 71 1 23 34 10.1111/j.1753‑4887.2012.00542.x 23282249
    [Google Scholar]
  41. Khodabandehlou S. Nouri F. Arabestani M.R. Heshmati A. Ranjbar A. The role of miR-34a gene expression in Zearalenone-mediated toxicity in vitro: the protective effect of Lactobacillus acidophilus. Molecular Biology Report 2026 53 139
    [Google Scholar]
  42. Markowiak-Kopeć P. Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 2020 12 4 1107 10.3390/nu12041107 32316181
    [Google Scholar]
  43. Basnet J. Eissa M.A. Yanes Cardozo L.L. Romero D.G. Rezq S. Impact of probiotics and prebiotics on gut microbiome and hormonal regulation. Gastrointest Disord 2024 6 4 801 815 10.3390/gidisord6040056 39649015
    [Google Scholar]
  44. Zhang D. Liu H. Wang S. Sex-dependent changes in the microbiota profile, serum metabolism, and hormone levels of growing pigs after dietary supplementation with Lactobacillus. Appl. Microbiol. Biotechnol. 2021 105 11 4775 4789 10.1007/s00253‑021‑11310‑1 34003306
    [Google Scholar]
  45. Rahimiyan-Heravan M. Roshangar L. Karimi P. The potential therapeutic effects of Lactobacillus plantarum and inulin on serum and testicular reproductive markers in diabetic male rats. Diabetol. Metab. Syndr. 2020 12 1 53 10.1186/s13098‑020‑00560‑0 32607132
    [Google Scholar]
  46. Martinez Guevara D. Vidal Cañas S. Palacios I. Effectiveness of probiotics, prebiotics, and synbiotics in managing insulin resistance and hormonal imbalance in women with polycystic ovary syndrome (pcos): A systematic review of randomized clinical trials. Nutrients 2024 16 22 3916 10.3390/nu16223916 39599701
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855412402251119072925
Loading
/content/journals/cdth/10.2174/0115748855412402251119072925
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: uterine ; Lactobacillus acidophilus ; ovaries ; mycotoxin ; zearalenone ; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test